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Microbiomes are integral components of diverse ecosystems, and increasingly recognized for their roles
in the health of humans, animals, plants, and other hosts. Given their complexity (both in composition
and function), the effective study of microbiomes (microbiomics) relies on the development, optimiza-
tion, and validation of computational methods for analyzing microbial datasets, such as from marker-
gene (e.g., 16S rRNA gene) and metagenome data. This review describes best practices for benchmarking
and implementing computational methods (and software) for studying microbiomes, with particular
focus on unique characteristics of microbiomes and microbiomics data that should be taken into account
when designing and testing microbiomics methods.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

‘‘What we observe is not nature itself, but nature exposed to our
method of questioning.”-Werner Heisenberg

Microbial communities have colonized and influence practically
every ecosystem on the planet Earth, impacting environmental
sciences [1], agriculture [2–4], and human health [5–9]. The host
and ecosystem services provided by microbes are legion [10–13].
It is no surprise that U.S. medical research spending on the human
microbiome has reached US$1.7 billion in the past decade [7,14],
given the increasing discovery of microbial impacts on cancer
[15,16], obesity [17,18], pharmacological effects [19,20], infant
health [21–24], and susceptibility to disease [25]. Furthermore,
we are becoming increasingly aware of the services microbes pro-
vide with regard to agriculture, waste-water treatment [26,27],
and climate change [28,29].

The study of all facets of the microbiome [30,31], e.g. microbial
composition, diversity, and function as they interact with the biotic
and abiotic features of the environment in which they live, is often
referred to as the field of microbiome science [32], or micro-
biomics. Microbiomics has become a large interdisciplinary
‘‘multi-omic” field that incorporates classical microbiology, chem-
istry, metatranscriptomics, metaproteomics, metabolomics, cultur-
omics, ecology, phylogenetics, systems biology, et cetera [33,34].
The field of microbiome science is still a rapidly growing interdis-
ciplinary field, the resulting data explosion [35] has led to a com-
mensurate rise in novel analytical approaches to parse, curate,
and analyze multi-omic data [36]. These myriad tools and data-
types make it increasingly difficult to interpret, compare, standard-
ize, and benchmark the quality of the data and analytical methods
in a consistent and meaningful way [31,36–38]. These issues con-
found our ability to translate multi-omics research into clinical
applications [39]. Precise computational techniques are needed
to process, normalize, and analyze microbiomics datasets to sup-
port reproducible research into the role of microbiomes in health
and the environment.

1.1. Marker-gene and metagenome sequencing

Prior to embarking on a microbiome survey, researchers must
consider the intent of the study [40,41], and determine what it is
they want to investigate. These questions have important implica-
tions for logistics, cost, and biological inference, particularly in the
area of translational science [42–44]. Measuring the composition
of a microbiome (what taxa/species are present) is addressed most
commonly by the use of amplicon-based / marker gene sequencing
approaches to perform a microbial census [45,46], across a variety
of sample and treatment types. The functional potential of a micro-
bial community can be inferred indirectly by marker-gene surveys
[47–50], or through direct observation of the functional genes and
pathways by whole-metagenome sequencing surveys [51]. Mea-
surements of functional activity in a microbiome can be derived
through metabolomics [52], proteomics [53,54], and transcrip-
tomics [16] approaches. When applying and integrating several
of these approaches, i.e. performing a ‘‘multi-omics” study, greater
insights can be gained into community behavior and interactions
with the host and/or environment [33,55–61]. For the purposes
of this review, we will focus on sequencing-based methods, though
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many of the same concerns (e.g., regarding sample and data char-
acteristics, test data, and benchmarking approaches) will generally
apply to other microbiomics techniques.

Conducting a microbial census via amplicon sequencing
involves massively parallel sequencing of specific marker genes
(such as 16S rRNA genes) or other DNA targets that are PCR-
amplified directly from environmental DNA, and sequencing these
pooled amplicons in parallel. These amplicon sequence reads can
then be classified by comparison to a reference sequence database
to identify their origin (e.g., the species or taxonomic group). The
relatively low cost of this method enables sequencing of hundreds
to thousands of samples simultaneously [62], making it useful for
tracking microbial compositions in large surveys [63]. Additionally,
the relatively low complexity of amplicon sequence data make it
much more computationally tractable for a wide range of research
applications [64–66]. Both short- [67] and long-read sequencing
[68] can be used for taxonomic classification, but short reads are
less reliable for species-level identification [67,68], and both are
insufficient for strain-level identification, though sequence variant
information can be used to differentiate ‘‘phylotypes” at the sub-
species level [69,70].

Metagenome sequencing involves massively parallel sequenc-
ing of DNA fragments extracted directly from environmental sam-
ples [37,51,66,71–73]. These sequence reads can then be
computationally re-assembled into full or partial genomes [74–
76] or taxonomically ‘‘binned” to identify their origin [9,10].
Metagenome sequencing avoids the amplification and resolution
biases that limit amplicon sequencing [51,77–79], but still suffers
from its own set of methodological and computational limitations
and biases [37,80–82], including issues with sequencing host or
other non-target DNA [83], which must be carefully considered
when designing an experiment. Furthermore, the significantly
greater cost [84] and computational complexity [64–66] make
metagenome sequencing more fiscally and technically challenging
to work with, compared to amplicon sequencing approaches.
‘‘Shallow” metagenome sequencing allows taxonomic profiling
at a comparable cost to amplicon sequencing [85], but lacks the
coverage necessary for functional profiling or for genome re-
assembly.

Amplicon and metagenome sequencing methods share similar
properties that must be considered when designing and bench-
marking computational methods to analyze these data. DNA
extraction [83], storage [86], contamination [87], and other exper-
imental biases [42,72,88,89] can skew measurements from both
methods [37,80]. Sequencing errors are inherent to all modern
sequencing chemistries/technologies [90], potentially introducing
false-positive errors and skewing diversity estimates if uncorrected
[69,70,91,92]. Both approaches measure only the relative abun-
dances of genes/taxa, unless additional steps are used to estimate
their absolute abundances [93–97]. This means that most micro-
biome sequence datasets exhibit compositional properties that
violate the assumptions of many conventional statistical
approaches [98,99]. Sequencing depth can vary across samples,
leading to heated debate about appropriate normalization
approaches for comparing samples [100–102]. Finally, the high
ratio of genetic diversity to sample size (for most experiments
and sample types) means that data typically exhibit high sparsity
and a large component-to-sample ratio (p�n). Addressing these
issues remains an active area of research [103,104].



Fig. 1. An overview of a microbiomics method development workflow. Typically, a method is developed to address one or more biological questions, e.g., concerning
microbial composition (genetic or taxonomic), dynamics, or functional activity. Depending on the question, various data types can be used to feed a machine learning model
or statistical test(s). Once developed, the method should be subject to a suite of benchmarks to assess its performance. A range of choices should be made here, as to what data
to use, which performance metric to apply and what kind of benchmark to employ. Finally, to optimize accessibility for the research community, the method should be
implemented into a software package/plugin, applying best practices for software development, including version control, testing and continuous integration, documentation
and, finally, community support. Naturally, the three steps presented here may overlap in the development cycle, e.g. some part of benchmarking may be started already in
the development phase. Software implementation also often starts early, with the first version of the working code. Generally, however, the transition from ‘‘develop” through
‘‘benchmark” to ‘‘implement” becomes natural as the project progresses.
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The goal of this review is to serve as a starting point for devel-
oping and benchmarking computational methods for microbiomics
(Fig. 1). As such, a thorough review of existing methodology and
benchmarks is out of scope. Nevertheless, to serve as a guide for
future benchmarking endeavors, readers are referred to a selection
of existing benchmarks for marker gene quality filtering [91,105],
normalization [100–102], taxonomic classification [67], cluster-
ing/denoising [90,92,106,107], correlation detection [108], super-
vised learning [109,110], overall workflows [111,112],
metagenome assembly [113–115], and metagenome taxonomic
binning and classification [113,116].
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2. Benchmarking

Benchmarks are essential to assess the performance of any com-
putational method before releasing it to the public [117]. Methods
for microbiome analysis are no exception, and benchmarks must
be well designed to reflect the diverse operating conditions
encountered in analysis of microbiomes. Benchmarking can be
conducted to provide measures of absolute performance for a
new method (e.g., runtime and memory requirements), as well as
relative performance (runtime, accuracy, etc) of multiple methods.
Other authors have reviewed fundamental aspects of bioinformat-
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ics methods benchmarking [117–121]; the goal of the current
review is to amend that information with a focus on benchmarking
practices that are of particular relevance to microbiomics. This sec-
tion is primarily intended for microbiomics methods developers
who wish to adopt best practices for development and benchmark-
ing, but the fundamental goals of benchmarking are discussed
below (see the section ‘‘Benchmarking Basics for Non-
Developers”) for the benefit of microbiomics researchers and
others who use computational methods (rather than develop
them) and who would like more insight into the practical value
of benchmarking.

‘‘Internal” benchmarking (performed by the researchers devel-
oping a new method) is essential for any new method, particularly
when this method is designed to compete against existing meth-
ods. Developers of new methods should incorporate multiple eval-
uation metrics and structure their tests to avoid the ‘‘self-
assessment trap” when benchmarking [120]. ‘‘Neutral” bench-
marks of multiple methods (performed by researchers not involved
in the development of any of the methods under investigation) are
important assessments that can provide unbiased evaluation of
tools used by the research community [122], provided that all
methods and tests are used properly. Benchmarking ‘‘challenges”
and community benchmarks (performed by multiple teams of
researchers who have developed competing methods) can be par-
ticularly valuable for large-scale relative benchmarks, ensuring
that each method is used appropriately [111,113]. The use of dou-
ble blinding in benchmarking ‘‘challenges” can be particularly use-
ful for evaluating the ability of different methods to generalize to
unseen datasets, and avoiding implicit bias [120].

2.1. Test data

Selecting appropriate test data is a critical component of bench-
marking. These data should reflect the use cases that a method is
intended to address. In the case of microbiome analysis methods,
this often includes performance for characterization of a diverse
range of sample types or species (if the tool is intended for general
use) to sufficiently sample the range of experimental conditions
under which the method is designed to operate.

We differentiate between ‘‘mock”, ‘‘biological”, cross-validation,
and simulated data. Mock data are real biological samples that
have been created with a known property such as taxonomic com-
position, which can be used to test methodological accuracy. Bio-
logical data are distinct from mock data in that we may not
know what the tested method should infer from the data. Biologi-
cal data are typically not gathered primarily for the purpose of test-
ing methods. Cross validation is more strictly a testing procedure
than a type of data, but we use it in this context for data that is arti-
ficially split (usually multiple times) into mutually exclusive sub-
sets. One subset is then used for fitting or training a model or
technique, and one for validation or testing. Simulated data are
data that are generated artificially, usually pseudo-randomly under
a parametric model.

