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Background.  People with advanced human immunodeficiency virus (HIV) (CD4 < 50) remain at high risk of tuberculosis (TB) 
or death despite the initiation of antiretroviral therapy (ART). We aimed to identify immunological profiles that were most predic-
tive of incident TB disease and death.

Methods.  The REMEMBER randomized clinical trial enrolled 850 participants with HIV (CD4 < 50 cells/µL) at ART initiation 
to receive either empiric TB treatment or isoniazid preventive therapy (IPT). A case-cohort study (n = 257) stratified by country 
and treatment arm was performed. Cases were defined as incident TB or all-cause death within 48 weeks after ART initiation. Using 
multiplexed immunoassay panels and ELISA, 26 biomarkers were assessed in plasma.

Results.  In total, 52 (6.1%) of 850 participants developed TB; 47 (5.5%) died (13 of whom had antecedent TB). Biomarkers asso-
ciated with incident TB overlapped with those associated with death (interleukin [IL]-1β, IL-6). Biomarker levels declined over time 
in individuals with incident TB while remaining persistently elevated in those who died. Dividing the cohort into development and 
validation sets, the final model of 6 biomarkers (CXCL10, IL-1β, IL-10, sCD14, tumor necrosis factor [TNF]-α, and TNF-β) achieved 
a sensitivity of 0.90 (95% confidence interval [CI]: .87–.94) and a specificity of 0.71(95% CI: .68–.75) with an area under the curve 
(AUC) of 0.81 (95% CI: .78–.83) for incident TB.

Conclusion.  Among people with advanced HIV, a parsimonious inflammatory biomarker signature predicted those at highest 
risk for developing TB despite initiation of ART and TB preventive therapies. The signature may be a promising stratification tool to 
select patients who may benefit from increased monitoring and novel interventions.

Clinical Trials Registration.  NCT01380080.
Keywords.  tuberculosis; biomarker; antiretroviral therapy; early mortality.

Tuberculosis (TB) is the leading cause of death due to a single in-
fectious agent worldwide [1]. Human immunodeficiency virus 
(HIV) infection greatly increases the risk of developing TB, which 
increases proportionately as CD4+ T-cell counts inexorably de-
cline in persons living with HIV (PLHIV) with an unsuppressed 

viral load [2–4]. Treatment with antiretroviral therapy (ART) and 
TB preventive therapy (isoniazid preventive therapy [IPT]) greatly 
reduce the risk of TB and death [5–7] and are now being widely 
scaled up. However, PLHIV, especially those with low CD4+ T-cell 
counts below 200 cells/µL, remain at high risk of mortality and 
incident TB in high-burden settings, especially during the first 
12 months post-ART and IPT initiation [8–10]. A meta-analysis 
showed that 17% (95% confidence interval [CI] 11–24%) of adults 
in sub-Saharan Africa die within the first year after ART initiation 
(defined as early mortality) [11–13]; TB accounts for 5–44% of 
these deaths. Despite “Treat All” policies adopted by most coun-
tries, the proportion of patients who present with advanced HIV 
remains stubbornly static particularly in low-income settings  
[10, 14]. TB and mortality risk is not uniform and is thought to be 
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associated with high baseline, host-mediated inflammation, im-
mune dysfunction, and incipient undiagnosed infections [15] de-
spite current TB screening methods [16], ART, and IPT initiation.

Therefore, there is an urgent clinical and public health need 
to identify the PLHIV who are at high risk of TB and early 
mortality as they could benefit from increased monitoring 
and evaluation [1, 15]. Plasma biomarkers that measure host 
inflammation and immune status are now more readily avail-
able and cost effective and have been measured in patients with 
active TB and healthy controls with and without evidence of 
TB [17–20]. However, few biomarker studies have determined 
predictive associations and very few included severely immu-
nosuppressed PLHIV who are at the highest risk of developing 
active TB or death [21–23]. Identifying such biomarkers may 
provide insight into the relevant biological pathways involved 
in the disease process and may suggest potential interventions 
to prevent incident TB and death. In the present study, we lev-
eraged the multicountry trial AIDS Clinical Trials Group Study 
5274, “Reducing Early Mortality and Morbidity by Empiric TB 
Treatment” (REMEMBER, NCT01380080) [6] to identify in-
flammatory biomarkers in highly immunosuppressed PLHIV 
residing in TB/HIV high-burden settings that predict incident 
TB and death as well as time to TB and death following the in-
itiation of ART.

