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1. Introduction

Missing data are a problem frequently encountered in many fields of research, especially in 

environmental health sciences and occupational health research. Monitoring of 

environmental contaminants is a critical part of exposure sciences research and public health 

practice. Often, environmental monitors are used for compliance purposes by government 

entities, or for research applications. Environmental health researchers rely on the use of 

monitors to quantify concentrations of contaminants in the environment, and relate those 

concentrations with potential exposures and health effects.

Fine particulate matter (PM2.5) is widely studied and is associated with significant adverse 

health effects. Over 7 million deaths per year are attributable to ambient and household air 

pollutants, including PM2.5 (WHO, 2014). Monitoring PM2.5 can occur across various 

spatial and temporal scales, ranging from fixed ambient monitors that run continuously as 

part of an air monitoring network, to citizen science projects using low-cost equipment, and 

household area and personal air monitors that may run for hours or days in a community or 

occupational setting. Regardless of the sampling approach, missing data may occur for a 

number of reasons when monitoring environmental contaminants. Understanding the pattern 

of missing data is important for guiding imputation methods that yield reliable estimates.
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Missing at random (MAR) is frequently encountered in environmental health sciences 

studies. Under MAR, it may be possible to explain why the data are missing, since missing 

data are related to other data that are observed (Gomez-Carracedo et al., 2014; Little & 

Rubin, 2019; Quinteros et al., 2019). Under MAR, missing data can be estimated from other 

observed predictor variables. Gomez-Carracedo et al., (2014) argue that when air monitoring 

data are missing due to electrical power failure, the missingness follows the MAR pattern. 

Data that are missing not at random (MNAR) occur when the probability of an observation 

being missing is related to unobserved values (Donders et al., 2006; Lavarkas, 2008; Little & 

Rubin, 2002; McPherson et al., 2015). In the context of air monitoring, if a monitor shuts 

down due to a malfunction, such as high filter loading or extreme temperatures, then it may 

be considered MNAR.

Generally, the most widely used method for imputing missing data is unconditional mean 

imputation (Donders et al., 2006; Junger & De Leon, 2015; Junninen et al., 2004; Quinteros 

et al., 2019). However depending on the duration and type of missing data, this method of 

imputation may yield different results (Junger & De Leon, 2015). For instance, under MAR, 

high variance in regression coefficient estimates may result from mean imputation, whereas 

underestimated, but more reliable estimates of variance are obtained under Missing 

Completely at Random (MCAR) (Junger & De Leon, 2015). Median imputation is another 

simple method often appropriate for highly skewed data, and may yield better results 

compared to mean imputation (Junger & De Leon, 2015; Miettinen, 1985).

Univariate time-series imputation is another class of methods used in air pollution studies 

that accounts for the time series characteristics of real-time monitoring data (Mortiz et al., 

2015). One common method is last observation carried forward (LOCF), which bridges data 

together by filling in gaps of missing data with the last observed value (Engles & Diehr, 

2003; Plaia & Bondi, 2006). Hourly mean method is another approach for imputing missing 

hourly concentrations for a single fixed air monitoring site. This method uses observed 

hourly concentrations recorded at the same monitor over extended periods of time, often 

months or a year. Observed hourly averages collected at the same monitoring site are used to 

impute hours when the same monitor may be missing data (Li et al., 1999; Plaia & Bondi, 

2006).

Multivariate time-series imputations are more complex methods that use predictor variables 

between observations to impute missing values. Some widely used methods include: 

regression imputations and predictive mean matching (PMM) (Rubin, 1986; Little, 1988), 

row mean method (RMM) (Engles & Diehr, 2003), multiple imputation chained equations 

(MICE) (Rubin, 1988), expectation-maximization (E-M) models (Dempster, 1977), random 

imputation (Moritz, 2015), and study specific imputations.