Each data type has strengths and weaknesses. Mock data can
represent a gold standard but are often limited in availability due
to the expense of generating them. Biological data represent real
operating conditions and are a true test of a given method, but
their use is limited by our knowledge of an objective truth. Simu-
lated and cross-validated data are inexpensive to generate and
flexible, allowing exhaustive testing of a method, but that also
allows authors to overemphasise strengths or weaknesses of the
method, intentionally or otherwise. Ultimately any reasonable
approach to benchmarking needs to contain a balance of these data
types.
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2.1.1. Mock communities
‘‘Mock” communities consist of mixtures of microbial cells with

known composition (i.e., mixed at known ratios) and taxonomic
identities (i.e., the marker genes or genomes of individual members
have been sequenced) [123,124]. These communities are then ana-
lyzed to profile their composition (e.g., with marker-gene or meta-
genome sequencing). Mock communities have seenwidespread use
in microbiome methods benchmarking [9,76,91,92,111,125–127],
because they provide known compositions for ground-truthing,
but represent real experimentally derived data (incorporating the
various technical, biological, and human errors inherent to micro-
biome profiling methods) and hence allow investigators to assess
performance of diverse methods under real operating conditions.
This latter attribute is a double-edged sword: testing under operat-
ing conditions (e.g., challenged by sequence errors) can be impor-
tant for differentiating the performance of methods that
otherwise perform well under simulated conditions [67], and com-
plements cross-validation and simulation approaches, but can
introduce other challenges, as discussed below.

The hybrid properties of mock communities make them useful
for testing a diverse range of both wet-lab [111,128–132], and
computational methods [9,91,111], but also exposes them to limi-
tations. Mock communities are laborious to create, as they must be
physically generated from axenic cultures, and the marker-genes
or genomes should be sequenced prior to use for testing
sequencing-based methods. Hence, the cost of creating a mock
community is a limiting constraint (though the costs pay off with
repeated use), and inevitably these communities can only capture
limited diversity. At best, they can realistically simulate only low-
diversity sample types, such as some foods and other selective
environments, and provide simplistic representations of more
diverse communities such as gut microbiomes.

The introduction of technical, biological, and human errors dur-
ing the creation of mock communities can also create significant
challenges for their use in research. In the worst cases, significant
human or technical errors could render a mock community unus-
able, e.g., if cross-contamination or sequencing errors skew results
excessively. Even in the best cases, low to moderate levels of error
are incorporated and it can be impossible to differentiate short-
comings of the methods being benchmarked from underlying tech-
nical errors [67], creating the false impression that a particular
method is imperfect when, in fact, this is an inherent feature of
the test data. For this reason, mock communities are best used to
evaluate relative performance in the context of benchmarking,
rather than the absolute accuracy of a specific method [67]. Simi-
larly, mock communities have been long recommended as positive
controls in microbiome sequencing experiments [91], and evaluat-
ing the relative performance of mock community accuracy across
multiple sequencing runs (with identical methods) can be a useful
method to detect potentially disruptive batch effects that can lead
to spurious results [127].

Various resources exist for researchers interested in using mock
communities for various purposes. We previously created mockro-

biota (http://mockrobiota.caporasolab.us/) as a public resource for
mock community datasets, allowing researchers to share and use
mock community data generated under different experimental
technological conditions (e.g., using different sequencing platforms,
marker genes, and shotgun metagenomes), including the taxo-
nomic composition of those mock communities [123]. Having a
diverse collection of mock communities makes mockrobiota useful
for benchmarking purposes, as methods can be tested on multiple
communities and multiple sequencing platforms to avoid overfit-
ting to single test datasets (discussed below). Physical mock com-
munities can also be acquired from various government [133] and

http://mockrobiota.caporasolab.us/


Fig. 2. Microbial diversity varies widely by sample type across the planet, as measured across 9787 samples from the Earth Microbiome Project [1]. A, Boxplots measuring the
distribution of alpha diversity (as Shannon entropy) in each sample type (boxes show quartile values, diamonds indicate outlier values). B, Unweighted UniFrac principal
coordinates analysis (PCoA) measures similarity between samples based on community-wide phylogenetic similarity. Samples are categorized by their ‘‘empo_3” sample
type. Pre-computed data (Shannon diversity and PCoA coordinates) were collected from the published EMP study data at ftp://ftp.microbio.me/emp/.
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commercial sources including ATCC (https://www.lgcstandards-

atcc.org/) and Zymo Research (https://www.zymoresearch.com/),
enabling researchers to use these as positive controls in sequencing,
or to analyze with specific technological platforms.

Several best practices should be considered when making mock
communities in-house. Mock community members should be
sequenced (ideally have their genomes sequenced) so that the
actual expected sequence is known, rather than just the taxonomy.
This is useful for benchmarking denoising methods and others for
upholding sequence fidelity in sequence experiments [69]. Strain
information and, ideally, persistent taxonomic identifiers should
be used to label mock community members, so that taxonomic
information can be updated in step with the tumultuous field of
microbial systematics [134]. Typically, cellular DNA is used in
mock communities but this can pose problems for multiple-copy
marker genes, particularly when the precise copy number is
unknown. Synthetic mock communities provide advantages for
high-precision testing [135], though their potential applications
are dependent on design methodology (e.g., synthetic amplicons
are of limited use for shotgunmetagenomics), limiting their useful-
ness for general method benchmarking. Creators of mock commu-
nities should provide detailed metadata on the construction and
composition of mock communities to facilitate accurate re-use
[123], and users of mock communities should carefully consider
that information when re-using those mock communities (or data
generated from mock communities) to avoid improper use.
2.1.2. Biological data
Objective test data for which the ‘‘correct” answer is known

(e.g., simulated and mock community data), is essential for good
methods benchmarking, but provides little or no insight into real
operating conditions. Simulated and mock data are typically sim-
plified and cannot represent the challenges encountered in real
experiments, which are complicated by errors (human, sequencing,
and other technical errors) and biological diversity that can be dif-
ficult or impossible to effectively simulate. Some methods that
work well in simulated tests (‘‘on paper”) unravel when faced with
real data. Thus, testing on biological data is often beneficial to
demonstrate method performance ‘‘in the field”, even if those sam-
ples do not provide objective measurements (e.g., known composi-
tion of a microbial community).
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Biological testing typically involves selecting an appropriate set
of samples to demonstrate performance under a range of condi-
tions. For example, different sample types can be used to demon-
strate effective operation of a method in highly diverse
communities (e.g., soil, gut), moderately diverse (e.g., water), and
relatively low-diversity communities (e.g., host surfaces) (Fig. 2).
These tests can consist of analyzing published data, with the
expectation that the new method will outperform the existing
‘‘gold standard”, or can evaluate unpublished samples, with the
goal of demonstrating effective performance on real samples while
acknowledging that the ‘‘correct” answer cannot be known.

In some cases, though, real samples are an effective ground
truth, and can serve as primary test data in lieu of simulated or
mock communities. This is often the case for supervised learning
methods that are designed to predict sample class (e.g., disease
state, sample type) or other objective measurements
[109,110,136,137]. In those cases, the true value can be objectively
measured and validated, and hence biological samples provide
known test cases. Hence, the microbiome machine learning litera-
ture usually uses real samples to test accuracy of supervised clas-
sification and regression methods [138].

Various resources exist for researchers who want to access
existing biological data for methods benchmarking. Most marker-
gene and metagenome data generated in published literature is
(or should be!) deposited in public nucleotide sequence databases,
following journal requirements and data standards such as
MIMARKS [139], MISAG, MIMAG [74], and FAIR [140]. Hence,
resources including NCBI-SRA [141], European Nucleotide Archive
(https://www.ebi.ac.uk/ena/browser/home), and Qiita [142] pro-
vide direct access to published sequence data and metadata that
can be used for methods benchmarking of raw sequence data.
Other databases provide access to processed datasets, e.g., observa-
tion matrices useful for benchmarking machine learning methods,
including Qiita [142] and ML Repo [138].

2.1.3. Cross validation
Cross validation is a well-established technique from the field of

machine learning [109,110,136,137] that tests a method’s predic-
tive power on unseen data. The general method is to partition
the available samples into training and validation sets, train on
the training set and test on the validation set, then repeat the pro-
cess until all of the available data has been in a validation set.

https://www.lgcstandards-atcc.org/
https://www.lgcstandards-atcc.org/
https://www.zymoresearch.com/
https://www.ebi.ac.uk/ena/browser/home
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Many methods exist for generating the partitions but the common
k-fold cross-validation technique partitions the data into k sets of
equal size, then uses one of those k sets as the validation set for
each iteration. Cross validation is applicable to a range of problems,
but the archetypal example is that of training a supervised learning
classifier, which in the context of a microbiomics experiment could
include taxonomic classification of DNA sequences, sample classi-
fication, and metagenome taxonomic binning and classification.
In these examples a database of samples with known classifica-
tions is used to ‘‘train” an algorithm to extrapolate those classifica-
tions for unseen samples. In the case of sample classification, the
goal is to predict sample characteristics, e.g., sampling location
[3] or demographic information [104], using microbiome data
(e.g., sequence or species counts in each sample) as predictors. In
the case of taxonomic classification (or DNA sequence annotation
more generally), samples consist of single genetic sequences and
classifications consist of taxonomic (or functional) annotations.

Cross validation techniques can be manipulated to test specific
features. For example, for taxonomic classification, the training and
validation sets can be chosen to emphasise the classifier’s perfor-
mance on sequences that it should not be able to classify, because
they come from taxa that were not present in the training set [67].
Generally, though, it is desirable that the data sets are chosen to
reflect the method’s performance in realistic scenarios. Stratifica-
tion of samples is a variance-reduction technique that attempts
to ensure that classes are represented evenly across the folds in
k-fold cross validation. As this technique reduces variance in the
results between folds, it increases the statistical power of the test.

Of practical importance to supervised learning classification
problems are the distribution of classifications among the samples.
For instance, if cases of a rare pathology are as common as healthy
samples in validation sets, then a method that errs toward false
positives will overperform. When performing cross validation it
is also important to eliminate any possible information leakage,
that is inadvertently allowing information that is only supposed
to be present in the training set to also be present in the validation
set. For example, when testing the effect of imbalanced taxonomic
distribution on taxonomic classifiers by cross validating over
empirical taxonomic distributions, it is important to not use the
empirical distributions of the samples in the validation set when
training the classifiers [67,143].

Automated tools now exist for cross validation of sample classi-
fication methods [110,137] and taxonomic classification methods
[144]. Excellent APIs also exist for cross validation and measure-
ment of performance [145].

While many publications perform cross validation over a speci-
fic data set, the performance of a method is more strongly sup-
ported by cross validation across studies, for instance being able
to use data from one study to draw correct conclusions about data
from another study [104,137,143,146].

2.1.4. Simulated data
Simulation can be used in some scenarios where cross valida-

tion is difficult, such as where a ground truth is not known about
the data or where the method does not have a training or fitting
step, such as parametric approaches or unsupervised learning. This
includes techniques for data normalization and differential abun-
dance testing [101], marker gene quality filtering, clustering, or
denoising [70], overall workflows, taxonomic classification [147],
diversity estimation [148], and metagenome assembly [149].

Simulated data offer a powerful degree of flexibility and control,
and are inexpensive to generate compared to mock or biological
data. This power is also its downfall, however, as results can be
manipulated easily. It is a cliché to generate data under a paramet-
ric model that incorporates statistical features that a bioinformatic
method was built to handle, and to then show how competing
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models fail to perform in the presence of those features, i.e. the
algorithms under investigation are not independent [150]. Simula-
tion must therefore be handled with care or used in conjunction
with the other types of data mentioned above. Good simulation
should not ignore important features of real data and conclusions
should be drawn carefully. Two examples where simulation is par-
ticularly useful are for statistical power calculations [151,152] or
for objective goodness-of-fit calculations using parametric boot-
straps [153]. In both cases the purpose of simulation is not to
model the entire problem, but rather it is a tool for performing ana-
lytically intractable calculations.

