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ABSTRACT
Objectives  To examine the effect of short-term exposure 
to ambient fine particulate matter (PM2.5) on all-cause, 
cardiovascular and respiratory-related hospital admissions 
and readmissions among patients receiving outpatient 
haemodialysis.
Design  Retrospective cohort study.
Setting  Inpatient hospitalisation claims identified from the 
US Renal Data System in 530 US counties.
Participants  All patients receiving in-centre 
haemodialysis between 2008 and 2014.
Primary and secondary outcome measures  Risk of 
all-cause, cardiovascular and respiratory-related hospital 
admissions and 30-day all-cause and cause-specific 
readmission following an all-cause, cardiovascular, and 
respiratory-related discharges. Readmission risk was 
evaluated for early (1–7 days postdischarge) and late (8–
30 days postdischarge) readmission time periods. Relative 
risk is expressed per 10 μg/m3 of PM2.5.
Results  Same-day ambient PM2.5 was associated with 
increased hospital admission risk for cardiovascular 
causes (0.9%, 95% CI 0.2 to 1.7). Greater PM2.5-related 
associations were observed with 30-day readmission 
risk. Early-readmission risk was increased by 1.6%–1.8% 
following all-cause (1.6%, 95% CI 0.6% to 2.6%), 
cardiovascular (1.8%, 95% CI 0.4% to 3.2%) and 
respiratory (1.8%, 95% CI 0.4% to 3.2%) discharges; while 
late-readmission risk increased by 1.2%–1.3% following 
all-cause and cardiovascular discharges. PM2.5-related 
associations with readmission risk were greatest for 
certain cause-specific readmissions ranging 4.0%–6.5% 
for dysrhythmia and conduction disorder, heart failure, 
chronic obstructive pulmonary disease, other non-cardiac 
chest pain or respiratory syndrome and pneumonia. 
Following all-cause discharges, the cause-specific early-
readmission risk was increased by 6.5% (95% CI 3.5% 
to 9.6%) for pneumonia, 4.8% (95% CI 2.3% to 7.4%) for 
dysrhythmia and conduction disorder, 3.7% (95% CI 1.4% 
to 6.0%) for heart failure and 2.7% (95% CI 1.2% to 4.2%) 
for other non-cardiac chest pain or respiratory syndrome-
related causes.
Conclusions  Daily ambient PM2.5 was associated with 
an increased risk of cardiovascular admissions and 30-

day readmissions following cardiopulmonary-related 
discharges in a vulnerable end-stage renal disease 
population. In the first week following discharge, greater 
PM

2.5-related risk of rehospitalisation was identified for 
some diagnoses.

INTRODUCTION
Ambient fine particulate matter (PM2.5) is a 
leading risk factor for all-cause mortality,1–4 
accounting for millions of premature deaths 
each year.5 Daily variation in ambient PM2.5 
is also associated with increased rates of 
unplanned hospital admissions, urgent care 
visits and medication usage.6 7 Greater health 
impacts have been observed consistently in 
sensitive populations, including the elderly 
and individuals with chronic health conditions 
such as chronic kidney disease (CKD).3 8–11 

Strengths and limitations of this study

►► Nearly complete representation of hospitalisation 
records (>1.8 million inpatient admissions), iden-
tified using the US Renal Data System, of patients 
undergoing in-centre haemodialysis between 2008 
and 2014.

►► Location of last dialysis visit was linked with daily 
population-weighted air pollution.

►► Admission risk estimated using time and county 
stratified design to control for county-level time 
trends.

►► Cox proportional hazard model with time-varying 
exposure was used to estimate readmission risk 
associated with daily fluctuations in ambient par-
ticulate matter (PM

2.5) controlled for time-varying 
confounders.

►► Potential diagnosis misclassification from using di-
agnosis codes to classify cause-specific hospitalisa-
tions and exposure misclassification related to PM2.5 
exposure not captured by ambient air quality near 
dialysis centres.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-4926-2058
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2020-041177&domain=pdf&date_stamp=2020-11-15


2 Wyatt LH, et al. BMJ Open 2020;10:e041177. doi:10.1136/bmjopen-2020-041177

Open access�

Additionally, PM2.5 exposure during wildfire periods has 
been shown to increase the risk of mortality among patients 
managing their end-stage renal disease (ESRD) with haemo-
dialysis.12 However, the role of short-term PM2.5 exposure at 
ambient levels on progression of disease and cause-specific 
morbidities has not been characterised.

