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ABSTRACT: We developed Europe-wide models of long-term
exposure to eight elements (copper, iron, potassium, nickel, sulfur,
silicon, vanadium, and zinc) in particulate matter with diameter <2.5
μm (PM2.5) using standardized measurements for one-year periods
between October 2008 and April 2011 in 19 study areas across Europe,
with supervised linear regression (SLR) and random forest (RF)
algorithms. Potential predictor variables were obtained from satellites,
chemical transport models, land-use, traffic, and industrial point source
databases to represent different sources. Overall model performance
across Europe was moderate to good for all elements with hold-out-
validation R-squared ranging from 0.41 to 0.90. RF consistently
outperformed SLR. Models explained within-area variation much less
than the overall variation, with similar performance for RF and SLR.
Maps proved a useful additional model evaluation tool. Models differed
substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two
algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two
models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure
variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.

1. INTRODUCTION

Exposure to particulate matter (PM) is associated with adverse
health outcomes.1,2 PM is a complex mixture of components
that differ spatially and temporally. Identifying which
components are main contributors to adverse health effects
is important for targeted policymaking. Multiple studies have
attempted to associate health effects with PM components
including metals, organic compounds, inorganic carbonaceous
material, and inorganic secondary aerosols.3−5 Findings,
however, are inconsistent. Epidemiological studies have been
limited because of the scarcity of air quality monitors that
routinely measure PM composition. In Europe, a PM
monitoring campaign was conducted in 20 ESCAPE (Euro-
pean Study of Cohorts for Air Pollution Effects) study areas
following a common sampling protocol.6 Most study areas
consisted of a metropolitan area with some small towns around
the main city. The PM samples were analyzed for elemental
composition.7 Based on the measurements from 20 sites in
each study area, area-specific land use regression (LUR)

models were developed to assess long-term exposure to
elemental composition.8 The models were applied to cohorts
within the study areas to assess health effects related to particle
composition.9

The geographical extent of the study-area-specific ESCAPE
models is limited and predictions from these models cannot
reliably be used for other cohorts, such as large multicenter
studies. The models were furthermore developed on 20 sites
per area. Methodological studies suggested that more stable
models can be developed based on larger number of sites in
the model training dataset.10,11 In addition, the ESCAPE
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study-area specific models had rather good performance for
traffic-related elements such as copper (Cu) and iron (Fe), but
had poor performance for elements such as sulfur (S), nickel
(Ni), and vanadium (V) for which spatial variation was limited
within areas and key predictors were missing.8 The lack of
large-scale European models for particle elemental composi-
tion hampers large-area epidemiological studies. Our previous
studies showed the possibility to develop European LUR
models with good performance using a combined dataset from
the ESCAPE study areas for PM with diameter <2.5 μm
(PM2.5), black carbon (BC) and nitrogen dioxide (NO2).

12,13

The supervised linear regression (SLR) algorithm is often
used in air pollution modeling,14,15 and was used to develop
ESCAPE models of elemental composition8 and European
models of PM2.5, NO2, and BC.12 The SLR algorithm shows
good predictive ability and interpretability but has strong
statistical assumptions such as linearity. SLR models can,
however, take into account nonlinear relationships by offering
a priori transformed predictor variables (e.g., inverse distance
to a source), include only predictor variables following
plausible direction of effect (e.g., a positive traffic slope) and
add interaction terms. A number of more flexible algorithms
including machine-learning algorithms have increasingly been
applied in air pollution exposure assessment.16,17 Random
forest (RF) has been widely used in recent years.18,19 RF is a
classification tree analysis. It can model potentially complex
relationships including nonlinearity and interactions within
data but gives little information regarding the prediction
process.20 A key feature of RF is the “bagging” procedure
adopted in both observation and variable selection: this allows
even marginally important predictors to contribute, even in the
presence of high multicollinearity. A previous study found RF
outperformed linear regression in modeling spatial variation of
particle elemental composition.21

LUR models for multiple particle components are more
useful for epidemiological studies if they include more specific
predictors. Developments in satellite and chemical transport
modeling and availability of industrial point source data have
made it possible to develop more specific models.
The aim of this study was to assess the performance of

Europe-wide models for particle elemental composition,
developed using SLR and RF algorithms. The models have
been developed in the “Effects of Low-Level Air Pollution: A
Study in Europe” (ELAPSE), a Europe-wide project
investigating long-term health effects of low-level air pollution.