Simulating the error inherent in genetic sequencing technology
[154–156] is useful for benchmarking sequence denoising methods
and metagenome assembly and binning methods [149], but is
becoming less useful for other microbiomics methods (e.g., taxo-
nomic classification of marker-gene sequences) as chemical and
statistical techniques converge on single-nucleotide sequencing
resolution [69,70] and all of the variance becomes attributable to
evolutionary history. Hence, cross validation is more common for
the purpose of benchmarking supervised learning methods.

2.2. Parameter tuning

Parameter settings can critically impact method performance,
and should be examined in many benchmarking studies. Develop-
ers should define default parameter settings for their methods ide-
ally through the use of a well-designed benchmark,
recommendations for which are given below. Method users should
be aware, however, that default parameter settings do not absolve
the user from responsibility in defining reasonable settings in their
application. Likewise, developers of competing methods should not
assume that default settings are a divine mandate, and that testing
competing methods with default settings necessarily represent
typical use cases, as discussed below. In general, parameters are
exposed to end users when the setting is meant to be adjusted
for different applications.

Parameter tuning allows method developers and users to eval-
uate the impact of parameter settings on method performance
through benchmarking. This can either be performed via a com-
plete ‘‘grid search” of all possible parameter values or a represen-
tative range, or through a ‘‘random search” of settings subset
from the complete grid [157]. Machine-learning methods, and
other computational methods with complex, interacting, and fre-
quently non-intuitive or non-transparent parameters, can benefit
from automated parameter tuning strategies, for example using
Bayesian or evolutionary optimizers [158–160]. For most bioinfor-
matics applications, however, the number of possible parameter
permutations is limited and a complete or random grid search is
sufficient, and can provide information about parameter behavior
to end users [67].

When performing a benchmark, it is essential that neutrality is
maintained regarding parameter tuning, to avoid introducing bias
for any particular method. If any one method (such as a new
method being developed) is tuned extensively, but other methods
do not undergo any tuning, the comparison is unequal and poten-
tially biased [117]. One strategy for maintaining neutrality is to use
default settings for all methods being compared, following the
rationale that this scenario represents usage by novice users who
are less likely to manually adjust parameter settings, though this
assumption may be overly simplistic for some benchmarks [117]
or could even introduce bias, such as when default settings are
intended for specific applications. Another strategy is to use the
same parameter tuning methodology for all methods being com-
pared. This is essential to avoid biases when parameter tuning is
being conducted for any one method, such as a new method under
development, and can be useful for evaluating the performance



Box 1A deep dive: measuring classifier performance
In this section we cover several performance metrics that are
applicable to methods benchmarking in general, but were, at
least initially, developed for different types of classification tasks
(e.g., feature classification, taxonomic classification, sample pre-
diction).There are several methods for measuring accuracy in
cross validation that emphasize different properties of the clas-
sifiers. Precision, recall, and F-measure [165] are common
metrics, but other accuracy metrics are applicable to specific
benchmarking tasks such as sequence clustering [166] and
metagenome assembly [114]. Descriptions of precision and
recall are frequently written for binary classifiers, but for
taxonomic or sample classification binary classification is the
exception rather than the rule. For example, the current finest
Greengenes [167] taxonomy contains 5,405 taxa, each of
which is usually represented as a single class. Precision
measures the fraction of classifier predictions that match the
true class of a sample:
P ¼ Tp

TpþFp
where Tp is the number of predictions that match the

true class (also known as true positives) and Fp is the number
of predictions that do not match the true class of a sample
(false positives). Table 1 shows a hypothetical confusion
matrix that counts the number of samples that belong to three
orders of Bacteria and how a classifier might have classified
them. In this example, precision for Lactobacillales would be
234/357 (the number of correct classifications over the
corresponding row total).
Recall is the fraction of samples for which the predictions match
the true class::
R ¼ Tp

TpþFn
where Fn is the number of samples for which the predictions did
not match the true class (false negatives). In the example in
Table 1, the recall for Lactobacillales would be 234/368 (the
number of correct classification over the corresponding column
total). F-measure is the harmonic mean of precision and recall:
F ¼ 2 P�R

PþRAs it is sometimes possible to trade precision for recall, F-
measure provides a single number that rewards good precision
and recall and penalizes poor performance in either.
So far we have considered precision, recall, and F-measure for a
single class. There are several ways to generalize single-class
measures to summarize the performance of a multiclass
classifier. One method is microaveraging, where the number of
correct classifications and the number of samples are summed
over all classes before precision and recall are calculated. For
Table 1, precision would be the sum of the diagonals divided by
the sum of the row totals (444/733), recall would be the sum of
the sum of the diagonals divided by the sum of the columns
totals (444/733), and F-measure would be their harmonic mean
(444/733). Clearly, for microaveraging, precision and recall are
equal, so they are also equal to F-measure. There is a further
complication for taxonomic classification that can make the
microaveraged precision diverge from the microaveraged recall,
which we will mention below.
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landscape across multiple parameter settings and applications
[67]. Hence, parameter tuning is useful for both internal and neu-
tral (independent) benchmarks. Full grid searches are not neces-
sary for all benchmarks that perform tuning; selection of
rationally defined settings can be sufficient, provided that the
investigators are knowledgeable about each method, its parameter
settings, and are careful to avoid introducing bias in this selection
[117].

2.3. Performance metrics

The next step in benchmarking is to choose appropriate perfor-
mance metrics. Ideally, multiple metrics should be chosen to avoid
implicit bias by researchers testing their own methods [120], as
well as by independent benchmarks. Optimizing a method to over-
perform in any one specific performance metric can come at the
expense of other performance metrics, and hence overall method
performance should be evaluated based on multiple metrics. Per-
formance metrics are often specific to the benchmarking task,
and an exhaustive review is out of the scope of this discussion,
but we highlight some metrics as notable examples relevant for
microbiomics.

Many methods can be evaluated using classification perfor-
mance measures, as either direct or indirect evaluations of method
performance (e.g., the performance of a DNA sequence clustering
or assembly method can be evaluated by looking at its impact on
predicted taxonomic composition). As an example of the detailed
considerations that are necessary when choosing performance
metrics, we cover classifier performance metrics in more detail
below (Box 1). The extension of classifier metrics to cross valida-
tion in the regression case (where the predicted quantity is contin-
uous, eg. [4,161]) is straightforward. For instance, the default
method for scoring regressors in scikit-learn is the coefficient of
determination (or R2, not to be confused with other correlation
coefficients) [145], which attempts to capture the tradeoff between
bias and variation. Mean squared error and several other metrics
are also widely used, depending on the application.

For evaluation of sequence clustering, denoising, or quality fil-
tering approaches, DNA sequence ‘‘purity” can be a useful perfor-
mance metric using both reference-based methods, e.g.,
dissimilarity between observed and expected sequences [69], or
reference-independent methods, such as the Matthews correlation
coefficient [162,163]. The performance of various DNA sequence
analysis methods and pipelines can also be compared via estimates
of alpha diversity (within-community diversity) or beta diversity
(between-community distance or dissimilarity) versus the
expected diversity measurements [91,111]. Similarly, the perfor-
mance of alpha and beta diversity metrics can be evaluated by
comparison to expected diversity measurements for simulated or
mock communities [148,164]. Metagenome profiling methods are
commonly evaluated by many of these same approaches (e.g.,
alpha diversity, beta diversity, and classification metrics) [113].
Metagenome assemblers can be evaluated using a variety of
reference-based approaches, e.g., by evaluating alignment to refer-
ence genomes or rRNA gene sequences [114].

Outside of metrics that measure performance of microbiomic
methods, two other important considerations for many applica-
tions are runtime and memory usage. If it is not possible to process
sufficient data in a reasonable time frame or on accessible hard-
ware, the method might be limited in its application. For sample
and taxonomic classification, these tasks have been made easier
in recent years with the advent of denoising techniques [69,70],
resulting in roughly an order of magnitude fewer sequences to pro-
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cess at each step. This is countered, on the other hand, by expand-
ing reference databases that can lead to considerable overhead and
delays when training classifiers [144]. These parameters are usu-
ally easily monitored using standard system tools. Resource
requirements and performance metrics are under-reported in the
literature and should generally be reported when possible [119].



The accuracy score is easier to understand and more descrip-
tively named. It is the number or proportion of classifications
that were correct. The accuracy score is also easier to under-
stand in the multiclass scenario. For Table 1, accuracy is the
sum of diagonals divided by the sum over the whole table
(444/733), making it the same as the F-measure in this instance.
However, the calculation of accuracy is not exactly the same as
F-measure so where precision and recall differ, accuracy will not
capture the trade-off between them, which again we will
explore below.
There are important nuances that need to be considered when
choosing measures of performance. An important (but seldom
considered) consideration for microbiomics is how the measure
incorporates imbalanced classes. Microaveraging, as described
above, implicitly weights each sample as being equally impor-
tant, which is rarely the case. Different samples (or classes, or
sample types, or species, or genes) can have different impor-
tance because of how often they are observed in reality and
because of their importance to the research question. For
instance, the real distribution of taxa in biological samples is
usually a long way from the distribution of taxa in standard
databases [143] and the relative importance of false positives
and false negatives must be carefully weighed, for instance in
medical screening [168]. Therefore the calculations should be
weighted. For instance, if Lactobacillales, Pseudomonadales,
and Enterobacteriales comprise 47%, 28%, and 25% of the
expected observations respectively, they could be weighted
accordingly when assessing accuracy to avoid giving undue
importance to rarer or less important observations.For
evaluation of taxonomic classification, there is another
complication, which is that it is common for taxonomic
classifiers to offer what is generally considered an advanced
feature in the field of supervised learning classification.
Taxonomic classifiers are usually configurable to abstain from
classification at any taxonomic level if they are not sufficiently
confident of the classification [67,169]. This trick can increase
precision without reducing recall, causing precision and recall
to differ even with microaveraging. In such cases F-measure
would also differ, and the change would not be reflected in
standard accuracy calculations. Although precision, recall, F-
measure, and accuracy can be computed using standard
packages (e.g. scikit-learn [145]), modified precision, recall,
and F-measure metrics have been used [67,143] and
implemented in specialized software packages [144] to
appropriately score instances of incomplete taxonomic
classification and misclassification.
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2.4. Overfitting

Overfitting occurs when any method, model, or analysis is
developed to fit a particular dataset too closely, reducing its ability
to generalize to other datasets. This phenomenon occurs at the
junction of data selection, parameter tuning, and metric selection,
and hence its remedy relies on judicious benchmark design. Over-
fitting commonly occurs when too few data (or even a single data-
set) are used for method optimization and evaluation. This leads to
poor performance when that method is applied to other datasets.
Hence, multiple datasets should be used for benchmarking when-
ever possible. Different data types or usage scenarios can also lead
to different performance characteristics, so tests should be
designed to capture the range of intended usage conditions. For
example, we have shown that taxonomic classification algorithms
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display variable performance for different marker genes, and hence
general parameter settings should be balanced to perform well for
multiple marker genes [67].

Microbial diversity is another characteristic of microbiome
studies that can impact method performance, and should be
accounted for in benchmark design to avoid overfitting to particu-
lar sample types. Methods that are tuned using one sample type
(such as stool) may generalize poorly to other sample types (such
as soil). Historically, most mock communities used in the literature
have been designed to simulate human stool [123], creating a blind
spot if methods are optimized using these mock communities
alone. The generation of mock communities for other samples
types will provide researchers with opportunities to benchmark
their methods with more diverse datasets. This is another motiva-
tion to pair mock community tests (which necessarily employ a
limited range of microbial diversity) with simulated and real data
for method evaluations.