Many proposed imputation methods are specific to fixed central site air monitoring data, 

where periods of missingness are short, and are both preceded and followed by long periods 

of observed continuous readings (Junger & De Leon, 2015; Plaia & Bondi, 2006; Quinteros 

et al., 2019). Very little, if any, attention has been given to imputing missing real-time 

monitoring data of air pollutants on short time scales (<24 hours). Household indoor 

monitoring of air pollutants, specifically PM2.5, is readily employed in developing nations, 
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where solid fuel use for heating and cooking is prevalent. Often, these resource-limited areas 

lack the electrical power source to run modern air monitoring equipment, and instead, 

equipment must be operated on battery power. Depending on the sampling duration, the 

reliance on batteries may be insufficient to achieve the desired operating time, and may 

result in missing or incomplete data. For instance, if the study goal is to measure 

concentration of household PM2.5 for 24-hours using a real-time monitor, battery or 

equipment failure may yield partial data with consecutive hours of missing data (e.g., 8 or 12 

hours). This prevents the investigator from obtaining the desired 24-hour measurements and 

creates a unique pattern of missing data.

Missing data will also affect any summary statistics computed from real-time measurements. 

Examples of such statistics include peak hourly concentrations or 15-minute short-term 

exposure limits (STEL), often important in assessing acute health effects for specific 

pollutants. In epidemiological studies, pollutant concentrations are often reported in 

relationship to their potential health effects by averaging minute or hourly concentrations 

over a 24-hour period to yield a daily concentration. Premature shutdown of monitors due to 

equipment failure or battery power loss is a frequently encountered limitation in 

environmental field studies that is rarely acknowledged, or accounted for, at the analysis 

phase. However, when more than 25% of data is missing, daily average pollutant 

concentrations cannot be reliably computed (Plaia & Bondi, 2006).

Often when dealing with missing or incomplete data, analysts may be tempted to exclude 

these observations (case-wise deletion). Depending on the sample size and the degree of 

missingness, this may be appropriate. However, in studies with a small sample size, such as 

household and community-based studies, this may introduce bias and loss of power, and 

may not be a viable approach (Donders et al., 2006). Some researchers may decide to ignore 

this problem entirely, and they may be tempted to call an 8-hour concentration a 24-hour 

concentration, while others may exclude readings below a specific sampling duration 

threshold. However, relatively few environmental and health-based studies explicitly 

mention an inclusion or exclusion criterion in their analysis of air pollution data. Failing to 

recognize incomplete or missing data in community and household environmental health 

studies may lead to biased measurements and inconsistent findings across study 

environments.

Existing methods for imputing missing real-time environmental monitoring data over short 

time periods have yet to be explored. This paper examines methods for imputing consecutive 

periods of missing household air monitoring data based on various degrees of missing data 

when operating on a 24-hour time scale. Our goal is to provide guidance that is easy to 

implement and can be applicable to other study settings.

2. Methods

2.1. Data Source:

Data used in this evaluation included household outdoor concentration of PM2.5 measured at 

1-minute intervals using a pDR-1500 (ThermoFisher), yielding 1440 1-minute 

concentrations over 24-hours from 20 households from a rural Northern Arizona community 
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that participated in a field study of indoor-outdoor air quality. Monitors were powered by 4 

AA batteries at a flow rate of 1.51 L/min.

2.2. Type of Missing Data:

During the field study, incomplete data arose from premature shutdown of the pDR-1500, 

either from battery power loss or equipment failure occurring at some point during the 24-

hour monitoring period. Outdoor monitors shut down more frequently during winter months, 

perhaps due to extreme temperatures or relative humidity beyond the operating range 

specified by the manufacturer. If monitor shutdown was a function of temperature or 

humidity, the data would be MNAR. However, exploring the conditions proximal to the 

shutdown of these monitors indicates the ambient conditions were within range of the 

manufacturers operating environment, suggesting MNAR was not present. Since MNAR was 

unlikely, we proceeded under the assumption our data was MAR, since data loss was due to 

battery power loss.