2. MATERIALS AND METHODS
2.1. Air Pollution Data. The PM2.5 elemental composition

concentration data originated from the ESCAPE monitoring
campaigns conducted in 19 study areas across Europe (Figure
S1). PM sampling and analysis methods have been described
previously.6,7 Briefly, measurements were made at 20 sites in
each study area (40 in the large Catalunya and Netherlands/
Belgium areas) for three 2-week periods in a 1-year period
between October 2008 and April 2011. Monitoring sites were
selected to represent pollution levels at regional background,
urban background, and street locations using a common
sampling protocol. PM2.5 samples were collected on Teflon
filters using Harvard Impactors and analyzed for elemental
composition using energy-dispersive X-ray fluorescence.
Annual average concentrations were calculated based on
three 14-day average measurements spread over the seasons
(warm, cold, and intermediate) with temporal adjustment from

a reference background site in each study area. Our
measurement campaign was restricted temporally, as previous
sampling campaigns used to develop LUR models.22 While this
design does not formally estimate absolute annual average
concentrations as in regulatory monitoring, it has been shown
to be useful to assess spatial contrast of long-term average
concentrations because of specific design elements.6,22,23 We
performed temporal adjustment, using a continuous reference
site located at a regional or urban background location (not
directly influenced by local sources), where measurements
were made for the full 12-month period. Three 14-day average
samples were taken in different seasons at all locations, which
are less sensitive to the very short-term variations caused by
daily variation in weather. Five sites and the reference site were
measured simultaneously representing all different site types
(regional background, urban background, and street).6,23

Eight elements were a priori selected within ESCAPE to
represent major pollution sources: Cu, Fe, and Zn representing
nontailpipe traffic emissions, S representing long-range trans-
port, Ni and V representing mixed oil burning/industry, silicon
(Si) representing crustal material, and potassium (K)
representing biomass burning.7,8

2.2. Potential Predictor Variables. 2.2.1. Traffic, Pop-
ulation, Altitude, and Land Use Variables. We used the same
road density, population, and elevation variables as in our
previous exposure modeling paper for PM2.5, NO2, ozone (O3),
and BC across Europe.12 In short, road data were extracted
from the 1:10,000 EuroStreets digital road network (version
3.1 based on TeleAtlas MultiNet TM, year 2008), classified
into “all” and “major” roads, and road density calculated in a
100 × 100 m grid. Population density in 1 × 1 km grid for
2011 were obtained from Eurostat.24 Elevation was obtained
from the SRTM Digital Elevation Database25 version 4.1 with
a resolution of 3 arc second (approximately 90 m) with vertical
error of <16 m. X and/or Y coordinates were offered to
represent the east−west/north−south gradient.
Land use variables were newly extracted from an updated

European CORINE Land Cover surface in 100 × 100 m grid.26

The initial 44 land cover classes were grouped to six main
classes: residential, industry, ports, urban green space, total
built up land, and natural land.

2.2.2. Additional Component/Source-Specific Variables.
Special attention was taken in obtaining specific potential
predictor variables representing different sources of the eight
selected elements. We hypothesized that this would allow us to
develop better and more specific models, such that the
independent associations of the different elements with health
could be studied better. For each component, only plausible
variables were offered for model development. The restrictions
of offering specific potential predictors are specified in Table
S1.
Satellite-model (SAT) estimates of 2010 annual average

sulfate (SO4
2−), organic matter (OM), BC, and mineral dust

(SOIL) in PM2.5 were extracted from a gridded surface (0.01°
× 0.01°, ∼1.11 km) over Europe. These estimates are an
application of simulated relative composition to the total PM2.5
estimates produced by the methods described elsewhere,27 and
do not incorporate compositional ground-based measurements
over Europe. In brief, PM2.5 mass estimates were produced by
relating a combined aerosol optical depth (AOD) retrieval
involving multiple satellite products and simulation to near-
surface PM2.5 concentrations using the spatiotemporally
varying geophysical relationship simulated by the GEOS-
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Chem chemical transport model (CTM). Ground-based
observations of total PM2.5 were then incorporated into these
initial values using geographically weighted regression, and the
resulting total mass estimates partitioned into chemical
composition using their relative contributions according to
the GEOS-Chem CTM simulations.
CTM estimates of BC AOD, Sulphate AOD, total column

SO2, and sea-salt AOD were obtained from the European
Centre for Medium-Range Weather Forecasts.28 Daily
estimates in 2010 were extracted from a gridded surface
(0.125° × 0.125°, ∼13.9 km) produced by the MACC-II
ENSEMBLE model,29 and then aggregated to derive the
annual average.
In addition to the unspecific industry land-use category,

information on major industrial point sources was obtained
including facility location, pollutant, and emission amount
from the European Pollutant Release and Transfer Register.30

The industrial facility points were intersected with a 100 m
base polygon, and then the number of facility sites and
emissions were summed within each 100 × 100 m cell. Density
of general industries and industries emitting specific aerosols
(metal, Cu, Ni, PM10, SOx, and Zn) were calculated
accordingly. Sum of emissions were calculated for PM10, Cu,
Ni, SOx, and Zn.
All predictor variables were integrated into a 100 m gridded