2.5. Benchmarking resources

Methods benchmarking continues to be a major bottleneck for
computational methods development. As the preceding sections
have described, selecting appropriate test data, evaluation metrics,
and competing methods can be a time-consuming and challenging
process. Moreover, this selection process increases opportunities
for self-assessment bias by methods developers [120], and leads
to a proliferation of non-standardized benchmarking methodology,
rendering meta-analyses of methods performance in the literature
futile.

Benchmarking ‘‘challenges” provide partial relief, allowing
researchers to perform (typically blinded) evaluation of methods
using standard test data, and a centralized, independent evaluation
process [111,113]. Testing frameworks, containing standardized
test data and evaluation metrics, provide another means for con-
tinuous, extensible methods evaluation, whereby new methods
can be optimized and tested against pre-computed performance
for existing methods, and new datasets can be added to extend
the test cases [120]. LEMMI (Live Evaluation of computational
Methods for Metagenome Investigation) [116] is an outstanding
example of such a continuous testing framework for shotgun
metagenomics taxonomic classifiers, featuring both a repository
for pre-computed results, method containerization (to ensure
long-term availability), standardized workflows and evaluation

metrics, and a website for display of the latest results (https://

lemmi.ezlab.org/). There is an ongoing need for testing frameworks
for other marker-gene and metagenome analysis methods beyond
taxonomic classification.

Other software packages provide useful functions to help

streamline methods benchmarking. RESCRIPt (https://github.com/

bokulich-lab/RESCRIPt) [144] features methods for reproducible
generation, curation, and evaluation of nucleotide sequence refer-
ence databases. Both RESCRIPt and q2-quality-control (https://
github.com/qiime2/q2-quality-control) feature different evalua-
tion tools for measuring precision, recall, F-measure, and other
accuracy metrics based on comparison of observed versus
expected results, making these packages useful for high-level test-
ing workflows. For evaluation of metagenome assemblies, Meta-
QUAST [114] contains several evaluation metrics and has been
widely adopted including for community benchmarks [113].

2.6. Benchmarking basics for non-developers

This section is intended to give a general and concise overview
of why benchmarking matters to microbiomics researchers, to pro-
vide methods users who are not involved in method development

https://lemmi.ezlab.org/
https://lemmi.ezlab.org/
https://github.com/bokulich-lab/RESCRIPt
https://github.com/bokulich-lab/RESCRIPt
https://github.com/qiime2/q2-quality-control
https://github.com/qiime2/q2-quality-control


Table 1
A hypothetical confusion matrix that counts the number of samples that belong to three orders of Bacteria and how a classifier might have classified them.

True Order

Lactobacillales Pseudomonadales Enterobacteriales Total

Predicted Order Lactobacillales 234 34 89 357
Pseudomonadales 56 142 21 219
Enterobacteriales 78 11 68 157
Total 368 187 178
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or testing greater insight into its practical value. Users of micro-
biomics methods should be aware that well-designed benchmarks
are critical for both optimizing and validating the accuracy of these
methods, and it is important (as a method user) to evaluate the
quality of the benchmarks themselves, to assess whether the
results can generalize to one’s own experimental conditions (e.g.,
sample type, experimental technologies, expected diversity).

Marker-gene and metagenome sequencing can exhibit techni-
cal variation from batch effects, DNA extraction, sample handling
and processing differences, as well as differences in bioinformat-
ics analysis pipelines [111]. Hence the methodology must be
well controlled to deliver accurate and reproducible measure-
ments. Best practices for method development (including soft-
ware implementation and continuous testing) as well as
benchmarking are paramount to optimizing individual methods,
comparing methods to each other, and evaluating the perfor-
mance of different methods across the range of conditions
encountered in the laboratory (e.g., different sample types, data
complexity, et cetera). Selection (or generation) of appropriate
test data, methods, performance metrics, and parameter tuning
are all critical steps in the creation of robust and unbiased
benchmarks. The importance of these criteria during method
development and benchmarking have been discussed in detail
above, but for the purposes of method users we have compiled
the following checklist to assist evaluating method performance
in the literature:

1. Test data typically should allowmeasurements of method accu-
racy. This should include a ‘‘ground truth” of some type, e.g.,
samples with known composition. This will normally consist
of one or more mock communities or simulated datasets (as dis-
cussed above) [123,133,135]. In some cases, a ground truth may
not be necessary, for example to measure the consistency
among methods rather than their accuracy [170]

2. Test data should be appropriate to the intended usage, and for
the different use cases that a user can reasonably expect to
encounter (if those different use cases can be expected to
impact performance). This may include sample type, degrees
of microbial diversity/complexity, or different targets (e.g., mar-
ker genes) [67,78,147,171].

3. Multiple datasets and types of data should be used for method
testing and optimization. Method users should be aware that
testing on a single dataset could lead to overfitting (as discussed
above), and such an ‘‘optimized” method may not generalize
well to other data. Benchmarks that test on multiple datasets
and types of data demonstrate the variation in performance
across multiple systems and technologies [67,147,171].

4. Selecting methods for comparison to a new method or in a
benchmarking study should be performed judiciously. Typically
the methods used in this comparison should represent one or
more ‘‘gold standards”, i.e. methods that are both popular in
the field and demonstrated to have superior accuracy according
to previous benchmarks [113,171].

5. Performance metrics should be selected to evaluate criteria that
are important to users, e.g. scalability, accuracy, etc. Ideally,
multiple relevant metrics should be used (as appropriate) to
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present the multi-dimensional performance of each method.
As a method user, you should evaluate whether the methods
selected reflect your usage scenario and technical constraints,
or whether an incomplete assessment of performance is given.
Major benchmarking challenges [113] and continuous bench-
marks [116] give notable examples of the virtues of using a
panel of performance metrics.

6. All methods should be optimized, within reason, to provide a
fair challenge in any large-scale benchmark. Using methods
‘‘off the shelf” (i.e., with default parameter settings) can often
lead to suboptimal results, as these parameters are intended
to be adjusted by a well-trained user, and a fair benchmark
should evaluate the accuracy of each method (not just the
new method(s)) by testing a range of parameter settings when
appropriate. For example, we have shown that even older meth-
ods for taxonomy classification can perform well against newer
methods when parameter optimization is performed [67].
Box 2 Benchmarking basics: example of taxonomy classifica-
tion As an example of how to set up and evaluate a bench-
marking study, we use the example of taxonomic
classification of microbial DNA sequences (Fig. 3). In this
imaginary example, a promising new method for taxonomy
classification has been developed. To validate this new
method, its performance is benchmarked against one or
more other methods. The benchmarking process can be
divided into the following stages:

1. Data selection. Test data must be selected from appropri-

ate sources that represent the intended uses, and also

match the goals of the benchmark. Hence, test data selec-

tion goes hand-in-hand with test selection. In this exam-

ple, both cross-validation and ground truthing are

performed, and so three different data types are used: ref-

erence sequences (e.g., acquired using RESCRIPt [144]) to

perform cross-validation; mock community data with

known compositions (e.g., from mockrobiota [123]); and

biological data (which ideally would represent multiple

sample types).

2. Methods selection. The goal of most benchmarking stud-

ies is to demonstrate the similarity or superiority of a

new method to existing methods. Its performance can

be tested against one or more ‘‘gold standard” methods

for taxonomy classification, e.g., a naive Bayes classifier

[67,169]. Relevant parameters should be selected for each

method, to perform parameter tuning.

3. Metric selection. Appropriate metrics should be selected

to evaluate key performance characteristics. In the case

of taxonomy classification, accuracy will be crucial, but

runtime and memory use are also important characteris-

tics. In this example we use F-measure to measure accu-

racy (Fig. 3), but ideally multiple accuracy metrics should

be used to evaluate multiple characteristics (e.g., precision

and recall). For more details, see above (Box 1).



Fig. 3. An example of a benchmarking workflow for development of a new taxonomic classification method. Test data can be retrieved from multiple sources to obtain: (1)
reference sequences for cross validation or simulation (e.g., using RESCRIPt [144]); (2) mock community data and known compositions (e.g., frommockrobiota [123]); and (3)
biological data, e.g., microbiome sequence data from Qiita [142]. Data can either be classified directly to evaluate results (e.g., for mock community data, for which the true
composition is known), or split into k-folds for cross-validation where at each iteration (k-1) folds are used for model training (represented by grey boxes) and the last fold
(green box) is used to evaluate model performance. In the case of taxonomic classification, classification accuracy can be scored using metrics like F-measure. Resource
utilization is also recorded and compared to the ‘‘Gold Standard” method of choice. If either of the metrics is unsatisfactory, the model can be optimized (e.g., via a grid search
of parameter settings) and the process is repeated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Software implementation

Writing good software is an important step in providing acces-
sible, rigorously tested computational methods to end users (in
this case, microbiome researchers), as well as to facilitate commu-
nity development of open-source research software. Other authors
have reviewed best practices for developing research software
[172–175]. These same general guidelines (with few exceptions
or additions!) apply to microbiomics software best practices, and
should be read more deeply by those wishing to devote their lives
(or some portion thereof) to developing robust, quality research
software. We will reiterate here only a few of the main tenets of
software development best practices, as a primer for those who
are entering this field for the first time, and for the general edifica-
tion of those readers interested in the life-cycle of computational
methods development.

3.1. Existence != accessibility

Publishing a computational method does not mean that others
will be able to use it in their own research. An accessible, main-
tained, well-documented, well-tested, and appropriately bench-
marked software implementation should exist if the general
scientific community is expected to utilize a method in their own
research. Thorough documentation, intuitive interfaces, and good
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software development practices will make a method more accessi-
ble to users and contributors [176].

Given the significant amount of time and resources spent on
developing and benchmarking a computational method, proper
implementation is essential to provide useful (and usable) research
tools. In the context of the global effort to advance microbiomics,
the main goal in developing a research method should be reaching
as wide of a user base as possible and that can only be achieved by
making the developed methods publicly available to everyone but
also, and more importantly, easily applicable. Furthermore, provid-
ing useful software implementations of computational methods
supports research transparency and reproducibility in micro-
biomics [177].

3.2. Version control

The first and probably one of the most important aspects in
writing software capable of generating reproducible results (a crit-
ical aspect of scientific research as well as method integrity!) is
keeping track of exact versions of both the source code as well as
any external packages/libraries used by that code. Even single ver-
sion changes can have significant effects on the end results, often
making software unusable or, in the worst case, simply incorrect.
The widely accepted solution to this problem is to use a version
control system (VCS) like Git (https://git-scm.com) or Subversion

https://git-scm.com
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(https://subversion.apache.org). Version control systems enable
developers to easily track every change to their codebase, compare
code between versions and revert to previous versions should a
problem be identified. Moreover, in the case of highly collaborative
projects, where multiple developers work on the same files, a VCS
makes it relatively easy to merge changes committed by multiple
developers and resolve potential conflicts. In any VCS the develop-
ers can decide for themselves on which level of granularity they
want to keep track of the changes, from committing only large, sig-
nificant code changes to tracking minor changes. In the very least,
it is recommended to occasionally archive copies of the code so
that one can approximately follow the development flow and track
down where potential bugs could have been introduced [172].

3.3. Data provenance tracking

In the spirit of encouraging reproducibility, it is advised to
record all of the operations performed on the data as it passes
through the developed workflow. Ideally, all of those steps should
be automated and stored in a standardized way. What is run, why
and with what parameters, what the input/output data were —
these are some examples of details that should be tracked [178].
QIIME 2’s decentralized provenance tracking system is an out-
standing example of how automated provenance tracking can be
implemented [179]. All data types, parameters, and actions used
in the course of a QIIME 2 workflow get recorded in data prove-
nance stored in every QIIME 2 result file, such that the entire work-
flow used to obtain any file can be retraced to replicate that result.
QIIME 20s flexible, plugin-based architecture enables others to
develop QIIME 2 plugins that can adopt this provenance system
(as well as other features of QIIME 2), allowing developers to uti-
lize these features in new or existing software packages.

