
1Potluri HK, et al. J Immunother Cancer 2020;8:e001510. doi:10.1136/jitc-2020-001510

Open access�

Antibody profiling of patients with 
prostate cancer reveals differences in 
antibody signatures among 
disease stages

Hemanth K Potluri,1 Tun Lee Ng,2 Michael A Newton,2 Jin Zhang,3 
Christopher A Maher,3 Peter S Nelson,4 Douglas G McNeel  ‍ ‍ 1

To cite: Potluri HK, Ng TL, 
Newton MA, et al.  Antibody 
profiling of patients with 
prostate cancer reveals 
differences in antibody 
signatures among disease 
stages. Journal for 
ImmunoTherapy of Cancer 
2020;8:e001510. doi:10.1136/
jitc-2020-001510

►► Additional material is 
published online only. To view, 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​jitc-​
2020-​001510).

Accepted 02 November 2020

1Medicine, University of 
Wisconsin-Madison, Madison, 
Wisconsin, USA
2Biostatistics and Medical 
Informatics, University of 
Wisconsin-Madison, Madison, 
Wisconsin, USA
3Medicine, Washington 
University in Saint Louis, Saint 
Louis, Missouri, USA
4Human Biology Division, Fred 
Hutchinson Cancer Research 
Center, Seattle, Washington, USA

Correspondence to
Dr Douglas G McNeel;  
​dm3@​medicine.​wisc.​edu

Original research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Background  Previous studies of prostate cancer 
autoantibodies have largely focused on diagnostic 
applications. So far, there have been no reports attempting 
to more comprehensively profile the landscape of prostate 
cancer-associated antibodies. Specifically, it is unknown 
whether the quantity of antibodies or the types of proteins 
recognized change with disease progression.
Methods  A peptide microarray spanning the amino 
acid sequences of the gene products of 1611 prostate 
cancer-associated genes was synthesized. Serum samples 
from healthy male volunteers (n=15) and patients with 
prostate cancer (n=85) were used to probe the array. 
These samples included patients with various clinical 
stages of disease: newly diagnosed localized prostate 
cancer (n=15), castration-sensitive non-metastatic 
prostate cancer (nmCSPC, n=40), castration-resistant 
non-metastatic prostate cancer (n=15) and castration-
resistant metastatic disease (n=15). The patients with 
nmCSPC received treatment with either standard androgen 
deprivation therapy (ADT) or an antitumor DNA vaccine 
encoding prostatic acid phosphatase. Serial sera samples 
from these individuals were also used to probe the array, 
to secondarily determine whether this approach could be 
used to detect treatment-related changes.
Results  We demonstrated that this peptide array yielded 
highly reproducible measurements of serum IgG levels. 
We found that the overall number of antibody responses 
did not increase with disease burden. However, the 
composition of recognized proteins shifted with clinical 
stage of disease. Our analysis revealed that the largest 
difference was between patients with castration-sensitive 
and castration-resistant disease. Patients with castration-
resistant disease recognized more proteins associated 
with nucleic acid binding and gene regulation compared 
with men in other groups. Our longitudinal data showed 
that treatments can elicit antibodies detectable by this 
array, and notably vaccine-treated patients developed 
increased responses to more proteins over the course of 
treatment than did ADT-treated patients.
Conclusions  This study represents the largest survey 
of prostate cancer-associated antibodies to date. We 
have been able to characterize the classes of proteins 
recognized by patients and determine how they change 
with disease burden. Our findings further demonstrate 
the potential of this platform for measuring antigen 

spread and studying responses to immunomodulatory 
therapies.

BACKGROUND
It has been previously reported that patients 
with cancer develop antibodies to autolo-
gous proteins.1 2 This phenomenon has been 
described across a wide variety of cancer 
types, including colon, melanoma, bladder, 
lung and prostate.3–7 These antibodies may 
arise due to overexpression of self-antigens, 
inflammation or tumor cell lysis.8 Studies 
of serum antibodies may be particularly 
attractive for a variety of diagnostic applica-
tions because serum samples are relatively 
easy to obtain, antibodies can be present at 
early stages of disease and antibodies can be 
present at high levels even when their target 
antigen is expressed at low levels. In contrast, 
monitoring serum proteins in patients with 
cancer has been more challenging because 
they are often much less abundant and have 
more variable expression over time.9 10 Anti-
body presence can also provide information 
about the relative immunogenicity of a given 
antigen. Many groups have used naturally 
existing antibody responses in patients with 
cancer to identify targets for antibody ther-
apies or vaccination strategies.11–13 Similarly, 
profiling antibody responses has been used 
to detect antigen spread following immuno-
therapy.14 Thus, further study of these anti-
bodies may have important implications for 
cancer diagnostics, biomarkers of response to 
therapy and in guiding the design and targets 
of future therapies.