GIS database covering Europe. For the road density, land use
and industrial information, a moving window procedure was
used to calculate the sum of values for selected buffers (focal
statistics using sum within a circle). The influence of industrial
point sources was calculated by inverse distance weighting (1/
d). The processing of variable surfaces was done in ArcMap
10.6.
2.3. Model Development. The number of monitoring

sites available for particle composition ranged from 400 to 414
because of failed PM composition measurements.8 We used
both SLR and RF algorithms to develop models.
The SLR approach has been described in detail before.12

Briefly, a univariate linear regression model was applied for
each potential predictor to find the predictor that explained the
maximum variance in the measurements. At each subsequent
step, the significant predictor variable (P < 0.1) that generated
the highest increase in the model adjusted coefficient of
determination (adjusted R2) was added. Predictors only
entered the model if they adhered to the plausible direction
of the effect (Table S1). This process was repeated until the
model adjusted R2 could not be increased anymore. Predictor
variables with variance inflation factor larger than 3 were
removed from the model to avoid multicollinearity.
RF is an ensemble machine learning technique based on

decision trees.31 It builds independent trees in parallel, each
based on a random sample drawn from the full set of
measurements. At each node, a random subset of potential
predictors is split. The final predictions are derived by
averaging predictions from all decision trees. RF does not
perform variable selection. It produces variable importance,
calculated as percentage increase in mean squared errors after a
random permutation of the values of a variable. We used the R
package “randomForest” to develop the RF models.
One-step and two-step modeling processes were used to

offer geographical coordinates (X and Y) to the models.
Following our previous exposure modeling procedure,12 for
SLR we used a 2-step approach, in which we first developed a
SLR model without offering X or Y, then added X and Y only if

they increased the model adjusted R2. The rationale for the 2-
step procedure is that we preferred spatial variation to be
explained first by specific predictor variables and the residual
variation to be further explained by the X, Y coordinates added
in the second step. In RF, we applied one-step modeling as our
primary approach: X and Y were offered together with the
other predictor variables. This allowed us to take advantage of
the possibilities of RF algorithm to model the potential
interactions between coordinates and other predictors. For
comparison, we also developed one-step models for SLR and
2-step models for RF: we first developed a RF model without
offering X or Y, then developed a second RF model with X, Y
coordinates only, explaining variations in the residuals of the
step1 RF model. The predictions of these two RF models were
later added together. We further performed a sensitivity
analysis offering a few nonlinear transformations of the X- and
Y-coordinates to the SLR model, including X2, Y2, √X, √Y,
and XY, to allow more flexible functions of the coordinates
than the linear function. We were not able to perform kriging
because of the clustered nature of the monitoring data.12

2.4. Model Evaluation and Comparison. For each
model, we calculated model r2 (squared Pearson correlation)
and root-mean-square error (RMSE) by comparing main
model predictions to the measurements.
We performed five-fold hold-out validation (HOV). The full

set of measurements were randomly divided into five groups
(20% each), stratified by site type (street, rural, and urban
background) and region (north, west, central, and south). For
each element-model combination, five additional HOV models
were built, each based on 80% of the monitoring sites, with the
remaining 20% for validation. HOV regression-based r2 and
RMSE were computed by comparing the stacked predictions at
the five HOV test sets to the corresponding measurements. We
also calculated mean square error-based R2 (MSE-R2), defined
as

( )
R

y y
MSE 1

MSE

( )
n i

n
i

2
1

1
2

− = −
∑ − ̅=

where y̅ is the average of the measurements. MSE-R2 can be
seen as a rescaling of MSE. It measures fit about the 1:1 line
rather than fit about the best fit line in regression-based r2. The
HOV r2 and RMSE are relevant for multicity studies that
exploit both within and between city variability of air pollution
contrasts.
To test how the European models predict within-area

variability, we calculated within-area r2 and RMSE by
comparing the stacked HOV predictions and measurements
within each individual study area. Because the monitors are
spatially clustered over Europe and nearby locations might
have auto-correlations in their measurements, we additionally
p e r f o rmed l e a v e - on e - a r e a - ou t c r o s s - v a l i d a t i on
(LOAOCV).32,33 We developed Europe-wide models by
excluding all observations from one study area at a time and
applied the models to the sites that were left out. Therefore, 19
additional models were developed for each pollutant-algorithm
combination. Within-area r2 and RMSE were computed by
comparing the predictions and measurements in the area that
was excluded from model development. We focus interpreta-
tion on the average of the within-area r2s and RMSEs because
the performance statistics of the individual study areas may be
affected strongly by random error because they were based on
only 20 sites in each study area.
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For each main model, predictor variables selected in SLR
models and the 15 most important variables in RF models
were compared.
Each main model was mapped at a 100 × 100 m resolution