Depending on the complexity of the analysis, simpler ways of
keeping track of analysis steps may also be used. One of the easiest
to implement is informing the user about what is being done at
every step with the help of logging modules that are available for
most, if not all, modern programming languages. In such a way,
users can generate and store logs of their analyses that could,
potentially, help them diagnose any issues, should a need arise.
However, such an approach requires diligent record-keeping to
ensure that workflow and environment details are stored with
results.

3.4. Optimization vs. complexity

A common pitfall in software development is premature opti-
mization and over-complication of code. Complication can hinder
widespread use and adaptation by others, and hence it is a guiding
principle to only make things as complicated as they need to be.
Write simple, well-commented code that does things well and is
understandable by other people, rather than devise a solution that
is over-optimized but hard to follow due to its complexity [174].

3.5. Do not reinvent the wheel

Existing software libraries should be used whenever possible to
streamline code, boost performance, and to benefit from commu-
nity efforts. Regardless of the field of use, many intermediary
actions, calculations and methods very likely have already been
developed by others and should be used instead of writing code
producing the same expected result. Whenever possible (or rea-
sonable), one should rather make use of well-written and -
maintained libraries and packages available in public repositories
and keep track of their exact versions used (as already discussed
above). This approach will streamline testing (provided it is well-
tested in the third-party library; see also below), save development
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time, and through usage contribute to the integrity of community
resources [175]. Exceptions may be made when these packages are
poorly written, maintained, or tested; exhibit inferior perfor-
mance; introduce licensing issues, dependency conflicts, or over-
complicated dependencies (e.g., installation issues); or for trivial
actions.

3.6. Testing and continuous integration

No researcher would like to find out weeks after publishing
their work that their results were incorrect due to a software mis-
take [180]. To ensure validity of the results obtained when using
custom code, appropriate testing should be incorporated into the
development cycle, preferably as early as possible. Appropriate
unit tests (tests asserting that a specific method/piece of code func-
tions as expected) should be written for every new component. The
purpose is not only to validate that the expected results are
obtained every time the code is run, but also that introduction of
new code or alterations of the existing code do not change the
expected output. In such cases, a failing test quickly informs the
developer that breaking changes have been introduced and the
code needs to be fixed.

Moreover, such unit tests should become a part of the so-called
continuous integration (CI) process. The basic idea behind CI is that
developers frequently commit their code to a shared repository
where a set of automated checks will be run to ensure quality of
the new code. Usually, code that does not pass selected criteria
would not be allowed to be integrated with the existing codebase
and the identified issues will need to be addressed first. There are
many tools (freely available for the open-source community) that
can be used to achieve that. Some examples are TravisCI
(https://travis-ci.org/), GitHub Actions (https://github.com/fea-
tures/actions) or CircleCI (https://circleci.com/).

Ideally, unit tests should not only assess whether the basic soft-
ware functionality is maintained. They should test as many edge
cases as possible and should anticipate the near-infinite number
of ways that users can make mistakes: e.g., using input parameters
that are out of range, data formats that are not supported, or call
functions with incorrect arguments. Those cases should be tested
and accounted for in the code. For developers, the payoff for writ-
ing comprehensive tests is less time supporting users who discover
those cases for themselves.

Another beneficial common practice in writing tests is to turn
bugs into unit tests as they are discovered. In such a way, one
would design a test that fails given an existing bug and passes
when the bug gets fixed (without changing the results of any other
test) [174]. Even though writing code to test other code may seem
somewhat superfluous at face value, the benefits of this practice
rapidly outweigh the cost in effort, particularly (but not only) in
collaborative projects [181].

3.7. Community support

Every piece of software has two human components: the devel-
opers and the users. Very often users would not be involved much
in the development cycle. The developers would provide the users
with the ‘‘final” version of the product and the users would per-
haps report issues as they discover them but rarely (at least in
the non-open-source community) are they directly involved in
the development, unless the software development was commis-
sioned by the users themselves. In the research community it
should, however, be encouraged for the users (i.e., researchers) to
get involved in the software development process as they under-
stand best what the software should be able to achieve.

Open ‘‘issue” trackers and feature requests allow users (as well
as developers) to report bugs, request new features, or describe
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potential improvements. This also allows other users (and develop-
ers) to track and contribute to solving or responding to these ‘‘is-
sues”. Various issue trackers exist, a popular example being
GitHub’s (https://www.github.com) issue lists and project boards
that can facilitate exchange of ideas between users and developers.
Such exchange also fosters the idea of open science and helps the
entire community to grow and collectively work towards the same
goal rather than rely on a subset of people (developers) who would
provide tools for a group of users. To make it as easy as possible for
new contributors, any project should contain some form of con-
tributing guidelines, which describe how to file a bug report or
suggest a new feature, how to set up the environment and run
the tests, how to structure a ‘‘pull request” (code contribution), et
cetera. Additionally, whenever possible, it is a good practice to
explicitly label issues to describe the content: for example, labeling
(and ranking) bugs versus enhancements can support effective
triage processes, and labeling ‘‘good first issues” will help new con-
tributors identify issues that they can more easily solve [182].

For widely used research software, having a dedicated support
forum or other online community can also be beneficial for con-
necting project developers and users. This also separates develop-
ment tools (e.g., issue trackers) from user support discussions.
Forums also encourage users to engage and support one another.
Fostering greater user–developer connection through an online
community or support forum can provide long-term benefits,
e.g., through facilitating discussion of new features, beta-testing
new features and documentation, and creating a venue for user-
generated documentation and tutorials.

3.8. Documentation

Documentation is a critical component of all software projects.
Software developers must resist the ‘‘paradox of documentation”,
that those most knowledgeable about a project are the least in
need of its documentation, and hence less motivated to write it
[183]. Preparing good documentation can (and should!) occupy a
significant amount of the total development time, as it provides
crucial information to non-experienced users without the need to
explore any of the code. Good documentation should include both
descriptions of methods/components provided within the given
software/tool, as well as examples and/or tutorials for the users
to explore to familiarize themselves with the software in an acces-
sible and pragmatic way. Ideally, a sample dataset is included to
enable users to learn how to use the software (and recognize cor-
rect operation and outputs) without needing to provide their own
data (e.g. in cases where they want to test the tool before getting
the actual experimental data). Test data should typically consist
of a small and low-complexity dataset, to reduce runtime/compu-
tational overhead, and to facilitate interpretation of results by new
users, but supplying example datasets of varying size and com-
plexity can be beneficial. If using a smaller-than-typical example
dataset, the documentation should clarify this fact to prevent con-
fusion among users who notice that runtime and computational
resource use is substantially higher for their own (full-sized)
dataset.

Another aspect to consider is documenting code for the devel-
opers themselves. Practices as simple as giving meaningful names
to files/functions/variables (and following or establishing stan-
dardized conventions for naming these) can help new developers
contribute to the project, and support community-driven develop-
ment [175,182]. Moreover, providing short descriptions of each
method’s purpose, required arguments, and return values in com-
bination with any of the popular documentation-generating tools
(e.g. Sphinx for Python, https://www.sphinx-doc.org) is an easy
way to keep and maintain a ‘‘self-generating” documentation
[174].
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Community-driven documentation can be beneficial, particu-
larly during the initial phase of a project, as users and contributors
often know the documentation needs and gaps best, this greatly
reduces the ‘‘paradox of documentation” [176,183]. Community
forums and issue trackers, as described above, can help facilitate
contributing and beta-testing ‘‘unofficial” code before incorporat-
ing into the official documentation (which for many software pro-
jects is tied to the release cycle and hence cannot be updated as
frequently or regularly). Involving the community in this way cul-
tivates the sharing of knowledge and increases collaborative inter-
action through increasingly intrinsic means, the benefits of which
cannot be overstated. Thus, we greatly encourage that ‘‘Documen-
tation Sprints” coincide with ‘‘Code Sprints.”

4. Conclusions

Computational method development is a critical component
that supports microbiome research, and care must be taken to cre-
ate accurate, accessible tools. Rigorous benchmarks and robust
software implementations (including comprehensive unit testing)
are needed to support ongoing methodological advancements
and to facilitate their use by end users (microbiome scientists).
Continuous benchmarking and crowdsourced benchmarks [119]
may enable more rapid methodological improvements, standard-
ization, and balanced comparisons. Observing these best practices
will lead to more transparent, reproducible research to support
ongoing discoveries that illuminate the manifold roles of micro-
biomes in the health of the planet earth and its inhabitants.

Author statement

All authors contributed to writing and reviewing the final
manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A
communal catalogue reveals Earth’s multiscale microbial diversity. Nature
2017;551:457–63.

[2] Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions:
from community assembly to plant health. Nat Rev Microbiol 2020. https://
doi.org/10.1038/s41579-020-0412-1.

[3] Bokulich NA, Thorngate JH, Richardson PM, Mills DA. Microbial biogeography
of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad
Sci USA 2014;111:E139–48.

[4] Bokulich NA, Collins TS, Masarweh C, Allen G, Heymann H, Ebeler SE, et al.
Associations among wine grape microbiome, metabolome, and fermentation
behavior suggest microbial contribution to regional wine characteristics.
MBio 2016;7.. https://doi.org/10.1128/mBio.00631-16.

[5] Hanson BM, Weinstock GM. The importance of the microbiome in
epidemiologic research. Ann Epidemiol 2016;26:301–5.

[6] Foxman B, Martin ET. Use of the microbiome in the practice of epidemiology:
a primer on -omic technologies. Am J Epidemiol 2015;182:1–8.

[7] Proctor L. Priorities for the next 10 years of human microbiome research.
Nature 2019;569:623–5.

[8] Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, et al.
Emerging priorities for microbiome research. Front Microbiol 2020;11:136.

[9] Gilbert CLD, Qin J, Kunin V, Engelbrektson A, Ochman H, Hugenholtz P, et al. A
framework for human microbiome research. Nature 2012;486:215–21.

[10] Gonzalez A, King A, Robeson 2nd MS, Song S, Shade A, Metcalf JL, et al.
Characterizing microbial communities through space and time. Curr Opin
Biotechnol 2012;23:431–6.

[11] Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S,
et al. Microbiota and host nutrition across plant and animal kingdoms. Cell
Host Microbe 2015;17:603–16.

[12] McKenney EA, Koelle K, Dunn RR, Yoder AD. The ecosystem services of animal
microbiomes. Mol Ecol 2018;27:2164–72.

https://www.github.com
https://www.sphinx-doc.org
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0005
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0005
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0005
https://doi.org/10.1038/s41579-020-0412-1
https://doi.org/10.1038/s41579-020-0412-1
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0015
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0015
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0015
https://doi.org/10.1128/mBio.00631-16
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0025
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0025
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0035
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0035
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0040
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0040
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0050
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0050
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0050
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0060
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0060


N.A. Bokulich, M. Ziemski, M.S. Robeson II et al. Computational and Structural Biotechnology Journal 18 (2020) 4048–4062
[13] Duar RM, Henrick BM, Casaburi G, Frese SA. Integrating the ecosystem
services framework to define dysbiosis of the breastfed infant gut:
the role of B. infantis and human milk oligosaccharides. Front Nutr
2020;7:33.