2.3. Pattern of Missing and Validation Dataset

In the field, once a monitor failed and shutdown, it stayed powered-off for the remainder of 

the sampling period. No attempt was made to restart or replace the batteries of the monitor, 

resulting in consecutive periods of missing data. To assess the accuracy of various 

imputation methods, a validation data set was developed that included the 20 households 

with complete 24-hour data. To recreate patterns of missingness encountered in the field, 

missing data were artificially created in these complete 24-hour samples. Starting at a 

designated time point, consecutive periods of missingness were created at four levels: 20% 

(288 minutes), 40% (576 minutes), 60% (864 minutes), and 80% (1152 minutes). This 

approach facilitated comparison of imputed concentrations with observed concentrations at 

each household.

2.4. Imputation Methods

Univariate, univariate time-series, and multivariate time-series methods were used to impute 

missing data at each of the four levels of missingness. Univariate methods were those 

methods using partially-observed data within each household to impute the remaining 

missing values, without considering the time-series nature of the data. Univariate imputation 

methods included mean, median, and random imputation to impute 1-minute values to yield 

complete 24-hours (1,440 minutes) of data at each home. For example, mean and median 

imputation used the mean and median, respectively, of the partially-observed data from 

within each household to impute missing 1-minute concentrations within the same 

household. Random imputation replaced missing concentrations with values that were 

sampled, with replacement, from the partially-observed data within each household. One 

thousand iterations were performed, and 1-minute averages of the 1000 iterations were used 

to impute missing concentrations.

Univariate time-series methods considered some time-series characteristics of the partially-

observed data within each household to impute missing values. The LOCF method replaced 

missing data points with the value of the last observed concentration. Imputation via first-

order Markov chains assumed a concentration at any time point was dependent only on the 
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previous value and used a transitional probability matrix to generate future values based on 

the last observed concentration (Canales, 2004). Similar to the random imputation, 1,000 

iterations were performed for each household and 1-minute averages were used for 

imputation. Finally, Kalman filters were used to fit autoregressive integrated moving average 

(ARIMA) models to predict missing values based on trends of previously observed measures 

(Moritz et al., 2015). From here on, we define univariate methods as methods that also 

include univariate time-series methods.

Multivariate time-series imputation was another class of methods that accounted for the 

time-series nature of the data, but a set of observed predictor variables was used to impute 

missing concentrations. Here information between households was used to predict missing 

data within each home. Categorical predictors used for multivariate imputation included 

geographic location (3-categories) and heating fuel type (3-categories). Homes were 

geographically grouped into three districts under the assumption that homes in the same 

district were spatially representative of one another. Based on questionnaire data, homes 

were assigned one of three indoor heating fuel types – electric-gas, coal-wood, or a 

combination. Fuel types were potential sources of outdoor PM2.5 during the winter season 

when these fuels are used primarily for indoor heating. Additional continuous predictors 

included ambient temperature and relative humidity recorded from a co-located monitor 

logged at 1-minute intervals.

RMM is a multivariate time-series method that can be used to impute missing concentrations 

for a single monitoring site using observed concentrations recorded at nearby surrounding 

monitoring stations (Engles & Diehr, 2003; Plaia & Bondi, 2006). Time-matched mean 

concentrations from surrounding monitors were used to impute missing values (homes 

located 0.25 to 20 miles apart). For example, 9:00 AM mean concentrations from observed 

sites were used to impute missing concentration at another single monitoring site that was 

missing data at 9:00 AM. We also performed two variants of RMM: one by grouping homes 

geographically within a 2.5 mile radius (RMM-L), and another by grouping homes by 

heating fuel type (RMM-F). We were unable to group homes by both location and fuel type 

due to small sample size.