across the whole study area, allowing for visual comparison
between maps. Additionally, we compared predictions from
models at 41,936 random locations across Europe used
previously.12 Comparisons of model predictions were made
for the entire study area and at the national scale reporting the
Pearson correlation coefficient (r) and RMSE. Truncations
were performed to deal with unrealistic predictions of the SLR
approach: predictions at the high end were truncated to the
maximum final two-step modeled value, calculated by fitting
the model with the maximum predictor values at monitoring
sites for positive slopes (or the minimum predictor values for
negative slopes); the negative predictions were set to zeros.

3. RESULTS AND DISCUSSION
3.1. Distribution of PM2.5 Component Measurements.

Boxplots of the annual mean concentration for PM2.5
components in the full dataset and in individual study areas
are shown in Figure S2. For the majority of pollutants,
pollution concentrations varied substantially within and
between study areas. A positive north−south gradient was
observed with higher pollution levels in southern study areas. A
more detailed interpretation of the measured concentrations
can be found elsewhere.7

3.2. Model Performance. Performance of models across
Europe is shown in Table 1. Models for most components had
moderate to good performance based upon HOV. Model

performance was almost the same evaluating by regression-
based r2 or MSE-based R2 (Table S2), consistent with the
observation that the fitted regression slopes between observed
versus predicted values are close to the 1−1 line (Figure S3).
Models with the highest HOV r2s were developed for PM2.5 S,
having large between-area concentration variability for which
large-scale predictor variables from CTM were available to
explain the contrast. Sulfate (represented by S) is a secondary
pollutant formed by the oxidation of sulfur dioxide for which
the ratio of between- and within-area variability is larger than
for the other elements.7 RF models consistently outperformed
SLR models for all elements. This agrees with a previous study,
which found more accurate exposure assessed for elemental
components by RF than SLR, based on 24 monitoring sites.21

The better performance of RF is different from two previous
comparisons,16,17 where similar performance of spatial models
was observed for SLR and RF. One study compared Europe-
wide models for PM2.5 and NO2 developed using similar
predictor variables as in the current study,16 the second study
compared LUR models for ultrafine particles based upon
mobile monitoring.17 One possible explanation for the
difference in findings is that there might be more complex
relationships between predictors and elemental composition
than with the mass of PM2.5, NO2, and UFP. RF can capture
unknown nonlinear relationships and interactions not
predefined in SLR, without introducing overfitting of the
data. Another important difference is that in the current study,
the data were clustered within Europe, whereas in the earlier
study on PM2.5 and NO2, models were developed based upon
routine monitoring, with a more even distribution of sites

Table 1. Performance of PM2.5 Composition Models over Europea

component Cu Fe K Ni S Si V Zn

inclusion of X, Y coordinates no. of sites 414 413 414 402 404 400 402 413

Model Building
SLR one-step model r2 0.56 0.55 0.61 0.62 0.79 0.52 0.70 0.48

model RMSEb 3.3 65.5 64.6 0.9 146.5 59.7 1.7 11.8
two-step, step1 model r2 0.52 0.53 0.52 0.56 0.80 0.48 0.66 0.47

model RMSE 3.4 67.4 71.1 1.0 142.2 61.9 1.8 11.9
two-step, step2 model r2 0.56 0.53 0.60 0.60 0.82 0.50 0.69 0.48

model RMSE 3.3 67.4 65.0 0.9 135.4 61.1 1.7 11.8
RFc one-step model r2 0.95 0.95 0.97 0.95 0.98 0.95 0.97 0.95

model RMSE 1.1 20.8 16.8 0.3 40.2 19.9 0.5 3.5
two-step, step1 model r2 0.95 0.95 0.97 0.95 0.98 0.94 0.97 0.96

model RMSE 1.1 20.9 17.4 0.3 41.8 20.3 0.5 3.4
two-step, step2 model r2 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.99

model RMSE 0.6 12.4 9.5 0.2 27.0 12.2 0.3 1.8
HOV
SLR one-step HOV r2 0.47 0.48 0.58 0.57 0.76 0.50 0.63 0.41

HOV RMSE 3.6 70.5 66.4 1.0 156.4 60.8 1.8 12.5
two-step, step1 HOV r2 0.44 0.46 0.50 0.51 0.76 0.46 0.60 0.42

HOV RMSE 3.7 71.7 72.6 1.0 154.9 63.4 1.9 12.4
two-step, step2 HOV r2 0.48 0.48 0.59 0.56 0.79 0.46 0.63 0.41