METHODS

Study Design

We conducted a case-cohort study among participants en-
rolled in REMEMBER, which was a multisite, international, 
unblinded randomized treatment strategy trial comparing em-
piric 4-drug TB treatment with isoniazid preventive therapy 
(IPT) for reducing death within 48 weeks after ART initiation 
in adults with HIV with CD4 cell counts <50 cells/µL [6].

Study Population

In brief, the parent REMEMBER trial participants were re-
cruited from 18 outpatient research clinics in 10 countries 
(Malawi, South Africa, Haiti, Kenya, Zambia, India, Brazil, 
Zimbabwe, Peru, and Uganda). Individuals were screened for 
TB before inclusion using a symptom screen, locally available 
diagnostics, and the Xpert MTB/RIF assay when available. 
Study candidates with confirmed or suspected TB were ex-
cluded. Key inclusion criteria were liver function tests 2.5 times 
the upper limit of normal or less, a creatinine clearance of at 
least 30 mL/min, and a Karnofsky score of at least 30.

Our case-cohort comprised of (1) a randomly selected 
subcohort of 193 participants all of whom had available archived 
plasma specimens for determination of biomarker levels prior to 
(for baseline analyses) and at least 1 time-point after ART initi-
ation but prior to development of our two outcomes of interest: 
TB or death (for longitudinal analyses) and (2) all additional TB 

and death cases (n = 64) in REMEMBER outside of the randomly 
selected subcohort in accordance to case-cohort design princi-
ples (Supplemental Figure 1) [24, 25]. In the parent trial in the 48 
weeks postentry, there were a total of 57 TB events and 52 com-
peting death events before TB could occur. We studied 52 (91%) 
of these 57 TB cases and 47 (90%) of the 52 death events. The co-
hort sampling was balanced by country and treatment arm.

Definitions

We defined incident TB cases as persons developing TB within 
48 weeks of randomization (as adjudicated in REMEMBER) [6]. 
We defined death cases as persons who died within 48 weeks 
after randomization. All available clinical data collected on trial 
participants was included in the case-cohort study.

Laboratory Procedures

Plasma samples were thawed from storage at −80°C. Thawed 
samples were filtered using 0.65 µm Ultrafree-MC Centrifugal 
Filters (Millipore- UFC30DV00) followed by 0.22  µm 
Ultrafree-MC Centrifugal Filters (Millipore- UFC30GVNB), 
and filtered samples were aliquoted and frozen again for storage 
at −80°C until ready for use to minimize subsequent freeze-thaw 
cycles during analysis. The following analytes were quantified 
using MESO SCALE DISCOVERY (MSD) multiplexed immu-
noassay kits as per manufacturer’s recommendations (www.
mesoscale.com): V-PLEX Proinflammatory Panel 1 Human Kit 
(K15049D; interferon γ [IFN-γ], interleukin [IL]-1β, IL-2, IL-6, 
IL-8, IL-10, IL-13, tumor necrosis factor α [TNF-α]), V-PLEX 
Cytokine Panel 1 Human Kit (K15050D; GM-CSF, IL-1α, IL-12/
IL-23p40, IL-15, IL-16, IL-17A, TNF-β, VEGF-A), and V-PLEX 
Chemokine Panel 1 Human Kit (K15047D; Eotaxin (CCL-11), 
macrophage inflammatory protein [MIP]-1β, TARC (CCL-
17), CXCL-10, MIP-1α, IL-8, monocyte chemoattractant pro-
tein [MCP]-1, myeloid dendritic cell [MDC], MCP-4). Plates 
precoated with capture antibodies as supplied by the manufac-
turer were washed, incubated with sample or calibrator at the 
kit-specified dilution factors for 2 hours at room temperature 
with shaking, washed again, incubated with detection antibody 
for 2 hours at room temperature with shaking, washed again, 
and incubated with kit-supplied Read Buffer prior to acquisition 
on the MESO QUICKPLEX SQ 120 machine. MSD Discovery 
Workbench 4.0 was used to acquire and compute concentration 
values. For soluble CD14 (sCD14) and IL-1 R1 analysis, R&D 
Systems Human CD14 DuoSet enzyme-linked immunosorbent 
assay (ELISA) (DY383) and Human IL-1 RI DuoSet ELISA 
(DY269) were used, respectively, as per manufacturer’s recom-
mendations (www.rndsystems.com). SoftMax Pro 5.3 was used 
to acquire and compute concentration values.