In the case of prostate cancer, several 
groups have developed methods to evaluate 
serum antibodies.7 15 16 Chinnaiyan et al used 
phage display to screen patient serum for 
responses against many candidate prostate 
cancer-associated peptides. They identified 

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-1471-6723
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2020-001510&domain=pdf&date_stamp=2020-11-16


2 Potluri HK, et al. J Immunother Cancer 2020;8:e001510. doi:10.1136/jitc-2020-001510

Open access�

22 proteins against which antibody responses could distin-
guish patients with prostate cancer and healthy individuals 
more reliably than detection of serum prostate-specific 
antigen (PSA) protein. Taylor et al and Ummanni et al 
took similar approaches, probing prostate tumor lysates 
with patient serum and then performing mass spectrom-
etry to identify the proteins that reacted more with serum 
of cancer patient than control serum. Our group has also 
interrogated patient serum samples to discover prostate 
tumor-associated antibodies using ELISA for known pros-
tate cancer tumor antigens and the serological identifi-
cation of antigens by recombinant expression (SEREX) 
methodology to identify antibody targets from tissue 
expression libraries.17–19 These previous studies of anti-
bodies in patients with prostate cancer focused primarily 
on diagnostic applications or on changes in antibody 
responses. This approach has resulted in the discovery 
of small panels of shared antigens that may be useful 
for monitoring development of disease or response to 
treatment. However, to date, no studies have performed 
a more complete profile of the repertoires of prostate 
cancer-associated antibodies in individuals. In addition, 
data on whether the quantity or composition of antibody 
responses differ between patients with different disease 
severity are lacking.

Early studies were able to characterize antibodies 
against small numbers of antigens, but advancements 
such as phage display and now microarray-based plat-
forms have made it possible to develop more thorough 
profiles of antibodies in patients with cancer. We sought 
to develop a microarray capable of detecting serum IgG 
responses against peptides using gene products from 
genes highly expressed in prostate cancer and predicted 
products of open reading frames (ORFs) from prostate 
cancer-associated long non-coding RNAs (lncRNAs). 
Our goal was to evaluate the number and character of 
proteins recognized by individuals with different clin-
ical stages of disease, and secondarily whether a peptide 
microarray could be used to detect changes in antibody 
profiles following cancer treatment.

Here, we describe the use of the largest reported 
prostate cancer-specific peptide microarray. We demon-
strate that the composition of antibodies does change 
with stage, with the largest differences evident between 
patients with castration-resistant disease and castration-
sensitive disease, but the overall number of proteins 
recognized by these antibodies does not change 
with stage. We provide a detailed examination of the 
types of proteins that are recognized in patients with 
different clinical stages of prostate cancer and that have 
received treatment. We detect many more proteins with 
increased antibody recognition following vaccination 
than following androgen deprivation therapy (ADT), 
suggesting that the microarray platform could be used 
to measure prostate cancer-associated antigen spread as 
a future direction.

METHODS
Patient populations
Sera were previously collected from male volunteer blood 
donors without cancer (n=15, controls), or patients with 
prostate cancer (n=85). Sera from patients were grouped 
according to stage of disease: newly diagnosed localized 
prostate cancer (new Dx, n=15), castration-sensitive non-
metastatic prostate cancer (nmCSPC, n=40), castration-
resistant non-metastatic prostate cancer (nmCRPC, n=15) 
and castration-resistant metastatic disease (mCRPC, 
n=15). Sera were also collected serially from the individ-
uals with nmCSPC, who were enrolled on clinical trials 
in which 20 patients were treated with standard ADT 
(gonadotropin-releasing hormone analog given every 3 
months)20 and the other 20 were treated with an inves-
tigational antitumor DNA vaccine encoding prostatic 
acid phosphatase (PAP; pTVG-HP, with granulocyte-
macrophage colony-stimulating factor co-delivered as a 
vaccine adjuvant, given every 14 days for 6 administra-
tions).21 Sera were collected at baseline, and at 3 months 
and 6 months following initiation of treatment for these 
patients. All samples were stored between −20°C and 
−80°C until use for analysis.

Antigen selection
Gene products from 1463 of the most highly expressed 
transcripts in prostate cancer22 23 and 148 predicted ORFs 
in prostate cancer were selected for inclusion on the array 
(online supplemental table 1). Gene products included 
125 antigens previously identified as recognized by IgG 
from patients with prostate cancer.24 The potential ORFs 
were selected from a list by Iyer et al of long RNAs with 
in silico evidence of coding potential.25 There were 74 
transcripts designated as having a ‘Cancer Association’, 
‘prostate’ tissue association and category of ‘tucp’ (tran-
script of unknown coding potential).26 ORFs were then 
predicted using EMBOSS: getorf, with the top two longest 
ORFs for each long RNA included on the microarray.