HOV RMSE 3.6 70.5 66.1 1.0 147.0 62.9 1.8 12.5
RF one-step HOV r2 0.60 0.60 0.82 0.74 0.91 0.62 0.85 0.68

HOV RMSE 3.2 61.7 44.1 0.7 97.0 52.9 1.2 9.3
two-step, step1 HOV r2 0.59 0.59 0.79 0.74 0.90 0.60 0.84 0.68

HOV RMSE 3.2 62.4 47.4 0.7 102.1 54.2 1.2 9.2
two-step, step2 HOV r2 0.59 0.61 0.80 0.76 0.90 0.62 0.86 0.71

HOV RMSE 3.2 61.3 45.8 0.7 99.5 53.1 1.1 8.7
aSLR = supervised linear regression; RF = random forest; r2 = squared Pearson correlation; RMSE = root-mean-square error; HOV = fivefold hold-
out validation. bUnit of RMSE: ng/m3. cPerformance of RF on training set cannot be interpreted.
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across Europe. We hypothesize that the RF model accounted
for spatial trends across Europe better than the linear model.
For most components, HOV r2s were similar for the one-

step model and the final two-step model and higher than for
the first step of the two-step model, documenting that spatial
trends account for the residual variance not explained by the
available predictors. Offering a priori transformed X- and Y-
coordinates did not further improve performance for SLR
models. The differences between model r2 and HOV r2 in SLR
models were small, suggesting the models do not overfit. The
perfect performance on training set (model r2) for RF models
is “by design” and basically meaningless. This is because the RF
algorithm generally does not prune the individual trees, relying
instead on the ensemble of trees to control overfitting.20

While the models performed well to explain overall
variability across Europe, models performed less well in
explaining variation within individual study areas (Table 2).
Results are similar by performing fivefold HOV and LOAOCV,

suggesting the model performance is stable regardless of CV
methods. The better overall performance is explained by a
combination of larger variability of concentrations between
areas than within areas and the better availability of predictor
variables for describing between- compared to within-area
variability. Specifically, the addition of large-scale satellite and
CTMs has contributed to assess the study-area background.
The average within-area r2s were moderate for Cu and Fe and
relatively poor for other components. Cu and Fe represent
mechanically generated traffic-related particles and thus their
particle size distribution within PM2.5 is skewed toward coarse
particles.7,34 Therefore, Cu and Fe do not travel far and may
show large within-area variation. The better within-area
performance for Cu and Fe is thus possibly because of the
combination of higher within-area variation of the concen-
trations in most areas and the availability of data on traffic
networks within individual areas. Within-area r2s were poor for
components that have limited within-area variation such as S. S

Table 2. Performance of PM2.5 Composition Models to Assess within-Area Variation: Average within-Area r2a

avg. WA r2 inclusion of X, Y coordinates evaluation method Cu Fe K Ni S Si V Zn

SLR one-step five-fold HOV 0.34 0.35 0.09 0.18 0.14 0.18 0.21 0.20
LOAOCV 0.37 0.38 0.09 0.15 0.22 0.21 0.23 0.18

two-step, step1 five-fold HOV 0.34 0.34 0.08 0.17 0.14 0.20 0.18 0.21
LOAOCV 0.35 0.35 0.09 0.15 0.22 0.20 0.20 0.18

two-step, step2 five-fold HOV 0.35 0.36 0.07 0.17 0.14 0.20 0.19 0.19
LOAOCV 0.36 0.36 0.09 0.15 0.22 0.20 0.21 0.18

RF one-step five-fold HOV 0.31 0.31 0.05 0.21 0.21 0.19 0.27 0.24
LOAOCV 0.35 0.35 0.12 0.18 0.21 0.17 0.27 0.18

two-step, step1 five-fold HOV 0.31 0.30 0.06 0.21 0.22 0.17 0.27 0.24
LOAOCV 0.34 0.34 0.07 0.16 0.21 0.16 0.23 0.19

two-step, step2 five-fold HOV 0.29 0.29 0.07 0.21 0.23 0.17 0.29 0.25
LOAOCV 0.34 0.34 0.07 0.16 0.21 0.16 0.23 0.20

aSLR = supervised linear regression; RF = random forest; r2 = squared Pearson correlation; avg. WA r2 is the average of 19 study area-specific r2s
(area-specific r2s evaluated by five-fold HOV are shown in Figure S4); HOV = hold-out validation; LOAOCV = leave-one-area-out cross-validation.