PMM is a form of hot-deck imputation that imputes missing values based on linear 

regression coefficients from observed values. For this method, missing values were selected 

randomly from a set of donors that were matched on an observed set of predictors. PMM 

was preferred over simple regression imputation because imputed values are drawn from a 

range of observed values, eliminating the possibility of imputing unrealistic values, such as 

negative concentrations (Van Buuren, 2018). Several variants of PMM were constructed 

using different combinations of predictor variables (i.e., ambient temperature, ambient 

humidity, fuel type, geographic location). Ten imputations and 5-nearest neighbors were 

used for each PMM imputation (Van Buuren, 2018), and 1-minute averages across the 10 

iterations were used to impute missing 1-minute concentrations.

All methods were implemented in the R programming (R Core Team, 2017) language using 

the imputeTS (Moritz et al., 2015), mice (Buuren & Groothuis-Oudshoorn, 2010), and 

markovchain (Spedicato et al., 2016) packages.
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2.5. Error Metrics:

Several metrics were used to evaluate the performance of imputation methods by comparing 

observed and imputed concentrations across four levels of missingness (i.e., 20%, 40%, 

60%, 80% missing). Health based studies are often concerned with a daily average 

concentration that can be associated with a health effect. Absolute bias (AB) and percent 

absolute error in means (PAEM) were two metrics used to evaluate the errors between 

observed and imputed 24-hour mean concentrations within each household. The AB 

calculates the absolute difference between observed (ẍ) and predicted 24-hour mean 

concentration (x).

AB = ∣ ẍ − x ∣

Similarly, PAEM measures the percent difference between the observed 24-hour mean 

concentration (ẍ) and imputed 24-hour mean concentrations (x) and is an easily interpretable 

metric.

PAEM = ẍ − x
ẍ ⋅ 100

Values of AB and PAEM equal to zero indicate no difference between observed and 

estimated mean values.

Time-series analysts may often be concerned with examining the temporal patterns of real-

time data over a finer time scale, such as minutes or seconds. When missing data are 

encountered, imputation methods that yield reliable minute-by-minute or second-by-second 

estimates are desired. Within each household, the minute-by-minute differences in observed 

and imputed concentrations were evaluated using three metrics.

The coefficient of determination (R2) is commonly used as a goodness of fit metric for 

evaluating models. R2 was calculated by squaring the correlation coefficient between two 

variables and describes the variance accounted for between the observed and the predicted 

concentrations (Quinteros et al., 2019).

R2 =
∑i = 1

n (xi − x) ∗ (x.i − ẍ)

∑i = 1
n (xi − x)2 ∗ ∑i = 1

n (x.i − ẍ)2

2

Where xi and x.i are the ith observation for the imputed and observed datasets, and x and ẍ
are the means for the imputed and observed datasets (Quinteros et al., 2019). Although 

widely used, R2 is limited in its ability to account for size differences between observed and 

imputed values (Junninen et al., 2004; Willmot et al., 1985). Despite this limitation, R2 was 

used as a comparable metric across studies.

Hadeed et al. Page 6

Sci Total Environ. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Root mean square error (RMSE) is another metric for determining the error between 

imputed and actual values and is calculated as:

RMSE = 1
n ∑i = 1

n (xi − x.i)2

Although utilized in several studies comparing imputation methods (Junninen et al., 2004; 

Moritz et al., 2015; Moritz & Bartz-Beielstein, 2017; Quinteros et al., 2019) this metric may 

not be appropriate for data with large differences (Junger & De Leon, 2015; Moritz et al., 

2015).

Mean absolute error (MAE) on the other hand, is a common metric for determining errors 

between imputed and observed values that is less affected by large differences in data 

(Junger & De Leon, 2015; Moritz et al., 2015).

MAE = 1
n ∑i = 1

n ∣ xi − x.i ∣

3. Results

A total of 20 household with complete 24-hour (1440-minute readings) monitoring data for 

PM2.5 were used in this analysis. Imputation methods were implemented for each level of 

missingness and performance metrics were used to evaluate the accuracy of estimates by 

comparing observed and imputed concentrations within each household (Table 1).