CKD is a progressive condition that affects 8%–16% 
of the population worldwide,13–15 and in the final stage, 
ESRD, many patients are transitioned to haemodialysis 
to prolong life. Patients receiving dialysis represent a 
particularly vulnerable population because of high rates 
of comorbidities, including diabetes and cardiovascular 
disease, which may contribute to the greater likelihood 
of hospital admission and readmission following PM 
exposure. In the USA, patients on haemodialysis average 
1.7 inpatient admissions annually with a 30-day readmis-
sion rate twice that of other Medicare beneficiaries,16 
contributing to a substantial economic impact.17 In 2016, 
US$35.4 billion in Medicare fee-for-service costs were 
attributed to ESRD,16 motivating health promotion and 
cost-containment efforts to slow the progression of CKD 
and reduce hospitalisations and readmissions.18 While 
many current strategies to reduce hospitalisations focus 
on care processes and patient-level factors,19–22 there is a 
knowledge gap on the role of modifiable environmental 
risk factors—specifically ambient PM2.5.

2 23–25

In this study, we examined the risk of daily hospitalisa-
tion and subsequent 30-day readmission in relation to daily 
ambient PM2.5 using data from the US Renal Data System 
(USRDS) over a 7-year period. We focused on all-cause, 
cardiovascular and respiratory hospitalisations and esti-
mated changes in risk for early (1–7 days postdischarge) 
and late (8–30 days postdischarge) readmission accounting 
for the influence of different causal factors (ie, acute and 
chronic illness burden) that may influence early versus late 
readmissions.26 27

METHODS
Setting and study population
Using patient-level data from the USRDS, we constructed 
an open cohort of individuals receiving in-centre 

haemodialysis between 2008 and 2014. USRDS is a national 
data registry for dialysis services and includes records of 
patient demographic characteristics, hospitalisations and 
provider information on all patients receiving haemodi-
alysis. Baseline demographic characteristics (sex, birth 
date, race and smoking status) recorded at the initiation 
of dialysis were extracted from the Medical Evidence 
Form CMS-2728 for each patient. For every inpatient 
hospital visit, we extracted the admission date, discharge 
date, discharge diagnoses codes and discharge status.

For the analysis of 30-day readmission risk, we consid-
ered only admissions where patients were discharged 
alive. Each readmission was counted once as a readmis-
sion relative to the prior index admission and was then 
considered as a new index admission. Thus, each admis-
sion could serve as both an index admission and readmis-
sion, consistent with previous studies.28 An admission that 
occurred on the same day as a discharge was combined 
with the previous admission. These readmissions are 
likely to represent facility transfers for which we were not 
able to obtain information. Discharges occurring within 
30 days of the end of the study period were excluded, 
as 30 days of follow-up data were not available. For both 
admissions and readmissions, patients could be repre-
sented more than once if they were admitted multiple 
times during the study period.

Health outcomes
The primary outcomes included daily counts of all-
cause, respiratory and cardiovascular-related admissions 
and the time to readmission following the cause-specific 
discharges. All-cause and cause-specific readmissions 
were examined separately. Readmissions were classified 
further as early readmissions, occurring within 1–7 days 
of an index hospitalisation discharge and late readmis-
sions, occurring 8–30 days postdischarge.

International Classification of Diseases, 9th Revision 
(ICD-9) codes were used to identify cause-specific hospi-
talisations. Cardiovascular-related diagnoses included 
hypertension (ICD-9 codes 401–405), myocardial infarc-
tion (410), ischaemic heart disease (410–411, 413), 
pulmonary embolism (415), dysrhythmia and conduction 

Table 1  Baseline demographic characteristics of the study population between 2008 and 2014 by hospital admission 
category

Characteristic

No (%)

All cause Cardiovascular Respiratory

n=351 294 n=262 385 n=247 829

Age (year), mean (SD)  � 64.69 (14.70) 65.58 (14.53) 65.61 (14.48)

Male sex (%)  � 190 716 (54.3) 140 206 (53.4) 132 288 (53.4)

Race

 � White  � 209 921 (59.8) 155 405 (59.2) 147 204 (59.4)

 � Black  � 122 943 (35.0) 93 325 (35.6) 87 831 (35.4)

 � Other  � 18 430 (5.2) 13 655 (5.2) 12 794 (5.2)

Smoking status at initiation (no)  � 330 837 (94.2) 246 634 (94.0) 232 396 (93.8)
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disorder (426–427), heart failure (428) and peripheral 
arterial disease (444). Respiratory-related diagnoses 
included asthma (493), chronic obstructive pulmonary 
disease (COPD) (491–492, 496), pneumonia (480–486) 
and other non-cardiac chest pain or respiratory syndrome 
(786).