Statistical Analysis

Descriptive statistics were performed to characterize the study 
populations. Several complementary approaches were used to 
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identify which biomarkers were associated with TB and death out-
comes: Cox regression, hierarchical clustering, discriminant ca-
nonical correlation analysis, and cross-validation modeling [26]. 
Analysis of the case-cohort data was modeled using Cox propor-
tional hazards using the linear biomarker values and then separately 
using the proportion greater than the 3rd quartile. To account for 
the case-cohort design, we used a weighted Cox regression with 
Barlow method of weighting. Mean values of log10-transformed 
plasma concentrations of each biomarker for the population were 
z-score normalized and illustrated in a heatmap which grouped 
biomarkers using hierarchical clustering (Ward’s method with 
100× bootstrap). Profiles were stratified by incident TB or death.

A multivariate discriminant analysis model using sparse ca-
nonical correlations was employed to test and quantify the ac-
curacy of combined biomarkers to predict incident TB or death. 
For each marker, Spearman correlations corrected for multiple 
measurements (Holm-Bonferroni’s method) were calculated for 
each marker with either time to TB diagnosis or death.

Lastly, cross-validation was used to develop and validate a par-
simonious combination of biomarkers that best predict incident 
TB. Excluding specimens from participants who had died, 235 
samples were randomly stratified split into a 80% training set, 
and a 20% testing set that each has the same positive class ratio 
as the whole data set (0.22). The training set was log transformed, 
centered, and scaled for feature selection. In the feature/signa-
ture selection step, for each model in lasso logistic regression, 
xgboost and random forest, feature weights were calculated by 
applying a 5-fold cross validation in modeling training set with 
the target variable being TB or not (1/0) and then normalized 
between 0 and 1. Average weights from the three models were 
saved. Then a ridge logistic regression model using top features 
from the previous run was performed; the top proteins ranked 
were selected by leave-one-out cross-validation. We performed 
this procedure 100 times. One hundred sets of identified signa-
tures were saved. From the 100 sets of signatures, the top N pro-
teins (N = average signature length) were selected based on the 
appearing times. To build an incident TB prediction model, we 
did hyperparameter tuning using a random forest model with the 
training set containing only the 6-protein biomarkers we identi-
fied. The final prediction model was selected based on a 5-repeats, 
5-fold cross validation with hyperparameter tuning. To evaluate 
the unbiased model performance and generalization ability, we 
then normalized the testing set, performed 50 rounds bootstrap 
sampling from the testing set, and predicted all 50 bootstrapped 
testing set using the final prediction model.

Ethics Statement and Role of the Funding Source

This study was approved by ethics committees and institutional 
review boards at Johns Hopkins University and participating 
site institutions. The sponsors of the study had no role in study 
design, data collection, analysis or interpretation, or in the 
writing of the paper.

RESULTS

Study Population

Of 850 participants enrolled in REMEMBER from October 
31, 2011, to June 9, 2014, 257 were included in the case-cohort 
(n = 193 in randomly selected subcohort and n = 64 additional 
cases) with 52 TB (Supplemental Figure 1) and 47 death cases 
in total occurring within 48 weeks post-ART initiation. Of 47 
participants who died [27], 13 also had antecedent incident TB. 
Twelve of 52 TB cases were microbiologically confirmed (10 pul-
monary TB and 2 extrapulmonary TB) and the remaining met 
the independent endpoint committee review of clinical TB [6]. 
The majority (33/52; 63%) of TB cases occurred within 12 weeks 
post-ART initiation (Supplemental Figure 2). The case-cohort 
characteristics are shown in Table 1. There was no difference in 
the distribution of cases across countries by sub-cohort and addi-
tional cases (P-value = .20).