Differences between observed and imputed 24-hour mean concentrations were evaluated 

using AB and PAEM (Table 1). For all 20 homes, mean, random, and Markov imputation 

methods consistently resulted in the lowest AB and PAEM across all levels of missingness. 

At 20% missing, these three methods yielded means that differed from observed means by 

roughly 2.0 μg/m3. Differences between observed and imputed means at 40% missing were 

around 2.5 μg/m3, differences ranged from 3.3-4.1 μg/m3 at 60% missing, and imputed 

means differed from observed means by less than 7.0 μg/m3 at 80% missing. Kalman filters 

and median imputation performed moderately well at 20% and 40% missingness, however 

AB and PAEM increased at 60-80% missing. Multivariate methods of PMM and RMM 

resulted in the highest AB and PAEM, whose performances decreased substantially as 

missingness increased.

Correlation between 1-minute observed and 1-minute imputed concentrations was assessed 

using R2. High R2 values indicated a high level of correlation between observed and 

predicted values. Relatively higher R2 values were observed for mean, median, LOCF, 

Kalman filters, random, and Markov imputation, with mean, random and Markov methods 

yielding the greatest R2 (Table 1). At 20% missing, R2 values for these three methods were 

around 0.65, and at 40% missingness R2 values were about 0.58. R2 decreased substantially 

to around 0.35 and 0.11 at 60% and 80% missingness, respectively. Multivariate methods of 

RMM and PMM had the lowest R2 values for all levels of missingness.
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The RMSE metrics showed good performance for mean, median, random, Markov and 

Kalman filters. Much like other error metrics, RMSE increased as the level of missingness 

increased (Table 1). Kalman filters and median were high performing at 20% and 40% 

missing, however at 60-80% missing, Markov, random and mean imputation yielded the 

lowest RMSE values.

In comparison to RMSE, a metric less sensitive to extremes in the predicted values is MAE, 

where the lower the value, the better the performance. At 20-60% missing, median and 

Kalman filters performed best and yielded the lowest MAE values of 2.45 and 2.46 at 20% 

missing, 4.10 and 4.30 at 40% missing, and 7.46 and 7.72 at 60% missing, respectively. 

LOCF performed better than anticipated at 20-40% missing, but performance deteriorated as 

duration of missingness increased, which would be expected based on the nature of this 

method. Markov performed moderately well at 60% missing, however at 80% missing 

Markov, median, and mean imputation had the lowest MAE values (Table 1).

The worst performing methods were the two models that incorporated geographic and 

household fuel characteristics, RMM and PMM. They consistently yielded high errors 

across all levels of missingness, and in some instances resulted in MAE and RMSE values 

2-3 times higher than their univariate counterparts (Table 1).

Based on our results, we list the top three imputation methods by performance metrics for 

each level of missingness (Table 2). Markov, random, and mean imputation provided the 

best estimates of 24-hour mean concentrations of PM2.5 across all levels of missingness. 

When evaluating error metrics minute-by-minute, Kalman filters, median, and Markov 

methods performed well at low levels of missingness (20-40%). However, at higher levels of 

missingness (60-80%), Markov, random, median and mean imputation performed best on 

average (Table 2). Nonetheless, across all metrics, Markov seems to be the better performing 

imputation method for use with PM2.5 data from these rural households.

4. Discussion

Missing data are often encountered when performing short-term monitoring of air pollutants 

with real-time monitors, especially in resource-limited areas. We explored approaches for 

handling missing data in this context. Our results, across several metrics, show univariate 

methods that impute missing values based on incomplete data observed within households 

performed best. Markov, random, and mean imputations were the best performing methods 

that yielded 24-hour mean estimates with the lowest error and highest R2 values. Minute-by-

minute imputation methods had mixed performance by percent missing, but Markov appears 

to be the most promising approach. On a case-by-case basis, Kalman filter imputation 

performed exceptionally well in data with strong trends, and may be a viable option for 

imputing time-series data of this nature.