Environmental data
Daily concentrations of fine PM2.5 were estimated using 
a previously described exposure prediction model.29 30 
Briefly, this model estimates daily PM2.5 on a 1 km grid 
for the entire continental USA by incorporating satellite 
aerosol optical depth measurements, chemical trans-
port model simulations, meteorology, land use and 
other variables. Gridded PM2.5 estimates were subse-
quently converted to population-weighted county-level 
estimates using 2010 Census tract population values. To 
enable adjustment for potential confounding by weather 
conditions, temperature and relative humidity data were 
obtained from the National Centers for Environmental 
Information’s Global Historical Climatology Network 
(Global Surface Summary of the Day)31 and using the 
Community Multiscale Air Quality model, respectively. 
The study area was restricted to all counties containing at 
least one land surface station from the Global Historical 
Climatology Network (n=530).

Daily PM2.5 was linked to patient hospitalisations based 
on the county of their last dialysis visit. Previous work has 
shown that patients in the USRDS cohort that receive 
in-centre dialysis three times a week have a median travel 
distance of 5.7 miles to their initial dialysis centre.32 33

Study design and statistical analysis
Daily county hospital admissions
The relative risks of hospital admissions associated with 
daily PM2.5 were estimated using a case-crossover design 
with conditional Poisson models for each of the three 
health outcomes separately (all-cause, cardiovascular, 
respiratory). Aggregated counts of daily admissions were 

time stratified by county-day, where each county served as 
its own control. For each county-day strata, PM2.5 on the 
day of admission was compared with PM2.5 concentrations 
on control days. Control days were defined as occurring 
on the same day of the week in the same month and year. 
This, by design, enabled us to control for differences in 
county characteristics, such as population size and risk 
characteristics, and the influence of day of the week, 
seasonal and long-term time trends.34

The relative risk of hospital admissions related to daily 
PM2.5 for each health outcome was estimated using daily 
counts with respect to county-time strata, adjusted for 
meteorological conditions (temperature and humidity). 
Temperature and humidity effects were averaged over lag 
days 0, 1 and 2 and modelled using natural splines (df=3) 
to allow for non-linear effects.35

We evaluated immediate (same day) and delayed PM2.5 
effects on all-cause and cause-specific hospital admis-
sions. Unconstrained distributed lag models were used 
to assess the delayed effects of short-term exposures to 
PM2.5. Delayed exposure up to 14 days and models strati-
fied on county socioeconomic status were considered. To 
assess the impact of county socioeconomic level, we used 
the percent of individuals below poverty from the 2010 
US Census. Associations were assessed for counties both 
above and below the median poverty level (12.5%).

Early and late readmissions occurring within 30 days of discharge
Cox proportional hazards models were used to assess the 
relative risk of early (1–7 days postdischarge) and late 
(8–30 days postdischarge) readmission associated with 
daily PM2.5 following all-cause and cause-specific index 
hospitalisations. Early-readmission models were censored 
at 7 days and late-readmission models at 30 days.

Models for readmissions incorporated both time-
dependent and time-independent risk factors. Time-
dependent variables included daily PM2.5, daily 
temperature, daily relative humidity and day-of-the-week. 

Table 2  Hospital admission characteristics among the study population between 2008 and 2014

Outcome

No of events (no of unique patients)

All-cause Cardiovascular Respiratory

Admissions 1 801 966 (351 294) 832 255 (262 385) 766 447 (247 829)

Discharged alive 1 493 795 (312 521) 685 680 (229 780) 637 250 (217 221)

 � Early eadmission (1–7days) 176 822 (91 508) 83 193 (52 374) 78 392 (49 343)

 � Late readmission (8–30 days) 317 948 (130 454) 150 080 (80 851) 141 656 (76 444)

Length of stay, days

 � Mean (SD) 6.98 (10.68) 7.05 (10.34) 7.07 (10.38)

 � Median (IQR) 4 (2–7) 4 (2–8) 4 (2–8)