[14] NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of
human microbiome research activities at the US National Institutes of Health,
Fiscal Years 2007–2016. Microbiome 2019;7:31.

[15] García-Castillo V, Sanhueza E, McNerney E, Onate SA, García A. Microbiota
dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J
Med Microbiol 2016;65:1347–62.

[16] Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, et al.
Microbiome analyses of blood and tissues suggest cancer diagnostic
approach. Nature 2020. https://doi.org/10.1038/s41586-020-2095-1.

[17] Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, Fallmann J, et al. Adipose
tissue derived bacteria are associated with inflammation in obesity and type
2 diabetes. Gut 2020. https://doi.org/10.1136/gutjnl-2019-320118.

[18] Piccolo BD, Graham JL, Stanhope KL, Nookaew I, Mecer KE, Chintapalli SV,
et al. Diabetes-associated alterations in the cecal microbiome and
metabolome are independent of diet or environment in the UC Davis type
2-diabetes mellitus rat model. Am J Physiol-Endocrinol Metabolism
2018;8:214.

[19] Pryor R, Martinez-Martinez D, Quintaneiro L, Cabreiro F. The role of the
microbiome in drug response. Annu Rev Pharmacol Toxicol 2019. https://doi.
org/10.1146/annurev-pharmtox-010919-023612.

[20] Saad R, Rizkallah MR, Aziz RK. Gut Pharmacomicrobiomics: the tip of an
iceberg of complex interactions between drugs and gut-associated microbes.
Gut Pathog 2012;4:16.

[21] Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant
microbial transmission from different body sites shapes the developing infant
gut microbiome. Cell Host Microbe 2018;24. 133–45.e5.

[22] Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first
microbial colonizers of the human gut: composition, activities, and health
implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017:81.
https://doi.org/10.1128/MMBR.00036-17.

[23] Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez
A, et al. Partial restoration of the microbiota of cesarean-born infants via
vaginal microbial transfer. Nat Med 2016;22:250–3.

[24] Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics,
birth mode, and diet shape microbiome maturation during early life. Sci
Transl Med 2016. 8:343ra82.

[25] Martino C, Kellman BP, Sandoval DR, Clausen TM, Marotz CA, Song SJ, et al.
Bacterial modification of the host glycosaminoglycan heparan sulfate
modulates SARS-CoV-2 infectivity. Microbiology 2020. https://doi.org/
10.1101/2020.08/17.238444.

[26] Riva V, Riva F, Vergani L, Crotti E, Borin S, Mapelli F. Microbial assisted
phytodepuration for water reclamation: Environmental benefits and threats.
Chemosphere 2020;241:124843.

[27] de Celis M, Belda I, Ortiz-Álvarez R, Arregui L, Marquina D, Serrano S, et al.
Tuning up microbiome analysis to monitor WWTPs’ biological reactors
functioning. Sci Rep 2020;10:4079.

[28] Rodriguez R, Durán P. Natural holobiome engineering by using native
extreme microbiome to counteract the climate change effects. Front Bioeng
Biotechnol 2020;8:568.

[29] Banerjee A, Cornejo J, Bandopadhyay R. Emergent climate change impact
throughout the world: call for ‘‘Microbiome Conservation” before it’s too late.
Biodivers Conserv 2020;29:345–8. https://doi.org/10.1007/s10531-019-
01886-6.

[30] Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal.
Microbiome 2015;3:31.

[31] Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al.
Microbiome definition re-visited: old concepts and new challenges.
Microbiome 2020;8:103.

[32] Shetty SA, Lahti L. Microbiome data science. J Biosci 2019;44. https://doi.org/
10.1007/s12038-019-9930-2.

[33] Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated omics: tools, advances,
and future approaches. J Mol Endocrinol 2018. https://doi.org/10.1530/JME-
18-0055.

[34] Jansson JK, Hofmockel KS. The soil microbiome-from metagenomics to
metaphenomics. Curr Opin Microbiol 2018;43:162–8.

[35] Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data:
astronomical or genomical?. PLoS Biol 2015;13:e1002195.

[36] Kyrpides NC, Eloe-Fadrosh EA, Ivanova NN. Microbiome data science:
understanding our microbial planet. Trends Microbiol 2016;24:
425–7.

[37] Nayfach S, Pollard KS. Toward accurate and quantitative comparative
metagenomics. Cell 2016;166:1103–16.

[38] Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al.
Automated and accurate estimation of gene family abundance from shotgun
metagenomes. PLoS Comput Biol 2015;11:e1004573.

[39] Kitsios GD, Morowitz MJ, Dickson RP, Huffnagle GB, McVerry BJ, Morris A.
Dysbiosis in the intensive care unit: Microbiome science coming to the
bedside. J Crit Care 2017;38:84–91.

[40] Young VB. The role of the microbiome in human health and disease: an
introduction for clinicians. BMJ 2017;356:j831.

[41] Prosser JI. Putting science back into microbial ecology: a question of
approach. Philos Trans R Soc Lond B Biol Sci 2020;375:20190240.
4060
[42] Allaband C, McDonald D, Vázquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA,
et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome
data for clinicians. Clin Gastroenterol Hepatol 2019;17:218–30.

[43] Staley C, Kaiser T, Khoruts A. Clinician guide to microbiome testing. Dig Dis
Sci 2018;63:3167–77.

[44] Tyler AD, Smith MI, Silverberg MS. Analyzing the human microbiome: a ‘‘how
to” guide for physicians. Am J Gastroenterol 2014;109:983.

[45] Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol
Rev 2004;68:686–91.

[46] Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth’s
bacterial and archaeal diversity. PLoS Biol 2019;17:e3000106.

[47] Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al.
PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020.
https://doi.org/10.1038/s41587-020-0548-6.

[48] Jun S-R, Robeson MS, Hauser LJ, Schadt CW, Gorin AA. PanFP: pangenome-
based functional profiles for microbial communities. BMC Res Notes
2015;8:479.

[49] Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al.
Tax4Fun2: a R-based tool for the rapid prediction of habitat-specific
functional profiles and functional redundancy based on 16S rRNA gene
marker gene sequences. Bioinformatics 2018;490037. https://doi.org/
10.1101/490037.

[50] Narayan NR, Weinmaier T, Laserna-Mendieta EJ, Claesson MJ, Shanahan F,
Dabbagh K, et al. Piphillin predicts metagenomic composition and dynamics
from DADA2-corrected 16S rDNA sequences. BMC Genomics 2020;21:56.

[51] Sharpton TJ. An introduction to the analysis of shotgun metagenomic data.
Front Plant Sci 2014;5:209.

[52] Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, et al. Global
chemical effects of the microbiome include new bile-acid conjugations.
Nature 2020. https://doi.org/10.1038/s41586-020-2047-9.

[53] Lin H, He Q-Y, Shi L, Sleeman M, Baker MS, Nice EC. Proteomics and the
microbiome: pitfalls and potential. Expert Rev Proteomics 2019;16:501–11.

[54] Long S, Yang Y, Shen C, Wang Y, Deng A, Qin Q, et al. Metaproteomics
characterizes human gut microbiome function in colorectal cancer. NPJ
Biofilms Microbiomes 2020;6:14.

[55] Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al.
Systems biology and multi-omics integration: viewpoints from the
metabolomics research community. Metabolites 2019:9. https://doi.org/
10.3390/metabo9040076.

[56] Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol
2017;18:83.

[57] Issa Isaac N, Philippe D, Nicholas A, Raoult D, Eric C. Metaproteomics of the
human gut microbiota: challenges and contributions to other OMICS. Clin
Mass Spectrometry 2019;14:18–30.

[58] Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-
omics data integration methods. Front Genet 2017;8:84.

[59] Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L. Host and microbiome
multi-omics integration: applications and methodologies. Biophys Rev
2019;11:55–65.

[60] Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S. A selective review of multi-level omics
data integration using variable selection. High Throughput 2019:8. https://
doi.org/10.3390/ht8010004.

[61] Graw S, Chappell K, Washam CL, Gies A, Bird J, Robeson MS, et al. Multi-omics
data integration considerations and study design for biological systems and
disease. Molecular-Omics 2020. https://doi.org/10.1039/d0mo00041h.

[62] Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, et al.
High-Throughput Miniaturized 16S rRNA Amplicon Library Preparation
Reduces Costs while Preserving Microbiome Integrity. mSystems 2018;3:557.

[63] Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths
and limitations of 16S rRNA gene amplicon sequencing in revealing temporal
microbial community dynamics. PLoS ONE 2014;9:e93827.

[64] Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and
coverage: key considerations in genomic analyses. Nat Rev Genet
2014;15:121–32.

[65] Luo C, Rodriguez-R LM, Konstantinidis KT. Chapter twenty-three – a user’s
guide to quantitative and comparative analysis of metagenomic datasets. In:
DeLong EF, editor. Methods in enzymology, 531. Academic Press; 2013. p.
525–47.

[66] Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the
microbiome: advantages of whole genome shotgun versus 16S amplicon
sequencing. Biochem Biophys Res Commun 2016;469:967–77.

[67] Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al.
Optimizing taxonomic classification of marker-gene amplicon sequences
with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.

[68] Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al.
Evaluation of 16S rRNA gene sequencing for species and strain-level
microbiome analysis. Nat Commun 2019;10:5029.

[69] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
DADA2: high-resolution sample inference from Illumina amplicon data. Nat
Methods 2016;13:581–3.

[70] Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al.
Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns.
mSystems 2017;2. doi: 10.1128/mSystems.00191-16.

[71] Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, et al. A practical guide to amplicon
and metagenomic analysis of microbiome data. Protein Cell 2020. https://doi.
org/10.1007/s13238-020-00724-8.

http://refhub.elsevier.com/S2001-0370(20)30516-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0070
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0070
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0070
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0075
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0075
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0075
https://doi.org/10.1038/s41586-020-2095-1
https://doi.org/10.1136/gutjnl-2019-320118
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0090
https://doi.org/10.1146/annurev-pharmtox-010919-023612
https://doi.org/10.1146/annurev-pharmtox-010919-023612
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0100
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0100
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0100
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0105
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0105
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0105
https://doi.org/10.1128/MMBR.00036-17
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0120
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0120
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0120
https://doi.org/10.1101/2020.08/17.238444
https://doi.org/10.1101/2020.08/17.238444
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0135
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0135
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0135
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0140
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0140
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0140
https://doi.org/10.1007/s10531-019-01886-6
https://doi.org/10.1007/s10531-019-01886-6
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0150
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0150
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0155
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0155
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0155
https://doi.org/10.1007/s12038-019-9930-2
https://doi.org/10.1007/s12038-019-9930-2
https://doi.org/10.1530/JME-18-0055
https://doi.org/10.1530/JME-18-0055
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0170
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0170
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0175
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0175
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0180
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0180
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0180
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0185
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0185
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0190
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0190
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0190
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0195
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0195
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0195
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0200
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0200
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0205
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0205
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0210
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0210
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0210
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0215
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0215
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0220
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0220
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0220
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0225
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0225
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0230
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0230
https://doi.org/10.1038/s41587-020-0548-6
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0240
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0240
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0240
https://doi.org/10.1101/490037
https://doi.org/10.1101/490037
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0250
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0250
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0250
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0255
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0255
https://doi.org/10.1038/s41586-020-2047-9
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0265
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0265
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0270
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0270
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0270
https://doi.org/10.3390/metabo9040076
https://doi.org/10.3390/metabo9040076
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0280
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0280
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0285
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0285
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0285
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0290
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0290
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0295
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0295
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0295
https://doi.org/10.3390/ht8010004
https://doi.org/10.3390/ht8010004
https://doi.org/10.1039/d0mo00041h
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0315
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0315
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0315
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0320
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0320
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0320
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0325
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0325
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0325
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0325
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0330
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0330
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0330
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0335
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0335
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0335
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0340
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0340
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0340
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0345
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0345
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0345
https://doi.org/10.1007/s13238-020-00724-8
https://doi.org/10.1007/s13238-020-00724-8


N.A. Bokulich, M. Ziemski, M.S. Robeson II et al. Computational and Structural Biotechnology Journal 18 (2020) 4048–4062
[72] Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun
metagenomics, from sampling to analysis. Nat Biotechnol 2017;35:833–44.