The multivariate methods RMM and PMM were expected to perform well because these 

methods impute missing values from observed concentrations at households sharing similar 

characteristics. Surprisingly however, these methods performed poorly across all levels of 

missingness. One possible explanation of the superior performance of univariate imputation 
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and the low performance of multivariate imputation may be due to households being 

significantly different from one another. These differences may not be captured by the 

predictor variables used in our analysis. For example, homes located in similar geographic 

locations, ambient conditions, and heating fuel types may differ in outdoor concentration by 

other unaccounted factors. This may include idling vehicles and human activities that 

generate or reduce PM concentrations at some households and not others. That is, 

households may have been so different from one another that the predictor variables used in 

multivariate imputation were unable to account for these differences. This would explain 

why univariate methods using partial data observed within each household yielded better 

estimates of PM concentrations, compared to multivariate methods using characteristics 

between homes.

Relatively good performance of mean imputation, even at high levels of missingness, was an 

unexpected finding since this method can yield biased estimates under MAR and tends to be 

discouraged (Quinteros et al., 2019). One reason for the success of mean imputation may be 

that the partially-observed data within each household was fairly representative of 

concentrations throughout the rest of the day.

Random and Markov imputation performed exceptionally well at high and low levels of 

missingness. The success of these two methods may be attributed to the high number of 

iterations used to generate 1-minute concentrations that were then used to impute missing 

values within households. Both methods utilized partial data observed within each home to 

predict concentrations missing within the same household, which may be effective for 

homes or monitoring stations located in areas that are completely different from one another.

Markov imputation was a novel approach implemented in this analysis. The probabilistic 

nature of 1st order Markov chains to impute values based on a logical order from the 

previous time step may explain this method’s success. Compared to the random method, 

Markov imputation takes into account some aspects of the structural nature of the time 

series, and computes the probability of concentrations based on previously observed values.

One drawback of univariate imputation occurs when the partially observed data are fairly 

homogenous and do not contain patterns or extreme events that are expected during the time 

of equipment failure. Under these conditions, imputed values will fail to capture expected 

diurnal or temporal events. This could have implications for occupational settings, where 

specific worker tasks might be associated with high pollutant concentrations. If these high 

pollutant tasks are unobserved, univariate imputation may be unable to account for them. 

Imputed values are dependent on partially observed values, which can lead to under- or over-

estimation. Despite this limitation, univariate methods appear to be viable options for 

imputing missing data across highly heterogeneous samples and populations.

Imputation of ambient real-time monitoring data over short time periods have not been 

adequately explored. Previous methods for imputing missing air pollution data are specific 

to fixed ambient air monitors, designed to run continuously for extended periods of time. 

These proposed methods are specific to the pattern of missing data, which is often for short 

periods that are preceded and followed by observed data; often occurring in a single station 
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that is part of an existing air monitoring network. In the context of air monitoring, there are 

only a few comparable studies.

For example, Quinteros et al. (2019) imputed missing data for ambient air monitoring 

stations in Temuco, Chile that ran continuously from 2009 to 2014. Missing datasets 

artificially constructed at different levels of missingness were used to evaluate the 

performance of conditional and unconditional mean imputation, PMM k-nearest neighbor, 

multiple imputation (MI), and Bayesian principal component analysis imputation. Of these 

methods, PMM and MI performed best. These methods incorporated several meteorological 

(wind speed, temperature, humidity, precipitation) and temporal variables (day of week, 

month) for predicting ambient PM2.5 concentrations that were absent in our analysis, which 

may explain differences in performances. Additionally, the continuous readings over several 

years permitted seasonal and diurnal trends to be accounted for in their analysis, potentially 

improving PMM and MI performance. Due to the short sampling duration in our analysis, 

we were unable to incorporate strong temporal trends in our imputations, which may have 

contributed to poor performances of PMM. Although not acknowledged by Quinteros et al. 