Hospital visits in prior year

 � 3+ visits 637 503 (123 949) 307 891 (93 399) 292 803 (89 905)

 � Mean (SD) 2.97 (3.80) 3.14 (3.95) 3.21 (3.89)

 � Median (IQR) 2 (1–4) 2 (1–4) 2 (1–4)
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Time-independent factors included patient-specific, 
hospitalisation event-specific and county socioeconomic 
variables. Patient-specific variables included indicator of 
sex, race, baseline smoking status, whether the patient 
had three or more previous hospital visits in the year prior 
and age at discharge. Event-specific variables included 
whether the discharge occurred on a holiday and length 
of stay. To adjust for county socioeconomic level, the 
per cent of individuals below poverty was included as a 
covariate. Models were also adjusted for patient-specific 
clusters to account for repeated measures by individual. 
Lastly, models were adjusted for the competing cause 
of death by including death as an additional censoring 
criteria. The presented models represent the cause-
specific readmission hazard. Non-linear PM2.5 associations 
were also explored.

Daily county admission and readmission risks were 
expressed as the rate ratio (RR) per 10-μg/m3 increase in 
PM2.5. The proportion hospital admissions and readmis-
sions associated with PM2.5 is reported as the attributable 
fraction (AF), where AF = (RR-1) / RR.36 All statistical 
analyses were performed with R software (V.3.6.0).37

RESULTS
Characterisation of clinical cohort and daily PM2.5

Among 361 568 patients who were hospitalised during the 
study period, 10 274 were excluded due to missing base-
line demographic values, with 351 294 patients remaining. 
Demographic descriptions are in table 1. Patients had on 
average 2.97 hospital visits in the year prior to an admission 
and more than 70% of patients had at least one hospital 
admission related to cardiovascular and respiratory causes 
(table 2). The average daily county-level PM2.5 concentration 
was 9.3 μg/m3 (range: 0.05–155.16 µg/m3) (online supple-
mental table S1). The highest daily county-level PM2.5 was 
observed in California (online supplemental figure S1).

Description of clinical events, hospital admissions and 
readmissions
In total, there were 1 801 966 hospital admissions, of 
which 1 493 795 recorded the patient as alive at discharge. 
Of admissions that were discharged alive, 11.8% were 
readmitted within 7 days and 21.3% were readmitted 8 
to 30 days postdischarge. The mean length of stay for all-
cause, cardiovascular and respiratory admissions was 7.0, 
7.0 and 7.1 days, respectively (table 2).

Associations between PM2.5 and readmission
Early readmission
Daily PM2.5 was positively associated with increased risk for 
early readmission following all-cause, cardiovascular and 
respiratory-related discharges. Same day (lag 0) PM2.5 was 
associated with a 1.6% (95% CI 0.6% to 2.6%), 1.8% (95% 
CI 0.4% to 3.2%) and 1.8% (95% CI 0.4% to 3.2%) increased 
risk of an early readmission for any cause following all-cause, 
cardiovascular and respiratory-related discharges, respec-
tively (figure 1 and online supplemental table S2).

PM2.5 associated early-readmission risk was greater 
for certain cause-specific outcomes. Following all-cause 
discharges, same day (lag 0) PM2.5 was associated with 
increased early-readmission risk for dysrhythmia and 
conduction disorder (4.8%, 95% CI 2.3% to 7.4%), heart 
failure (3.7%, 95% CI 1.4% to 6.0%]), pneumonia 6.5%, 
(95% CI 3.5% to 9.6%) and other non-cardiac chest 
pain or respiratory syndrome (2.7%, 95% CI 1.2% to 
4.2%) causes. PM2.5 associated early-readmission risk was 
greatest for pneumonia-related readmissions following 
cardiovascular-related discharges (7.5%, 95% CI 3.5% 
to 11.7%). Other cause-specific early-readmission 
risks following cardiovascular and respiratory-related 
discharges were similar to estimates observed following 
discharge for any cause (figure  2 and online supple-
mental table S2).

Figure 1  The relative risk (RR, 95% CI) for an all-cause 
early and late-readmission following all-cause and cause-
specific discharges. Discharges are colour coded: all-cause 
discharges are indicated in black, cardiovascular causes in 
orange and respiratory causes in blue. Early readmissions are 
indicated with filled in circles, late readmissions with open 
circles. RR is expressed per 10 µg/m3 increase in particulate 
matter (PM2.5).

