Skip to main content
. 2020 Dec 3;11:606873. doi: 10.3389/fneur.2020.606873

Table 3.

Time segmented conditional piecewise growth model on IES in updating training.

Est/Beta SE 95% CI t p
FIXED EFFECTS
Intercept 1,360.4 77.06 1,210.43–1,510.32 17.65 0.0000***
Time_Segment1 −113.89 29.14 −170.58–−57.19 −3.91 0.0001***
Time_Segment2 −29.54 16.07 −60.81–1.73 −1.84 0.0664
Time_Segment3 −12.64 14.81 −41.47–16.18 −0.85 0.3936
Time_Segment4 −11.44 16.98 −44.49–21.60 −0.67 0.5006
2-back_blocks 162.18 46.76 71.19–253.16 3.47 0.0006***
3-back_blocks 656.84 45.23 568.82–744.86 14.52 0.0000***
Time_Segment1 X 2-back_blocks 2.57 33.85 −63.29–68.43 0.08 0.9396
Time_Segment1 X 3-back_blocks −100.48 32.69 −164.10–−36.87 −3.07 0.0022**
Time_Segment2 X 2-back_blocks −21.9 21.29 −63.33–19.54 −1.03 0.3041
Time_Segment2 X 3-back_blocks −28.31 20.89 −68.96–12.34 −1.36 0.1757
Time_Segment3 X 2-back_blocks 0.55 21.64 −41.56–42.66 0.03 0.9798
Time_Segment3 X 3-back_blocks −43.40 21.22 −84.69–−2.11 −2.05 0.0411*
Time_Segment4 X 2-back_blocks −15.86 24.86 −64.24–32.52 −0.64 0.5238
Time_Segment4 X 3-back_blocks −7.12 24.19 −54.20–39.96 0.29 0.7685
Variance S.D. Correlation
RANDOM EFFECTS
Participant 145,815.51 381.86
Time_Segment1 9,306.06 96.47 −0.76
Time_Segment2 1,394.46 37.34 −0.87
Time_Segment3 50.86 7.13 −0.74
Time_Segment4 122.9 11.09 −0.9
Marginal Conditional
MODEL FIT R2
0.38 0.77

Model equation: IES ~ (Time_Segment1 + Time_Segment2 + Time_Segment3 + Time_Segment4) * Difficulty_of_blocks, random = ~ Time_Segment1 + Time_Segment2 + Time_Segment3 + Time_Segment4 | Participants, corAR1(0, form = ~ 1 | Participants).

*

p < 0.05;

**

p < 0.01;

***

p < 0.001.