(2019), unconditional and conditional mean imputation had modest performance compared 

to PMM and MI in terms of R2, MAE, Bias, and Index of Agreement using the validation 

dataset.

Single imputation methods for imputing missing concentrations of PM10 from a network of 

ambient air monitors were also assessed in Palermo, Sicily. Plaia & Bondi (2006) proposed a 

site-dependent effect method (SDEM) for imputing monitoring data based on state-space 

information observed at each monitoring site, and compared their method with other single 

imputation methods that included hour mean method (Li et al., 1999), RMM (Engles & 

Diehr, 2003), last-next method (Engles & Diehr, 2003), and multiple imputation (Rubin, 

1996; Shafer, 1997). They argued that missingness pattern and time-site specific information 

must be considered for selecting an appropriate imputation method. At various lengths of 

missingness (2, 4-6, 8-24, >24 hours), their site specific SDEM model performed best in 

terms of correlation, index of agreement, root mean square deviation (RMSD), and mean 

absolute difference (MAD). Good performance was also observed for row mean imputation, 

however multiple imputation and last-next method were found to perform poorest across all 

methods. The authors noted that heterogeneity in concentrations observed between 

monitoring sites led to overestimation of imputed values between some stations. This may 

explain why RMM and PMM performed poorly in our analysis, again suggesting homes 

may have been very different from one another. However, RMM may perform well and be 

applicable to occupational settings where multiple workers are monitored simultaneously, 

and when pollutant concentrations are not expected to differ significantly between workers 

performing similar tasks.

Junger & De Leon (2015) further explored imputation of missing ambient air monitoring 

data at various levels of missingness, ranging from 5-40%. Daily concentrations were 

collected for 366 days from 10 ambient stations in Sao Paulo, Brazil and were highly 

correlated with each other. Twelve imputation methods were evaluated, which included both 

univariate and multivariate methods (complete case analysis, mean, median, nearest 

neighbor, EM models, ARIMA, general additive models, spline models). Under low levels 
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of missingness, conditional mean performed well, whereas unconditional imputation 

(median, mean) performed poorly even at low levels of missingness. Multivariate methods 

(conditional mean and EM-models) performed exceptionally well, even as the frequency and 

duration of missing data increased. Our findings differed from those of Junger & De Leon 

(2015), as unconditional mean imputation performed well at low and high levels of 

missingness, whereas multivariate methods performed exceptionally poor at all levels of 

missingness. The authors attributed improved performance to incorporating a temporal 

component and the high correlation among monitoring stations. The absence of lengthy 

monitoring data from multiple sites in our analysis may explain the differences in imputation 

performances, as the context and setting in which these methods were applied differed.

Imputation methods have also been explored in longitudinal health studies. Engles & Diehr 

(2003) evaluated several methods for imputing missing data when missingness occurred at 

various stages (baseline, follow-up) of the longitudinal Cardiovascular Health Study. Simple 

imputation methods, such as row mean, median, new observation carried backwards, and 

last-next method, yielded estimates with the smallest RMSD and MAD. More advanced hot 

deck, regression with error, and column mean imputation methods performed poorly in 

terms of RMSD and MAD. The authors found that imputation methods that used person-

specific longitudinal data to impute missing values within the same individual performed 

better than methods that used no person specific information. Although our study was 

looking at variability among houses rather than individual people, similar findings were seen 

in our analysis. More advanced multivariate imputation methods that impute concentrations 

based on information observed at other monitoring sites performed poorly.