Figure 1. Regression slopes (shown in red) of predictors selected in SLR and relative variable importance (shown in blue) of the 15 most
important predictors in RF.
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represents secondary inorganic aerosols (sulfates) produced by
atmospheric chemistry of precursor gases (sulfur oxides)
originating from combustion of sulfur-containing fossil fuels
(e.g., in power plants).35 Much of transported sulfate are in the
submicron range and travel far, resulting in fairly uniform
spatial variation in the scale of cities. Ni and V are often
emitted from coal, oil, or residual oil burning in buildings and
ships. The emission height of buildings and ships are relatively
low so that within-city variation can be observed. Despite the
consistently better performance of RF models than SLR
models in overall HOV, the average within-area r2s were
similar across models for each element. This further supports
our hypothesis that the RF model accounted for spatial trends
across Europe better than the SLR model. Within-area r2s
varied substantially across study areas and were low in areas
with small contrasts in measured concentrations shown by low
RMSE (Figure S4).
In summary, the generally moderate within-area perform-

ance of the developed models is likely related to a combination
of limited availability of predictor variables, for example,
targeting especially nonexhaust traffic emissions, the clustered
nature of the monitoring data and the lack of exposure
contrasts within specific areas. Especially predictor variables at
the local scale are insufficient.
3.3. Model Structure. Predictor variables selected in SLR

models and the 15 most important variables in RF models are
shown in Figure 1. For each element, some consistency was
found between SLR models and RF models in terms of the
variable categories that were included. To some extent,
however, different buffer sizes were included. Variables within
each algorithm were very similar. X, Y coordinates usually
contributed to the models when offered and were considered
relatively important variables in the one-step RF.
The major predictors in the models differed substantially

between the eight elements, broadly reflecting the different
sources.
In Cu and Fe models, traffic-related predictor variables

dominated the other source categories in SLR models while
they were also considered relatively important in RF models.
This is consistent with previous LUR models of Cu and Fe
where a large proportion of the variability in the measured
concentrations was explained by traffic-related variables.8,36,37

Some of the industrial point sources were picked up in the SLR
models for Cu and Fe, possibly reflecting emission released by
metallurgic industries.35 A previous study suggested that
industrial sources were major predictors for Cu and Fe models
in PM with diameter <1 μm (PM1).

38

In Zn models, predictors representing industrial Zn emission
and combustion sources contributed a large proportion to the
overall r2. This is consistent with LUR models in other
studies.36−38 In ESCAPE modeling, specific industrial
predictors were not available.8 The large contribution of
industrial point sources to the Zn models is consistent with
results of source apportionment analyses in MESA (Multi-
Ethnic Study of Atherosclerosis) showing that Zn-rich features
were indicative of incinerators at nearby fixed locations.34

Previous studies have used Zn as a tracer for metallurgic
industries and nonmetallurgic industries for frit production.35

In Ni and V models, ports were important predictors, as a
proxy for shipping emissions. Density of Ni-emitting industries
and more general industrial density predictors were included in
the SLR model for Ni and V, consistent with the identification
that Ni and V shared the same mixed industrial/fuel-oil

combustion source.39 Large-scale SAT dust showed a large
contribution in the Ni and V models, which possibly accounts
for the observed north−south trend in the absence of a specific
large-scale Ni and V CTM or satellite predictors. We offered
SAT dust to all elements as windblown dust can be a source for
all components.
In S models, variation in the measured concentrations was

predominantly explained by large-scale satellite and CTM
estimates and predictors in large buffers. Sulfate from the CTM
and SAT dust were virtually equally important in the models.
SAT sulfate did not enter the model possibly because sulfate
from the CTM was in the model and they are highly
correlated. SAT dust likely accounts for the observed north−
south trend in concentration. In area-specific ESCAPE models,
less well performing models were developed for S mainly
because of the small within-study area variability.8 Predictors
representing industrial point sources also contributed to the S
models, indicative of the transformation of emissions from
combustion.34

In K models, SAT estimates for OM explained a large
proportion of the variation, indicative of the main source of
biomass burning for fine particle K.35 Small-scale variables
contributed little to K models, resulting in limited ability in
explaining within-area variability. In our current models, we are
still missing fine spatial scale biomass burning source terms
because of the lack of reliable predictor variables.
Si models were dominated by SAT dust estimates and the

population density, reflecting its crustal dust source.35 Road
length and industry areas from CORINE land cover also
contributed to the models. These variables contributed a large
fraction also in models for Si in PM1.