[73] Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, et al.
Characterization of the Gut Microbiome Using 16S or Shotgun
Metagenomics. Front Microbiol 2016;7:459.

[74] Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
TBK, et al. Minimum information about a single amplified genome (MISAG)
and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat
Biotechnol 2017;35:725–31.

[75] Grieb A, Bowers RM, Oggerin M, Goudeau D, Lee J, Malmstrom RR, et al. A
pipeline for targeted metagenomics of environmental bacteria. Microbiome
2020;8:21.

[76] Singer E, Andreopoulos B, Bowers RM, Lee J, Deshpande S, Chiniquy J, et al.
Next generation sequencing data of a defined microbial mock community. Sci
Data 2016;3:160081.

[77] Schloss PD. The effects of alignment quality, distance calculation method,
sequence filtering, and region on the analysis of 16S rRNA gene-based
studies. PLoS Comput Biol 2010;6:e1000844.

[78] Liu Z, DeSantis TZ, Andersen GL, Knight R. Accurate taxonomy assignments
from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl
Acids Res 2008;36:e120.

[79] Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal
taxonomic classification of environmental 16S rRNA gene sequences. ISME J
2012. https://doi.org/10.1038/ismej.2011.208.

[80] McLaren MR, Willis AD, Callahan BJ. Consistent and correctable bias in
metagenomic sequencing experiments. Elife 2019;8. doi: 10.7554/eLife.46923.

[81] R Marcelino V, Holmes EC, Sorrell TC. The use of taxon-specific reference
databases compromises metagenomic classification. BMC Genomics
2020;21:184.

[82] Manor O, Borenstein E. MUSiCC: a marker genes based framework for
metagenomic normalization and accurate profiling of gene abundances in the
microbiome. Genome Biol 2015;16:53.

[83] Bjerre RD, Hugerth LW, Boulund F, Seifert M, Johansen JD, Engstrand L. Effects
of sampling strategy and DNA extraction on human skin microbiome
investigations. Sci Rep 2019;9:17287.

[84] Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, et al.
Experimental and analytical tools for studying the human microbiome. Nat
Rev Genet 2011;13:47–58.

[85] Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB,
et al. Evaluating the Information Content of Shallow Shotgun Metagenomics.
mSystems 2018;3. https://doi.org/10.1128/mSystems.00069-18.

[86] Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, et al. Preservation
methods differ in fecal microbiome stability, affecting suitability for field
studies. mSystems 2016;1:e00021–e116.

[87] Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent
and laboratory contamination can critically impact sequence-based
microbiome analyses. BMC Biol 2014;12:87.

[88] Watson E-J, Giles J, Scherer BL, Blatchford P. Human faecal collection methods
demonstrate a bias in microbiome composition by cell wall structure. Sci Rep
2019;9:16831.

[89] Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best
practices for analysing microbiomes. Nat Rev Microbiol 2018;16:410–22.

[90] Nearing JT, Douglas GM, Comeau AM, Langille MGI. Denoising the denoisers:
an independent evaluation of microbiome sequence error-correction
approaches. PeerJ 2018;6:e5364.

[91] Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al.
Quality-filtering vastly improves diversity estimates from Illumina amplicon
sequencing. Nat Methods 2013;10:57–9.

[92] Huse SM, Mark Welch DB, Morrison HG, Sogin ML. Ironing out the wrinkles in
the rare biosphere through improved OTU clustering. Environ Microbiol
2010;12:1889–98.

[93] Palmer JM, Jusino MA, Banik MT, Lindner DL. Non-biological synthetic spike-
in controls and the AMPtk software pipeline improve mycobiome data. PeerJ
2018;6:e4925.

[94] Barlow JT, Bogatyrev SR, Ismagilov RF. A quantitative sequencing framework
for absolute abundance measurements of mucosal and lumenal microbial
communities. Nat Commun 2020;11:2590.

[95] Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance
in environmental samples. Microbiome 2018;6:110.

[96] Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR
provides a simple and accessible method for quantitative microbiota
profiling. PLoS ONE 2020;15:e0227285.

[97] Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR. Multi-kingdom quantitation
reveals distinct ecological drivers of predictable early-life microbiome
assembly. bioRxiv 2020.

[98] Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets
are compositional: and this is not optional. Front Microbiol 2017;8:2224.

[99] Aitchison J. The statistical analysis of compositional data 1986. https://doi.
org/10.1007/978-94-009-4109-0.

[100] Thorsen J, Brejnrod A, Mortensen M, Rasmussen MA, Stokholm J, Al-Soud WA,
et al. Large-scale benchmarking reveals false discoveries and count
transformation sensitivity in 16S rRNA gene amplicon data analysis
methods used in microbiome studies. Microbiome 2016;4:62.

[101] Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al.
Normalization and microbial differential abundance strategies depend upon
data characteristics. Microbiome 2017;5:59.
4061
[102] McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data
is inadmissible. PLoS Comput Biol 2014;10:e1003531.

[103] Li H. Microbiome, metagenomics, and high-dimensional compositional data
analysis. Annu Rev Stat Appl 2015;2:73–94.

[104] Martino C, Shenhav L, Marotz CA, Armstrong G, McDonald D, Vázquez-Baeza
Y, et al. Context-aware dimensionality reduction deconvolutes gut microbial
community dynamics. Nat Biotechnol 2020:1–4.

[105] Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification
and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 2011;6:
e27310.

[106] Schloss PD, Westcott SL. Assessing and improving methods used in
operational taxonomic unit-based approaches for 16S rRNA gene sequence
analysis. Appl Environ Microbiol 2011;77:3219–26.

[107] Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al.
Subsampled open-reference clustering creates consistent, comprehensive
OTU definitions and scales to billions of sequences. PeerJ 2014;2:e545.

[108] Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al.
Correlation detection strategies in microbial data sets vary widely in
sensitivity and precision. ISME J 2016;10:1669–81.

[109] Knights D, Costello EK, Knight R. Supervised classification of human
microbiota. FEMS Microbiol Rev 2011;35:343–59.

[110] Bokulich NA, Dillon MR, Bolyen E, Kaehler BD, Huttley GA, Caporaso JG. q2-
sample-classifier: machine-learning tools for microbiome classification and
regression. J Open Res Softw 2018;3.

[111] Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, et al. Assessment of
variation in microbial community amplicon sequencing by the Microbiome
Quality Control (MBQC) project consortium. Nat Biotechnol
2017;486:207–1086.

[112] Straub D, Blackwell N, Fuentes AL, Peltzer A, Nahnsen S, Kleindienst S.
Interpretations of microbial community studies are biased by the selected
16S rRNA gene amplicon sequencing pipeline 2019:2019.12.17.880468. doi:
10.1101/2019.12.17.880468.

[113] Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical
Assessment of Metagenome Interpretation-a benchmark of metagenomics
software. Nat Methods 2017;14:1063–71.

[114] Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics 2016;32:1088–90.

[115] Latorre-Pérez A, Villalba-Bermell P, Pascual J, Vilanova C. Assembly methods
for nanopore-based metagenomic sequencing: a comparative study. Sci Rep
2020;10:13588.

[116] Seppey M, Manni M, Zdobnov EM. LEMMI: a continuous benchmarking
platform for metagenomics classifiers. Genome Res 2020;30:1208–16.

[117] Weber LM, Saelens W, Cannoodt R, Soneson C, Hapfelmeier A, Gardner PP,
et al. Essential guidelines for computational method benchmarking. Genome
Biol 2019;20:125.

[118] Boulesteix A-L. Ten simple rules for reducing overoptimistic reporting in
methodological computational research. PLoS Comput Biol 2015;11:
e1004191.

[119] Mangul S, Martin LS, Hill BL, Lam AK-M, Distler MG, Zelikovsky A, et al.
Systematic benchmarking of omics computational tools. Nat Commun
2019;10:1393.

[120] Norel R, Rice JJ, Stolovitzky G. The self-assessment trap: can we all be better
than average? Mol Syst Biol 2011;7:537.

[121] Jelizarow M, Guillemot V, Tenenhaus A, Strimmer K, Boulesteix A-L. Over-
optimism in bioinformatics: an illustration. Bioinformatics 2010;26:1990–8.

[122] Boulesteix A-L, Lauer S, Eugster MJA. A plea for neutral comparison studies in
computational sciences. PLoS ONE 2013;8:e61562.

[123] Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF, et al.
mockrobiota: a Public Resource for Microbiome Bioinformatics
Benchmarking. mSystems 2016;1. doi: 10.1128/mSystems.00062-16.

[124] Highlander S. Mock community analysis. In: Nelson KE, editor. Encyclopedia
of Metagenomics, vol. 10, New York, NY: Springer New York; 2013, p. 1–7.

[125] Huse SM, Huber J a., Morrison HG, Sogin ML, Mark Welch DB. Accuracy and
quality of massively parallel DNA pyrosequencing. Genome Biol 2007;8:
R143.

[126] Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-
specific primers enables quantitative, ultra-high-throughput profiling of
fungal communities. Appl Environ Microbiol 2013;79:2519–26.

[127] Yeh Y-C, Needham DM, Sieradzki ET, Fuhrman JA. Taxon Disappearance from
Microbiome Analysis Reinforces the Value of Mock Communities as a
Standard in Every Sequencing Run. mSystems 2018;3. doi: 10.1128/
mSystems.00023-18.

[128] Cichocki N, Hübschmann T, Schattenberg F, Kerckhof F-M, Overmann J,
Müller S. Bacterial mock communities as standards for reproducible
cytometric microbiome analysis. Nat Protoc 2020;15:2788–812.

[129] Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene
sequencing of mock microbial populations- impact of DNA extraction
method, primer choice and sequencing platform. BMC Microbiol
2016;16:1–13.

[130] Abusleme L, Hong B-Y, Dupuy AK, Strausbaugh LD, Diaz PI. Influence of DNA
extraction on oral microbial profiles obtained via 16S rRNA gene sequencing.
J Oral Microbiol 2014;6.. https://doi.org/10.3402/jom.v6.23990.