Figure 2  The relative risk (RR, 95% CI) of cause-
specific early and late-readmission following all-cause 
discharge. Readmission causes are colour coded: all-cause 
readmissions are indicated in black, cardiovascular causes 
in orange and respiratory causes in blue. RR is expressed 
per 10 µg/m3 increase in particulate matter (PM2.5). COPD, 
chronic obstructive pulmonary disease; RR, rate ratio.

https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
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An average AF at 10 μg/m3 of PM2.5 at lag 0 was 1.5% 
(95% CI 0.6% to 2.5%), 1.7% (95% CI 0.4% to 3.1%) and 
1.7% (95% CI 0.3% to 3.2%) for an early-readmission for 
any cause following all-cause, cardiovascular and respi-
ratory discharges, respectively (figure  3). County AF 
ranged 0.5%–2.5%, 0.6%–2.8% and 0.6%–2.8% for an 
early-readmission following all-cause, cardiovascular and 
respiratory-related discharges, respectively (figure 4).

Late readmission
Daily PM2.5 was also associated with increased risk of 
late-readmission following all-cause, cardiovascular and 
respiratory-related discharges and the magnitude of 
risk related to all-cause readmissions was similar to that 
observed with early-readmission. Same day PM2.5 was asso-
ciated with a 1.3% (95% CI 0.6% to 2.0%), 1.2% (95% 
CI 0.3% to 0.2.2%) and 1.0% (95% CI 0.01% to 2.0%) 
increased risk of a late all-cause readmission following all-
cause, cardiovascular and respiratory-related discharges, 
respectively (figure 1 and online supplemental table S2).

Similar to observations made for early-readmissions, 
PM2.5 associated late-readmission risk was greater for 

certain cause-specific outcomes. Following all-cause 
discharges, a 10 μg/m3 increase in same day (lag 0) 
PM2.5 was associated with increased late-readmission risk 
for dysrhythmia and conduction disorder (3.1%, 95% 
CI 1.3% to 5.0%), heart failure (4.1%, 95% CI 2.5% to 
5.8%), COPD (4.6%, 95% CI 1.7% to 7.6%), pneumonia 
(5.9%, 95% CI 3.7% to 8.2%) and other non-cardiac 
chest pain or respiratory syndrome (3.0%, 95% CI 1.9% 
to 4.1%) (figure 2 and online supplemental table S2).

The average AF at 10 μg/m3 was 0.1% (95% CI 0.5% to 
1.8%) and 1.0% (95% CI 0.1% to 2.0%) for a late read-
mission following all-cause and cardiovascular discharges, 
respectively (figure 3). County AF ranged 0.3%–1.9% for 
a late readmission following any cause (data not shown).

Associations between PM2.5 and daily admissions
Same day PM2.5 was associated with an increase in RR of 
0.3% (95% CI −0.2% to 0.9%) for all-cause admissions 
and 0.9% (95% CI 0.2% to 1.7%) for cardiovascular 
admissions (online supplemental figure S2 and table S3). 
We estimated 0.9% (95% CI 0.1% to 1.7%) of cardiovas-
cular admissions could be attributed to 10 μg/m3 ambient 
PM2.5 (figure  3). Across counties, exposures accounted 

Figure 3  Mean proportion (95% CI) of all-cause and cause-
specific hospital admissions, early readmissions (1–7 days) 
and late readmissions (8–30 days) with respect to particulate 
matter (PM2.5) (µg/m3). Hash marks above the x-axis represent 
the density of daily county PM2.5. The 95% CI under 15.9 µg/
m3 is shaded darker to indicate where 90% of the data falls.

Figure 4  Average daily county particulate matter (PM2.5) (µg/
m3) between 2008 and 2014 (A) and the attributable fraction 
(AF) for early-readmission following an all-cause discharge 
based on the average PM2.5 (B) for the 530 counties included 
in the study.

https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
https://dx.doi.org/10.1136/bmjopen-2020-041177
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for 0.3%–1.5% of cardiovascular admissions when evalu-
ated at the average daily PM2.5 for each county (data not 
shown).

No change in risk of all-cause and cardiovascular admis-
sions was observed related to prior exposure (lags 1–14). 
Similarly, no change in risk for respiratory admissions was 
observed with same day exposure (lag 0) or prior expo-
sure (lags 1–14) (online supplemental figure S2 and table 
S3). The model with a dose-specific association for PM2.5 
(non-linear dose-response function) did not improve 
model fit. Models stratified on median percent below 
poverty were similar (online supplemental figure S2 and 
table S3). In a sensitivity analysis, changing the number 
of df considered for temperature and relative humidity 
had a negligible effect (online supplemental figures S3 
and S4).