Baseline Plasma Biomarker Levels Distinguish PLHIV Who Develop TB 
After ART from Those Who Do Not

Unadjusted baseline plasma biomarker levels in TB cases, 
deaths, and controls are shown in Figure 1. Absolute values are 
shown in Supplemental Table 1. Adjusting for age, sex, and body 
mass index, biomarkers that were associated with incident TB 
(Supplemental Table 2) had partial overlap with those that pre-
dicted death (Supplemental Table 3). Notably adjusted hazard 
ratios of GM-CSF, IL-1β, IFN-γ, IL-6, TNF-α, sCD14, and the 
monocyte lymphocyte ratio (MLR) [28] were significantly in-
creased in participants that developed TB, whereas increased 
IL-1β, IL-10, and IL-6 were significantly associated with death.

Using canonical discriminant models to further characterize 
the association of all 26 biomarkers combined with incident TB or 
death, the area under the ROC curve (AUC) was 0.82 (P < .0001) 
and AUC 0.75 (P <  .0001), respectively (Figure 2A). By further 
plotting the canonical scores of each marker used in the dis-
criminant model, we identified biomarkers (IFN-γ, IL-6,CCL-
22,CCL3, sCD14, CXCL-10, IL-10, CCL2, IL-17, TNF-β) that 
were most influential in the ROC curve to predict subsequent TB 
overall (Figure 2B). For death, canonical scores identified IL-6, 
IL-10, CCL-17, TNF-α, CCL2, IL-13, IL-6, CCL22, CCL13, and 
IFN-γ as being the most influential in the model. When analyses 
were stratified by treatment arm, the biomarkers most influen-
tial in predicting incident TB were overlapping, although slightly 
different from the overall analysis (Supplemental Figure 3); both 
arms, however, had high AUCs (0.87 P <  .0001). The AUCs for 
death when stratified by arm however were less robust.

Using Cross-validation to Develop and Validate a Parsimonious Biomarker 
Signature to Predict Incident TB

Lastly, to determine whether a parsimonious biomarker sig-
nature could predict TB, we used a cross-validation approach. 
From the 100 sets of identified signatures, the top N proteins 
(N = average signature length) selected based on the appearing 
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times were CXCL-10, IL-1β, IL-10, sCD14, TNF-α, and TNF-β, 
many of which were also identified in Cox regression, hierar-
chical clustering analyses described above. The final prediction 

model using this 6-protein biomarker signature measured at 
baseline with a predicted probability cut-off of 0.226, predicted 
incident TB with a high sensitivity of 0.90 (95% CI: .87–.94), a 

Figure 1.  Cox regression model for biomarkers. Association with (A) incident TB, adjusted model includes age, sex, BMI; (B) death, adjusted model includes age, sex, and 
BMI presented as a Forest plot. Panels on the right display the c-statistics values. Abbreviations: BMI, body mass index; CI, confidence interval; HR, hazard ratio; MLR, mon-
ocyte to lymphocyte ratio; TB, tuberculosis.
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specificity of 0.71 (95% CI: .68–.75), and an AUC of 0.81 (95% 
CI: .78–.83).

Death Is Associated With a Persistent Inflammatory Signature

Using hierarchical clustering of z-score normalized, prospectively 
assessed plasma inflammatory biomarker values, the heatmap in 
Figure 3A shows overall trends in levels over time of follow-up; 
many inflammatory biomarkers are highly expressed at baseline 
in participants that went on to develop TB. Importantly, there is 
a more diffuse and persistent pattern of inflammatory biomarker 
expression in those that subsequently died compared to controls 
without TB and compared to those that developed TB (Figure 3B).

Highest Inflammatory Biomarker Levels With Shortest Time to Active TB \
After ART

We further assessed correlations between plasma inflamma-
tory biomarker levels and time to developing TB or death. The 
heatmap shows the highest inflammatory biomarker levels with 
shortest time to incident TB after ART (Figure 4A). Spearman 
correlation matrices revealed that increased levels of several 
plasma inflammatory biomarkers were significantly associ-
ated with rapid progression to TB suggesting that incipient TB 
has a more exaggerated inflammatory signature (Figure 4A,  
right-hand panel). Conversely, individuals that displayed lower 
baseline levels of such markers developed TB at later time 

Figure 3.  Plasma biomarker levels measured serially in patients stratified by clinical endpoints. A–B, Mean values of log10-transformed concentration of each plasma 
marker per time point were calculated for the entire population and also per clinical outcomes. Biomarker values were z-score normalized and illustrated in a heatmap in 
which biomarkers were grouped using hierarchical clustering (Ward’s method with 100× bootstrap). Dendrograms represent Euclidean distance. Abbreviation: SD, standard 
deviation; TB, tuberculosis.