[131] Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al.
Accurate estimation of fungal diversity and abundance through improved
lineage-specific primers optimized for illumina amplicon sequencing. Appl
Environ Microbiol 2016;82:7217–26.

http://refhub.elsevier.com/S2001-0370(20)30516-X/h0360
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0360
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0365
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0365
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0365
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0370
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0370
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0370
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0370
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0375
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0375
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0375
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0380
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0380
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0380
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0385
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0385
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0385
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0390
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0390
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0390
https://doi.org/10.1038/ismej.2011.208
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0410
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0410
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0410
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0415
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0415
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0415
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0420
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0420
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0420
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0430
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0430
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0430
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0435
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0435
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0435
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0440
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0440
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0440
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0445
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0445
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0450
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0450
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0450
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0455
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0455
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0455
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0460
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0460
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0460
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0465
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0465
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0465
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0470
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0470
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0470
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0475
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0475
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0480
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0480
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0480
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0485
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0485
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0485
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0490
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0490
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0500
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0500
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0500
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0500
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0505
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0505
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0505
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0510
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0510
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0515
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0515
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0520
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0520
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0520
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0525
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0525
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0525
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0530
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0530
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0530
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0535
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0535
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0535
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0540
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0540
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0540
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0545
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0545
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0550
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0550
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0550
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0555
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0555
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0555
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0555
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0565
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0565
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0565
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0570
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0570
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0575
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0575
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0575
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0580
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0580
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0585
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0585
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0585
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0590
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0590
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0590
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0595
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0595
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0595
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0600
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0600
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0605
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0605
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0610
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0610
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0630
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0630
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0630
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0640
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0640
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0640
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0645
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0645
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0645
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0645
https://doi.org/10.3402/jom.v6.23990
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0655
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0655
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0655
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0655


N.A. Bokulich, M. Ziemski, M.S. Robeson II et al. Computational and Structural Biotechnology Journal 18 (2020) 4048–4062
[132] Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic
improvement of amplicon marker gene methods for increased accuracy in
microbiome studies. Nat Biotechnol 2016;34:942–9.

[133] Amos GCA, Logan A, Anwar S, Fritzsche M, Mate R, Bleazard T, et al.
Developing standards for the microbiome field. Microbiome 2020;8:98.

[134] Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al.
NCBI Taxonomy: a comprehensive update on curation, resources and tools.
Database 2020:2020. https://doi.org/10.1093/database/baaa062.

[135] Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley
SE, et al. Synthetic microbe communities provide internal reference
standards for metagenome sequencing and analysis. Nat Commun
2018;9:3096.

[136] Zhou Y-H, Gallins P. A review and tutorial of machine learning methods for
microbiome host trait prediction. Front Genet 2019;10:579.

[137] Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-
analysis of large metagenomic datasets: tools and biological insights. PLoS
Comput Biol 2016;12:e1004977.

[138] Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): A
public repository of microbiome regression and classification tasks.
GigaScience 2019:8. https://doi.org/10.1093/gigascience/giz042.

[139] Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al.
Minimum information about a marker gene sequence (MIMARKS) and
minimum information about any (x) sequence (MIxS) specifications. Nat
Biotechnol 2011;29:415–20.

[140] Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A,
et al. The FAIR Guiding Principles for scientific data management and
stewardship. Sci Data 2016;3:160018.

[141] Kodama Y, on behalf of the International Nucleotide Sequence Database
Collaboration, ShumwayM, Leinonen R. The sequence read archive: explosive
growth of sequencing data. Nucleic Acids Res 2011;40:D54–6.

[142] Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y,
Ackermann G, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat
Methods 2018;15:796–8.

[143] Kaehler BD, Bokulich NA, McDonald D, Knight R, Caporaso JG, Huttley GA.
Species abundance information improves sequence taxonomy classification
accuracy. Nat Commun 2019;10:4643.

[144] Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT,
Bokulich NA. RESCRIPt: Reproducible sequence taxonomy reference database
management for the masses. bioRxiv 2020.10.05.326504; https://doi.org/10.
1101/2020.10.05.326504.

[145] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in Python. J Machine Learning Res
2011;12:2825–30.

[146] Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, et al.
Metagenomic analysis of colorectal cancer datasets identifies cross-cohort
microbial diagnostic signatures and a link with choline degradation. Nat Med
2019;25:667–78.

[147] Almeida A, Mitchell AL, Tarkowska A, Finn RD. Benchmarking taxonomic
assignments based on 16S rRNA gene profiling of the microbiota from
commonly sampled environments. GigaScience 2018:7. https://doi.org/
10.1093/gigascience/giy054.

[148] Willis AD, Martin BD. Estimating diversity in networked ecological
communities. Biostatistics 2020. https://doi.org/10.1093/biostatistics/
kxaa015.

[149] Fritz A, Hofmann P, Majda S, Dahms E, Dröge J, Fiedler J, et al. CAMISIM:
Simulating metagenomes and microbial communities n.d. doi: 10.1101/
300970.

[150] Aniba MR, Poch O, Thompson JD. Issues in bioinformatics benchmarking: the
case study of multiple sequence alignment. Nucl Acids Res 2010;38:
7353–63.

[151] Kelly BJ, Gross R, Bittinger K, Sherrill-Mix S, Lewis JD, Collman RG, et al.
Power and sample-size estimation for microbiome studies using pairwise
distances and PERMANOVA. Bioinformatics 2015;31:2461–8.

[152] Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny
microbes, enormous impacts: what matters in gut microbiome studies?.
Genome Biol 2016;17:217.

[153] Goldman N. Statistical tests of models of DNA substitution. J Mol Evol
1993;36:182–98. https://doi.org/10.1007/bf00166252.

[154] Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read
simulator. Bioinformatics 2012;28:593–4.

[155] Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator–toward accurate
genome assembly. Bioinformatics 2013;29:119–21.

[156] Yang C, Chu J, Warren RL, Birol I. NanoSim: nanopore sequence read
simulator based on statistical characterization. GigaScience 2017;6:1–6.
4062
[157] Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J
Mach Learn Res 2012;13:281–305.

[158] Luo G. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in
Health Informatics and Bioinformatics 2016;5:1–16.

[159] Nguyen V. Bayesian Optimization for Accelerating Hyper-Parameter Tuning.
In: 2019 IEEE second international conference on artificial intelligence and
knowledge engineering (AIKE). https://doi.org/10.1109/aike.2019.00060.

[160] Bochinski E, Senst T, Sikora T. Hyper-parameter optimization for
convolutional neural network committees based on evolutionary
algorithms. In: 2017 IEEE international conference on image processing
(ICIP). https://doi.org/10.1109/icip.2017.8297018.

[161] Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G.
Using soil bacterial communities to predict physico-chemical variables and
soil quality. Microbiome 2020;8:79.

[162] Matthews BW. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta
(BBA) - Protein Structure 1975;405:442–51. doi: 10.1016/0005-2795(75)
90109-9.

[163] Schloss PD. Application of a Database-Independent Approach To Assess the
Quality of Operational Taxonomic Unit Picking Methods. mSystems 2016;1.
doi: 10.1128/mSystems.00027-16.

[164] Willis AD. Rarefaction, alpha diversity, and statistics. Front Microbiol
2019;10:2407.

[165] Manning CD, Raghavan P, Schütze H. Introduction to information
retrieval. Cambridge University Press; 2008.

[166] Westcott SL, Schloss PD. OptiClust, an Improved Method for Assigning
Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere
2017;2. doi: 10.1128/mSphereDirect.00073-17.

[167] McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al.
An improved Greengenes taxonomy with explicit ranks for ecological and
evolutionary analyses of bacteria and archaea. ISME J 2012;6:610–8.

[168] Maxim LD, Daniel Maxim L, Niebo R, Utell MJ. Screening tests: a review with
examples. Inhalation Toxicol 2014;26:811–28. https://doi.org/10.3109/
08958378.2014.955932.

[169] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol 2007;73:5261–7.

[170] Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of
exact sequence variants versus operational taxonomic units. mSphere
2018;3:1–5.

[171] Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community
analysis using Kraken 2. Microbiome 2020;8:124.

[172] Noble WS. A quick guide to organizing computational biology projects. PLoS
Comput Biol 2009;5:e1000424.

[173] Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible
computational research. PLoS Comput Biol 2013;9:e1003285.

[174] Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best
practices for scientific computing. PLoS Biol 2014;12:e1001745.

[175] Baxter SM, Day SW, Fetrow JS, Reisinger SJ. Scientific software development
is not an oxymoron. PLoS Comput Biol 2006;2:e87.

[176] Kim Y-M, Poline J-B, Dumas G. Experimenting with reproducibility: a case
study of robustness in bioinformatics. GigaScience 2018:7. https://doi.org/
10.1093/gigascience/giy077.

[177] Schloss PD. Identifying and overcoming threats to reproducibility,
replicability, robustness, and generalizability in microbiome research. MBio
2018;9. https://doi.org/10.1128/mBio.00525-18.

[178] Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good Enough
Practices in Scientific Computing 2016.

[179] Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.
Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nat Biotechnol 2019;37:852–7.

[180] Miller G. Scientific publishing. A scientist’s nightmare: software problem
leads to five retractions. Science 2006;314:1856–7.

[181] Kane DW, Hohman MM, Cerami EG, McCormick MW, Kuhlmman KF, Byrd JA.
Agile methods in biomedical software development: a multi-site experience
report. BMC Bioinf 2006;7:273.

[182] Steinmacher I, Graciotto Silva MA, Gerosa MA, Redmiles DF. A systematic
literature review on the barriers faced by newcomers to open source
software projects. Inf Softw Technol 2015;59:67–85.

[183] Geiger RS, Varoquaux N, Mazel-Cabasse C, Holdgraf C. The types, roles, and
practices of documentation in data analytics open source software libraries: a
collaborative ethnography of documentation work. Comput Support Coop
Work 2018;27:767–802.

http://refhub.elsevier.com/S2001-0370(20)30516-X/h0660
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0660
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0660
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0665
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0665
https://doi.org/10.1093/database/baaa062
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0675
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0675
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0675
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0675
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0680
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0680
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0685
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0685
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0685
https://doi.org/10.1093/gigascience/giz042
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0695
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0695
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0695
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0695
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0700
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0700
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0700
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0710
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0710
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0710
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0715
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0715
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0715
https://doi.org/10.1101/2020.10.05.326504
https://doi.org/10.1101/2020.10.05.326504
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0725
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0725
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0725
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0730
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0730
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0730
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0730
https://doi.org/10.1093/gigascience/giy054
https://doi.org/10.1093/gigascience/giy054
https://doi.org/10.1093/biostatistics/kxaa015
https://doi.org/10.1093/biostatistics/kxaa015
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0750
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0750
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0750
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0755
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0755
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0755
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0760
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0760
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0760
https://doi.org/10.1007/bf00166252
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0770
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0770
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0775
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0775
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0780
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0780
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0785
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0785
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0790
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0790
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0790
https://doi.org/10.1109/aike.2019.00060
https://doi.org/10.1109/icip.2017.8297018
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0805
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0805
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0805
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0820
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0820
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0825
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0825
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0835
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0835
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0835
https://doi.org/10.3109/08958378.2014.955932
https://doi.org/10.3109/08958378.2014.955932
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0845
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0845
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0845
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0850
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0850
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0850
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0855
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0855
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0860
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0860
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0865
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0865
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0870
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0870
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0875
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0875
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1128/mBio.00525-18
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0895
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0895
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0895
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0900
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0900
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0905
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0905
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0905
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0910
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0910
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0910
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0915
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0915
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0915
http://refhub.elsevier.com/S2001-0370(20)30516-X/h0915

	Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods
	1 Introduction
	1.1 Marker-gene and metagenome sequencing

	2 Benchmarking
	2.1 Test data
	2.1.1 Mock communities
	2.1.2 Biological data
	2.1.3 Cross validation
	2.1.4 Simulated data

	2.2 Parameter tuning
	2.3 Performance metrics
	2.4 Overfitting
	2.5 Benchmarking resources
	2.6 Benchmarking basics for non-developers

	3 Software implementation
	3.1 Existence != accessibility
	3.2 Version control
	3.3 Data provenance tracking
	3.4 Optimization vs. complexity
	3.5 Do not reinvent the wheel
	3.6 Testing and continuous integration
	3.7 Community support
	3.8 Documentation

	4 Conclusions
	Author statement
	Declaration of Competing Interest
	References