DISCUSSION
In a nationwide cohort study of 351 294 patients with 
ESRD managed with haemodialysis, we evaluated the 
association between 1.8 million inpatient admissions 
and nearly 0.5 million corresponding 30-day readmis-
sions and the variation in daily ambient PM2.5 in the 
USA over 7 years, 2008–2014. Daily variation in PM2.5 
was associated with increased risk of hospital admission 
and even greater risk of rehospitalisation. Following all-
cause, cardiovascular and respiratory-related discharges, 
the early-readmission risk for any cause was increased by 
1.6, 1.8, 1.8%, respectively per 10 μg/m3 increase in daily 
PM2.5. Importantly, readmissions related to some cardio-
respiratory diagnoses had the greatest PM2.5 attributed 
readmission risk that was observed to be elevated for both 
early and late readmissions. The early-readmission risk 
following all-cause discharges was increased by 6.5, 4.8, 
3.7 and 2.7% for pneumonia, dysrhythmia and conduc-
tion disorder, heart failure, and other non-cardiac chest 
pain or respiratory syndrome-related readmissions, 
respectively. Overall, these results suggest that at 10 μg/
m3, 1.5%–1.7% of early-readmissions for any cause were 
attributable to short-term exposure. In the context of the 
daily PM2.5 National Ambient Air Quality Standard (35 
μg/m3), this AF would be 5.3%–6.0%.

Our findings are consistent with previous studies that 
observed increased admission risks in elderly popula-
tions6 9 38–42 and patients with cardiovascular health compli-
cations,7 43 and increased readmission risk following 
cardiovascular-related admissions.7 43 44 Studies in the 
Medicare population similarly observed a 1%–2% increase 
in cardiovascular hospital admissions associated with 
same-day PM2.5 concentrations.6 9 38 40 Risk appears to vary 
by diagnosis, as the increased risk was slightly less (0.13%) 
for ST-elevation myocardial infarction related admissions 
in a Chinese population7 and greater (29%) for incident 
heart failure admissions in an Australian population.43 
Increases in respiratory admissions (1%–2%) have been 
noted in the Medicare population,6 9 38–40 but were not 
observed in this study. Prior studies provide evidence that 

air pollution exposure is associated with adverse health 
outcomes including increased infection rates, acute lung 
edema and elevated concentrations of systematic inflam-
mation markers.45–47 Despite known associations between 
PM exposure and adverse cardiovascular and respiratory 
health outcomes, previous studies have not evaluated the 
impacts on hospital readmissions among individuals with 
ESRD.

Few studies have examined PM2.5-related effects on 
readmissions, and those that have report on the long-
term (>1 year) risk following cardiovascular-related admis-
sions. Following cardiovascular hospitalisation, greater 
PM2.5-related rehospitalisation risk was observed for some 
cardiac and respiratory readmissions (dysrhythmia, pneu-
monia) compared with our observations of all-cause read-
missions (4.3%–7.5% vs 1.6%).

Studies in other populations have noted similar 
same-day cardiovascular-related readmission risks of 
5.5%–7.7% and 2.6% associated with PM2.5

7 and PM10,
44 

respectively. Additionally, one study in an Australian popu-
lation with very low ambient air pollution concentrations 
(mean PM2.5=2.9 µg/m3) found no relationship between 
PM2.5 and all-cause readmissions after an incident heart 
failure hospitalisation.43 In some instances, short-term 
readmission risks were greater in comparison to the long-
term readmission risks, suggesting the week following a 
discharge to be a window of heightened vulnerability. 
Prior work indicates that factors related to index hospital-
isations and acute illness burden are predictive of an early 
readmission.26 27 This may indicate that hospital readmis-
sions related to certain acute illness burdens may be more 
susceptible to PM2.5 exposure.