This is the first short-term pollution study to evaluate various methods for imputing missing 

data that are frequently encountered in environmental health sciences and occupational 

health research. Differences in imputation performances between our study and previous 

studies may be explained by the unique nature and duration of our missing data. The short 

sampling time (24 hours) limits our capacity to assess any long-term temporal trend in 

PM2.5 concentration. Additionally, missing data were not preceded and followed by periods 

of observed data, a common feature for most imputation methods proposed and assessed to 

date. Creating consecutive periods of missing data starting from a fixed time point, rather 

than performing multiple runs with randomly selected start points at various times of the 

day, may have been a major limitation.

Another limitation of our study was the relatively small sample size (n=20) and the potential 

effects outliers can have on imputation performances. Additionally, our findings are specific 

to outdoor PM2.5 concentrations in a rural coal and wood burning community with relatively 

few ambient sources and may not be applicable to densely populated urbanized settings. 

Application of these methods to indoor environments may be possible, provided that 

sufficient time activity data, personal and environmental predictor variables are collected. 

Imputation methods presented here may also be limited to PM2.5, and results may differ 

based on specific contaminants, sampling approach (i.e., active, passive, real-time), pollutant 

sources, sampling duration, research setting, and co-collected predictor variables. Extreme 

caution should always be taken before imputing missing data.
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In our context, univariate imputation methods that use partially-observed data within each 

subject yielded reliable estimates of missing concentrations. However, imputation methods 

presented here may perform differently depending on the type of data and study application. 

Selection of an appropriate imputation method should be driven by the pattern and duration 

of missing data, research objective, co-collected variables, and study environment. 

Nonetheless, we are confident that the Markov, random, and mean imputation techniques 

should be considered for dealing with missing data of any real-time air monitor (fixed 

ambient stations, light scattering laser technology, or low-cost air monitors).

Unfortunately, a large proportion of the global population exposed to hazardous air 

pollutants reside in low-income communities of developing nations and experience the 

greatest burden of disease (WHO, 2014). The use of advanced environmental monitoring 

equipment in resource-limited areas that lack the modern infrastructure to power these 

monitors will continue to be a challenge for researchers working in these areas. Imputation 

offers a possible solution to this challenge, however very little attention has been given to 

developing or evaluating existing methods for imputing missing data for real-time 

environmental monitoring in community and occupational research settings.

5. Conclusion

In summary, we found Markov, random, and mean imputation performed best at providing 

24-hour mean concentrations. Minute-by-minute imputation had mixed performance by 

metric and percent missing, however Markov imputation appears to be the better approach. 

Univariate imputation seems to provide a reliable solution to addressing missing data in real-

time monitors operating over short periods, especially in heterogeneous environments and 

study populations. These methods are easy to implement and can be applied in various fields 

that encounter similar patterns of missing data. Our findings may be applicable to 

environmental health sciences and occupational health studies that rely heavily on 

environmental monitors to collect concentrations of contaminants in real-time in order to 

determine potential exposures and health hazards. Despite our findings, further research is 

needed to examine and identify imputation methods that are generalizable across a range of 

scenarios.
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Highlights:

• Various methods for imputing short-term real-time air monitoring data were 

assessed.

• Markov, random, & mean imputation were best at providing daily mean 

concentrations.

• Minute-by-minute imputation had mixed performance by metric and percent 

missing.

• Univariate imputation may provide a reliable solution to missing real-time 

data.
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Table 2:

Recommended Imputation Methods by Level of Missingness and Performance Metric*

Error
Metrics

Percent Missing

20% 40% 60% 80%

Markov Markov Markov Mean

AB Random Mean Random Random

Mean Random Mean Markov

Markov Markov Markov Random

PAEM Random Mean Random Mean

Mean Random Mean Markov

Markov Kalman Markov Markov

R2 Random Random Random Random

Kalman Mean Mean Mean

Median Median Median Markov

MAE Kalman Kalman Kalman Median

LOCF LOCF Markov Mean

Median Kalman Markov Mean

RMSE Kalman Median Random Random

Markov LOCF Mean Markov

*
Top three methods listed in ranking order

Absolute Bias (AB), Percent Absolute Error in Means (PAEM), Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
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