38 In a previous study in
New York, Si was strongly associated with an indicator for
areas of industrial structures. This indicator includes a wide
range of industrial, manufacturing, and commercial activities,
thus it is difficult to identify the main source.36

Values between two algorithms are not quantitatively
comparable. Regression slopes in SLR were multiplied by the
range of each predictor to allow comparison across predictors.
Relative variable importance in RF was calculated as
percentage increase in mean squared errors after a random
permutation of the values of a variable. SO4 = satellite sulfate,
OM = satellite organic matter, SOIL = satellite dust; BC =
satellite black carbon; BCAOD = CTM black carbon, SUAOD
= CTM sulphate, TCSO2 = CTM SO2, POP = population,
ALT = altitude, MJRD = major roads, ALRD = all roads, TBU
= total build up, NAT = natural land, IND = industry, POR =
ports, UGR = urban green, RES = residential, Cu_emi = Cu
emission amount, PM10_emi = PM10 emission amount,
SOx_emi = SOx emission amount, Zn_emi = Zn emission
amount, industry = number of total industrial sites, Ni =
number of industrial sites emitting Ni, X_coord = east−west
gradient, and Y_coord = north−south gradient. Number in
subscript depicts the buffer size SLR1 = one-step SLR; SLR2.1
= two-step SLR, step one; SLR2.2 = two-step SLR, step two;
RF1 = one-step RF; RF2.1 = two-step RF, step one.

3.4. Maps and Prediction at Random Locations. The
truncation frequency for prediction at random locations is
shown in Table S3. A large number of negative SLR
predictions were truncated to zero for some elementsfor
example, 41.3% of the 41,936 random locations across Europe
for Cu in the final two-step SLR model predictions. Most of
the negative values were located in the low population density
areas of Northern Europe, covered mostly by natural land.
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Figure 2. Maps of PM2.5 components developed by our main SLR (two-step, step2) and RF (two-step, step1) models.
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When we applied the final two-step SLR models to a large
Europe-wide pooled dataset of ESCAPE cohorts with 393,064
subjects (including a Swedish and Danish cohort), truncation
frequencies were much smaller: 10.5% for PM2.5 Cu, 0.5% for
PM2.5 Fe, 11.3% for PM2.5 Ni, 14.2% for PM2.5 V, and 2.7% for
PM2.5 Zn. Therefore, we do not expect this to be a big issue
when applying the SLR models to participants in epidemio-
logical studies. No truncation was needed for RF models.
Although we a priori considered one-step RF models as our

main RF models, we observed large concentration jumps along
horizontal or vertical lines in several maps (Figure S5). This
counterintuitive pattern possibly reflects the role of the X, Y
coordinates in RF modeling and relative importance attributed
to these variables. Using X and Y in RF introduces strong
boundary effects because, depending on the value where trees
are split, large difference in predictions will be produced below
and above that value. The concentration jumps were also
observed in the final two-step RF model maps with X, Y
coordinates. The RF models without offering X, Y coordinates
produced clearly different maps while the HOV r2s were
marginally lower than for the RF models with coordinates
(Table 1). We, therefore, prefer the first step in the two-step
RF and the final two-step SLR (maps in Figure 2), and show
maps deriving from the other procedures in the appendix
(Figure S5). The maps showing strong boundary effects might
require smoothing before application in epidemiological
studies. Our results clearly indicate the value in evaluating
plausibility of maps as an important last step in air pollution
exposure assessment studies. Comparing models solely by
HOV statistics is not sufficient. We did not observe sharp
gradients in the SLR model maps.
There are clear agreements between maps produced by our

main SLR and RF for some elements and differences for other
elements (Figure 2). In both maps for Cu, high levels of
pollution are shown in big cities, and transport networks can
be clearly seen in the inset map of the area around Paris. Maps
for PM2.5 S are broadly similar with higher pollution levels in
the south and east, while quite different patterns were observed
for East Germany and Spain. Both maps for Zn show high
concentrations close to industrial sites. The same industrial
sites were picked up in the area around Paris shown in the
inset. Comparing the predictions at a total of 41,936 random
locations, agreement was high at all European countries-level
and the ELAPSE countries combined-level for PM2.5 Cu, PM2.5
K, PM2.5 S, PM2.5 Zn (r > 0.7), and moderately high for other
elements (Table 3). Correlation between all model predictions
at the ELAPSE countries combined-level is presented in Figure
S6. For most components, correlations were high for
predictions derived from the same algorithm, and lower for
predictions derived from different algorithms.
While correlations between predictions derived from SLR

and RF were moderate to high at the European level, they are
lower than the very high correlations (r generally >0.9)
reported previously for Europe-wide models of PM2.5 and
NO2.

16 Agreement between predictions from the two
algorithms at the national level varied substantially across
countries (Table 3). There was no consistently good
agreement between predictions for a specific country. Poor
agreement between predictions were observed for area-
component combinations that had small contrasts in measured
concentrations shown by low RMSE (e.g., most components in
Norway and Sweden).

Computation time for mapping differed substantially for RF
and SLRaround 40 h for RF and less than 1 h for SLR to
map pollution concentrations across Europe on a standard
office computer.