Figure 2.  Canonical discriminant analysis of baseline biomarkers most influential for incident TB and death. A, ROC curve analysis of plasma levels of all biomarkers meas-
ured combined at study baseline (week 0) to distinguish TB vs. no TB or patients that died from those who survived. B, Canonical discriminant analyses of the biomarkers 
were performed independently for TB and death. Those above 0.2 and below −0.2 were considered most influential in the ROC curve analyses and are shown in the grey 
boxes. Abbreviations: AUC, area under the curve; min, minimum; max, maximum; ROC, receiver operator characteristics;  sens, sensitivity; spec, specificity; TB, tuberculosis.
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Figure 4.  A. Associations between baseline plasma inflammatory biomarkers and time to TB diagnosis. Left: Data were log-transformed and ranked and colored in a 
heatmap from minimum to maximum values detected for each marker. Patients were ordered based on time to TB diagnosis (in weeks) and plasma biomarkers were clustered 
(Ward’s method with 100× bootstrap) according to the distribution profile in the study population. Dendrograms represent Euclidean distance. Right: Spearman correlations 
for each marker and time to TB diagnosis. Blue bars indicate statistically significant correlations after corrections for multiple measurements (Holm-Bonferroni’s method). 
Abbreviation: TB, tuberculosis. B. Associations between baseline plasma inflammatory biomarkers and time to death. Left: Data were log-transformed and ranked and colored 
in a heatmap from minimum to maximum values detected for each marker. Patients were ordered based on time to death (in weeks) and plasma biomarkers were clustered 
(Ward’s method with 100× bootstrap) according to the distribution profile in the study population. Dendrograms represent Euclidean distance. Right: Spearman correlations 
or each marker and time to death. Only soluble IL1-R1 remained statistically significant after corrections for multiple measurements (Holm-Bonferroni’s method). Only partici-
pants with valid values for all markers were included (n = 46). Abbreviation: IL1-R1, interleukin 1 receptor, type 1 min, minimum; max, maximum. 
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points. A  similar analysis failed to find a distinct biomarker 
profile associated with time to death (Figure 4B). Only the an-
ti-inflammatory marker IL-1R1 correlated with time to death. 
Individuals that had higher baseline levels of IL-1R1 died at 
later time points compared to those with lower concentrations.

DISCUSSION

In a large, geographically diverse cohort of severely immuno-
compromised PLHIV starting ART, we found that several base-
line inflammatory biomarkers were independently associated 
with incident TB after ART initiation using Cox models. To test 
the robustness of the key inflammatory biomarkers, we used 
a canonical discriminant analysis and confirmed that INF-γ, 
IL-6, sCD14, and IL-1β were most influential to predict TB in 
both models. Finally, a plasma inflammatory 6-biomarker sig-
nature was developed and validated and could be developed 
into a non-sputum-based stratification tool with a sensitivity of 
0.90 (AUC of 0.81) at the modeled cutoff.

The REMEMBER trial had 2 arms; in one arm, participants 
received empiric 4 drug anti-TB treatment, and in the other 
arm, participants received 6  months of IPT. It is particularly 
striking that the host biomarkers upregulated at baseline in the 
hierarchical cluster analysis in participants that were treated 
with empiric TB treatment and developed TB is very similar 
to the cytokines that predict a shorter time to active TB. This 
cytokine signature may represent co-prevalent TB or could be 
termed “incipient” TB that could not be microbiologically con-
firmed at baseline given the severe immunosuppression of the 
participants in this cohort. Previously published expression 
profiling of non-HIV patients [29] as well as PLHIV [30] who 
develop TB corroborate a similar inflammatory profile in pa-
tients as they approach clinically recognizable TB.

