Skip to main content
. 2020 Dec 3;11:606873. doi: 10.3389/fneur.2020.606873

Table 4.

Time segmented conditional piecewise growth model on IES in inhibition training.

Est/Beta SE 95% CI t p
FIXED EFFECTS
Intercept 1, 545.28 52.36 1,443.30–1,647.26 29.51 0.0000***
Time_Segment1 −156.84 16.19 −188.37–−125.31 −9.69 0.0000***
Time_Segment2 −15.70 6.67 −28.70–−2.70 −2.35 0.0190*
Time_Segment3 −17.55 5.40 −28.08–−7.03 −3.25 0.0012**
Time_Segment4 −14.76 5.75 −25.97–−3.55 −2.57 0.0106*
Incongruent_blocks 170.37 17.37 136.53–204.20 9.81 0.0000***
Time_Segment1 X Incongruent_blocks −9.86 12.10 −33.43–13.72 −0.81 0.4158
Time_Segment2 X Incongruent_blocks −12.70 7.78 −27.85–2.46 −1.63 0.1034
Time_Segment3 X Incongruent_blocks −0.23 7.56 −14.95–14.50 −0.03 0.9759
Time_Segment4 X Incongruent_blocks −0.09 7.99 −15.64–15.47 −0.01 0.9915
Variance S.D. Correlation
RANDOM EFFECTS
Participant 63,693.25 252.38
Time_Segment1 4,642.83 68.14 −0.80
Time_Segment2 350.21 18.71 −0.48
Time_Segment3 15.21 3.90 0.48
Time_Segment4 28.76 5.36 −0.60
Marginal Conditional
MODEL FIT R2
0.42 0.92

Model equation: IES ~ (Time_Segment1 + Time_Segment2 + Time_Segment3 + Time_Segment4) *Difficulty_of_blocks, random = ~ Time_Segment1 + Time_Segment2 + Time_Segment3 + Time_Segment4 | Participants, corAR1(0, form = ~ 1 | Participants)

*

p < 0.05;

**

p < 0.01;

***

p < 0.001.