3.5. Strengths and Limitations.With the development of
Europe-wide models, we are able to assess long-term exposures
to PM2.5 components in a large European project, which
consists of several nation-wide cohorts and smaller cohorts in
which participants were recruited in specific study areas. The
use of a single harmonized model allows a standardized
exposure assessment in international multicenter studies.
Our Europe-wide models had the advantage of a large

training dataset with large contrasts in measured concen-
trations by combining measurements from individual ESCAPE
study areas. In contrast, the previous ESCAPE area-specific
models could not be developed for some composition-area
combinations because of missing data (e.g., in Lugano), small
within-area variability (e.g., S) and poor precision of the
measurements in areas with low concentrations (Ni and V).8

The moderate to good performance of our models across
Europe suggests that the models would perform well in
multicenter studies that exploit both within and between area
variability of air pollution contrasts.
Another strength of our study is that we made efforts in

collecting specific large-scale predictors, from satellites and
CTMs, representing different pollution sources such as soil,
industrial sources, and biomass burning, which could not be
applied in prior area-specific models. The availability of these
predictors increased the specificity of our models, which is
useful to study associated health effects of specific single
components.
While inclusion of industrial point source data was an

improvement over the simple land use categories available in
CORINE land cover, a dispersion model for point sources
would have been the method of choice. We did not have the
possibility to use Europe-wide small-scale dispersion modeling,
and we did not have information on chimney height and wind
direction around chimneys. We therefore used inverse distance
weighting to create variables from industrial point sources,
which can lead to overestimation of pollution levels in areas
very close to the industrial sites.40 The misclassification is
expected to be minimal given that it is unlikely that many
people live very close to the large point source chimneys
included in the European Pollutant Release and Transfer
Register databases. The small truncation frequency (<0.1%)
above the maximum values in a total of around 42,000 random
locations across Europe suggested the overestimation might
not have a large impact.
The prediction ability of our Europe-wide model at small-

scale, however, is limited, especially in areas without main
sources present. The lack of specificity of the small-scale land
use predictors might have contributed to the poor predictive
ability for some elements. The poor within-area predictive
ability suggests our Europe-wide models should be applied
with caution in small-scale individual study areas, with the
possible exception of the Cu and Fe models. Our model is
more suited for multicenter studies.
Moderate to high overall correlations between our Europe-

wide SLR and previous area-specific ESCAPE model
predictions at monitoring sites were observed except for K
and Zn (Table S4). The within-area correlations between SLR
and ESCAPE varied considerably and the average correlations
were high for Cu and Fe. The results suggested applying the
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newly developed Europe-wide models in epidemiological
studies could lead to different findings from the ESCAPE
study. The leave-one-out-cross-validation (LOOCV) r2s of the
area-specific ESCAPE models are not quantitatively compara-
ble with the within-area fivefold cross-validation r2s in this
study as the LOOCV is based on a small number of sites and
tends to overestimate predictive ability.10,11

Given the discrepancies in predictions derived from the two
methods, applying the two sets of models in epidemiological
studies could lead to different associations with health. SLR
and RF model performances were similar for the within-area
concentration variability, while RF model explained overall
concentration variability (including between-area variability)
better than SLR. In SLR, we did not add fixed or random
intercepts for study area as such models could not be applied
outside the specific study areas. In a previous study on PM2.5
and NO2,

33 we found that adding indicators for study area or
the measured regional background in each study area,
improved the overall explained variability. Therefore, when
applied in epidemiological studies, it depends on the contrast
exploited in the epidemiological study which method is the
preferred method. If both between- and within-area variability
are exploited, RF would be the method of choice based on the
cross-validation statistics. If an epidemiological study only
includes within-area exposure contrast, then both methods
should be interpreted equally, without a prior preference for
one of the methods. Given the moderate performance of both
models, it would be important to observe robustness of the
findings in epidemiological studies. If health effects are found
with only one model, this should be interpreted cautiously.
Because of the lack of external validation data, we cannot

draw strong conclusions about the preferred method. We note
that RF models might be more difficult to interpret in terms of
how predictor variables act in the models, although the
“importance” statistics provide useful information on the
relative importance of individual predictors. The classification
nature of RF led to visible boundary effects in some exposure
maps, which might require smoothing before application in
epidemiological studies. On the other hand, SLR might fail to
capture some complex nonlinear relationships and/or inter-
actions between predictors and pollutants, or might induce
overfitting if multiple nonlinear and interaction terms were
added to the model. Despite the discrepancies in predictions,
we believe our models are stable and the results are robust, as
different cross-validation methods and several sensitivity
analyses showed moderate to good performance, especially at
the overall Europe-wide scale and similar results.
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