Our data contribute and expand that of our previous studies 
showing the importance of IFNγ and CXCL10 (IP-10) in ro-
bustly classifying active TB in patients with advanced HIV 
starting ART [22, 31]. In a cohort of HIV-positive, less immu-
nosuppressed patients that were starting isoniazid prophylactic 
therapy, Lesosky et al compared plasma biomarkers from those 
with incident TB to those with either prevalent TB or no TB. 
They found several blood TB biomarkers that overlap with our 
study, including CXCL10 and IFNγ [21]. Two other studies in 
PLHIV also identified CXCL10 as predictive of incident TB [31, 
32]. Baseline IL-6 predicted both TB and death in our analysis 
and corroborates findings in other studies [33–38]. IL-1β also 
independently predicted death, whereas TNF-α was important 
in the canonical discriminant analysis. Taken together, these 
data suggest that these plasma inflammatory biomarkers are 
part of a continuum where some biomarkers (INF-γ, sCD14, 
CXCL-10, GMCSF) may classify those with incipient TB at high 
risk for unmasking with ART despite specific therapy, whereas 
other biomarkers (IL-6, IL-1β, and TNF-α) represent a pathway 

of immune activation and dysregulation that are shared be-
tween those who develop TB and/or death or uniquely associ-
ated with death (IL-10), as well as persistent inflammation over 
follow-up time in those who died. These inflammatory bio-
markers reflect the substantial innate immune activation and 
increase in Th1 responses that is associated with the immune 
response to Mycobacterium tuberculosis [39]. Interestingly, the 
inflammatory biomarkers overlap with that in TB-IRIS shown in 
transcriptomic profiling, which showed overexpression of innate 
immune mediators and activators of the inflammasome [40].

Despite expanding access to ART to all PLHIV regardless of 
CD4 T-cell count, late presentation with advanced HIV persists 
in settings where TB coinfection is high [1, 10]. The REMEMBER 
trial showed that despite rigorous baseline TB screening, ART 
initiation, and preventive/preemptive therapy (either IPT or 
empiric 4 drug TB therapy), participants remained at risk for 
incident TB and for death in the ensuing 48 weeks.

Our study had several limitations. We assayed only 26 bio-
markers. In addition, the trial into which our study was nested 
had 2 treatment arms, isoniazid, which, although recommended, 
has variable coverage across sub-Saharan Africa [1] and 4 drug 
anti-TB therapy. We analyzed the data according to arm and 
found that the results were robust across arms and showed that 
there may be a group of patients in whom even provision of 
empiric therapy will not avert TB disease, as has been shown 
in other studies of empiric TB treatment [41, 42]. Further work 
examining this inflammatory biomarker signature prospec-
tively across a range of CD4 values would also be important as 
we studied a population with very advanced HIV (CD4 < 50), 
who, although at very high risk of TB, now account for <25% of 
ART initiators [8]. Examining cell surface markers of immune 
activation on PBMC and CD4 T cells specifically in addition to 
measuring type I interferon responses [43] and circulating im-
mune complexes (CIC) will be an important next step in placing 
these results in context; previous data have shown increased 
type I  interferon signaling and complement pathway gene ac-
tivation, which bind CIC in patients with subclinical and early 
active TB disease [43]. Although the biomarkers of immune ac-
tivation seem overlapping with those described in HIV/AIDS, 
particularly considering the profound immunosuppression in 
this cohort, our analysis shows in this selected group that there 
are differences in the profiles between those with incipient or 
unmasked incident TB (IFN-γ and CXCL-10 induced by IFN-γ) 
compared to those who die (IL-6 and TNF-α). If the sample were 
larger, it would have been interesting to compare those who die 
early (in the first 3 months) compared to those who died later.

In summary, our data indicate that a baseline inflammatory 
biomarker signature identifies PLHIV that fail to control the 
infection. These data also provide a “window” into immuno-
logic pathways along the spectrum of clinical active TB disease 
to clinically recognizable active disease despite anti-TB treat-
ment. Our predictive 6-biomarker signature could be used to 
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identify those at highest risk of TB after ART initiation and who 
may benefit from additional monitoring, intensified or immune 
modulatory treatment [5, 7]. Further work to validate our in-
flammatory biomarker signature in stratifying PLHIV initiating 
ART is needed.
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