Peptide array synthesis and antibody screening
Peptide synthesis was performed as previously described, 
using a light-directed array synthesis in a Roche Nimblegen 
(Madison, Wisconsin, USA) maskless array synthesizer.27 
Cycles of amino acid coupling were repeated until 16-mer 
peptides were synthesized on arrays containing 12 repli-
cates of 177,604 peptides per subarray. Sera were diluted 
1:100 with binding buffer (0.1 M Tris, 1% alkali-soluble 
casein, 0.05% Tween-20), incubated overnight at 4°C and 
washed. IgG was detected using an Alexa Fluor 647-labeled 
antihuman IgG secondary antibody (Jackson ImmunoRe-
search Labs, West Grove, Pennsylvania, USA). After final 
washing, arrays were dried and read using a Roche MS 
200 microarray scanner, and signals were extracted using 
Roche internally developed software. Fluorescent signals 
were converted into arbitrary units (AU) with intensity 
plots ranging from 0 to 65 000 AU. Spatial correction, 
background correction and quantile normalization were 
performed on raw array signal intensities by Roche as 
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previously described.28 All samples were evaluated in 
triplicate on separate arrays. Samples were considered 
positive for an antibody response at a given probe if the 
signal crossed 212 fluorescence units, with a sliding scale p 
value <0.05 in at least two of three technical replicates.28 
A binding buffer only control was also run to confirm the 
absence of signal above the 212 threshold.

Data analysis
Data analyses were performed in R V.3.6.229 and RStudio30 
using many available extension packages and visualiza-
tion tools as well as custom scripts. To support reproduc-
ibility, workflow details are supplied in an R markdown 
document and the rendered online supplemental statis-
tical. These materials are also available at: https://​github.​
com/​wiscstatman/​immunostat-​prostate

Array reproducibility
Pearson’s correlation coefficients were calculated for 
each pair of observations of fluorescence data, creating 
a 345×345 matrix. The Fisher transformation was then 
applied before averaging coefficients together to assess 
reproducibility of the array. In a complementary analysis 
(online supplemental statistical section 2.3), a peptide-
specific linear mixed-effects model was fit to measure 
the relative size of technical variation to biological vari-
ation in this system. This used the R package lme431 on 
log-transformed fluorescence intensity levels to compute 
variance components while adjusting for possible fixed 
effects of disease stage.

Differences between clinical groups
Analysis of variance (ANOVA) with the Tukey’s Honest 
Significant Differences post-test was used to compare the 
overall numbers of proteins and peptides recognized 
among patients with different clinical stages. Peptide-
specific logistic regression testing for cancer-stage effects 
while controlling the false discovery rate (FDR) using the 
Benjamini-Hochberg (BH) method was also performed 
(online supplemental statistical section 2.4).

We reasoned that detectable antibody signatures 
between clinical groups may be present below the 
threshold of the stringent definition of a positive peptide. 
To test for such signals in the fluorescence intensity data, 
peptide-specific ANOVA according to the rank-based 
Kruskal-Wallis (KW) procedure was applied, followed by 
filtering peptides with significant clinical-group effects at 
5% FDR by the BH method. Subject data were prepro-
cessed to collapse triplicate profiles per person to a 
single, consensus profile per person by using median 
per peptide (online supplemental statistical section 2.5). 
The rank-based KW procedure is robust to distributional 
anomalies and is expected to provide a conservative 
assessment of antibody-profile differences between the 
clinical groups.32 Peptides exhibiting sufficiently small 
BH-adjusted KW p value were examined for differences 
in various pairwise comparisons, which invoked both a 
median fold-change filter (at least twofold difference) 

as well as a significance filter by two-sample Wilcoxon 
rank-sum p value, again with BH adjustment at 5% FDR 
(online supplemental statistical section 2.6).

Temporal changes
A linear mixed-effects model was fit to each peptide, 
separately for the groups of vaccinated patients and 
ADT-administered patients, to determine if there was an 
increase in signal over time, again using lme4; this allows 
a linear increase or decrease in mean log-transformed 
intensity over time per subject and per peptide. Patient-
specific random effects allow for among subject variation 
in the temporal response, while a fixed time effect per 
peptide expresses the average response over subjects in 
that clinical group. Statistical significance was assessed 
using both the Kenward Roger and Satterthwaite approx-
imate F tests33 using the R package lmerTest34 as well 
as BH for FDR control (online supplemental statistical 
section 3). Peptides with a coefficient of at least 0.3333 
and a BH-adjusted p value <0.05 were considered to have 
increased antibody response over time.