Our study contributes to the currently limited litera-
ture on the association between air pollution and health 
impacts among haemodialysis patients and shines a light 
on the vulnerability in this clinical population related to 
ambient airborne PM2.5. The 30-day rehospitalisation 
rate is 33% in this population, which is twice that of older 
Medicare beneficiaries without a kidney disease diag-
nosis.16 As many as 70% of readmissions are thought to be 
unnecessary,48 prompting efforts to improve outcomes. 
Economic healthcare costs associated with short-term 
increases in PM2.5 are considerable; annual inpatient 
and postacute care costs related to a 10 μg/m3 in daily 
PM2.5 ranges US$30–US$70 million for cardiovascular 
and respiratory-related diseases.49 PM2.5 is a modifiable 
risk factor and reductions in short-term exposures could 
contribute to reduced healthcare costs. Our findings 
suggest that short-term increases in PM2.5 contribute to 
healthcare usage through unplanned admissions and 
readmissions.

Additionally, the findings of the study may have a broader 
public health implication. In the conceptual framework 
for public health action, ambient airborne PM2.5 fits well 
into the base of a 5-tiered pyramid as a socioeconomic or 
social determinant of health.50 Interventions that address 
the base of the pyramid may provide the greatest poten-
tial impact given the widespread population exposure 
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of such a determinant of health like ambient airborne 
PM2.5. Mitigation strategies would need to include policy 
initiatives to curb the expulsion of airborne pollutants, as 
well as education of persons, patients, hospital staff and 
others. Areas with the higher concentrations of ambient 
airborne PM2.5 may see the greatest benefit from mitiga-
tion strategies.

Strengths and limitations
This study included a nearly complete cohort of US 
patients undergoing in-centre haemodialysis. To our 
knowledge, this is the largest analysis of short-term expo-
sure to air pollution in the USA in this highly vulnerable 
population. The USRDS registry provides a complete 
registry of all hospitalisations and contains detailed infor-
mation regarding demographics, dialysis, hospitalisation, 
rehospitalisation and comorbid conditions. Second, 
ambient PM2.5 was estimated using a prediction model 
with highly resolved spatial and temporal resolution with 
proven accuracy.29 30 Third, the time-stratified design 
allowed for county matching that reduced the potential 
confounding by factors that very slowly with time and 
those that are time-invariant. Fourth, the use of time-
dependent risk factors in the Cox proportional hazard 
model allowed for readmission risk estimates to reflect 
the risk associated with daily fluctuations in ambient PM2.5 
and time-varying confounders.

This study also had some limitations. First, there was 
the potential for exposure misclassification as the loca-
tion of the last dialysis visit was used to estimate individual 
level exposures. PM2.5 around dialysis centres could differ 
from concentrations around hospitals and patient resi-
dences. However, given that patients generally reside less 
than six miles from their initial dialysis centre, differences 
in temporal variation of exposure should be small and 
not likely to contribute a systematic bias favouring an 
association between ambient PM2.5 and clinical events.32 33 
Second, diagnosis misclassification was possible but was 
not likely to confound the relationship because it is not 
likely to vary on the same temporal scale as PM2.5. Third, 
there is the possibility that some unmeasured time variant 
factors may have confounded our estimates (smoking 
status, medication usage, behaviours, lipid levels, C reac-
tive protein levels, etc). Data availability restricted the 
consideration of some patient-level confounders, such 
as smoking status, to values recorded at baseline. We 
used a time stratified design to control for time-varying 
confounding for time scales larger than a month, such 
as the number of patients enrolled in the USRDS. At 
scales smaller than a month, the control of person time 
was not possible. Lastly, generalisation of the results is 
limited to the Medicare population with ESRD managed 
with haemodialysis treatment. Future studies are needed 
to understand PM2.5-related impacts on specific health 
conditions, and if health impacts vary based on race, 
socioeconomic indicators or other individual and popu-
lation factors.

CONCLUSION
In conclusion, this US-wide cohort study identified 
increased risk in patients receiving in-centre haemodi-
alysis associated with short-term increases in ambient air 
particle pollution. Elevated PM2.5 concentrations were 
found to be associated with increased inpatient hospital 
admissions related to cardiovascular causes, and an 
increased likelihood of hospital readmission following 
cardiovascular and respiratory-related hospitalisations. 
Medicare spending for beneficiaries with ESRD is high. 
Traditional efforts to reduce the burden of disease focus 
on patient factors; however, these data suggest that air 
particle pollution is a factor that contributes to increased 
risks for hospital admission and subsequent readmission. 
To reduce PM2.5-related morbidities, we echo the recom-
mendations made in the Million Hearts initiative, that 
healthcare systems, insurers, physicians, and healthcare 
professionals should incorporate health risks related to 
ambient PM into patient care.
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