Gene ontology analysis
Gene ontology (GO) analysis was performed using allez.35 
The set of all proteins on the microarray was used as the 
background list and the subset of proteins of interest was 
used as the target list, with a Bonferroni-corrected p value 
threshold of 0.05 in allez. The output was visualized using 
waterfall plots in allez. These reveal dominant functional 
categories enriched in the protein list while accounting 
for set redundancies.36 37

UniProt analysis
Proteins from the array were matched with UniProt IDs 
using UniGene IDs when available and protein names 
otherwise. Data were then retrieved from UniProt38 on 
gene names, protein length and subcellular location. 
UniProt may designate a protein with multiple subcel-
lular localizations, in which case all localizations were 
kept in the analysis. This sometimes leads to percentages 
that add up to over 100%.

RESULTS
A prostate cancer-specific peptide microarray was able to 
reproducibly measure antibody signatures from serum of 
healthy individuals and patients with prostate cancer
To characterize antibody responses to a wide variety of 
prostate cancer-associated proteins in patients with pros-
tate cancer, we designed a peptide microarray able to be 
screened with patient sera. This array included peptides 
spanning the amino acid sequences of 1463 of the most 
abundantly expressed gene products in metastatic pros-
tate cancer,22 23 including 125 proteins identified in 
previous studies examining serum antibody responses 
in patients with prostate cancer.24 39 We also included 
peptides spanning the predicted amino acid sequences 
of 148 potential open reading frames (ORFs) from 
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lncRNAs that have been shown to be highly expressed 
in prostate cancer. We included these given their strong 
association with prostate cancer. While most would likely 
serve as negative controls as they would not be expected 
to encode gene products, other groups have shown that 
some lncRNAs may be translated into unstable peptides 
or even functional proteins, especially with the dysregu-
lation induced by cancer.40–42 Hence, we reasoned that a 
few might serve as antibody targets in patients with pros-
tate cancer.

The 16-mer peptides spanning the amino acid 
sequences of these 1611 gene products, and overlapping 
by 12 amino acids, were used to generate a microarray 
comprising 177 604 peptides. The complete list of probes 
and corresponding proteins is available in online supple-
mental table 1. The manufacture of the array and synthesis 
of peptides was performed as previously described.43 
The characteristics of the proteins included in the array 
are summarized in figure  1, using data retrieved from 

UniProt.38 Sixty-nine per cent of proteins included were 
those typically localized within the cytoplasm or nucleus, 
or that traffic between the two compartments (figure 1A). 
Approximately 6% of the proteins were localized to the 
ribosomes. The median protein length was 483 amino 
acids (figure 1B).

We next assayed serum samples collected from controls 
and patients with different stages of prostate cancer for 
peptide-specific IgG responses using the microarray. 
Examples of the primary data are shown in online supple-
mental figure 1A,B. To assess the reproducibility of the 
assay, we calculated Pearson’s correlation coefficents 
between each pair of technical replicates and found high 
correlation on average among replicates (figure  1C). 
To determine the degree of variability among serum 
samples, we calculated the mean correlation coefficient 
across all pairs of distinct serum samples. We observed low 
correlation between the average pair of serum samples 
(figure 1C). In a complementary approach, we fit a linear 

Figure 1  A prostate cancer-specific peptide microarray was able to reproducibly measure antibody signatures from serum of 
healthy individuals and patients with prostate cancer. Summary of the (A) subcellular localization and (B) length in amino acids 
of all 1611 unique proteins on the array according to UniProt. (C) The mean correlation coefficient among all pairs of different 
individuals (average pair) compared with the average correlation coefficient among all technical replicates (replicate). Error bars 
represent SD. (D) Histogram depicting the ratio of the biological variation to the total variation of the array data for each peptide 
as estimated by a linear mixed-effects model. (E) Each point represents the correlation coefficient between antibody responses 
in two different serum samples. Points marked in red are instances when the same individual had serum collected at two 
different time points with different stages of disease. ER, endoplasmic reticulum; lncRNA, long non-coding RNAs.
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mixed-effects model to estimate the amount of biolog-
ical variation and technical variation across our triplicate 
data for each peptide. We found that the average ratio of 
biological variation to total variation was 0.74, indicating 
low technical variation (figure 1D).

Included in this study were six patients who had serum 
collected at two different time points, when they had an 
early stage of disease and again when they had a later 
stage of disease. Notably, these serum samples from the 
same patients had especially high correlation coefficients 
(figure 1E). This suggests that while there is high variation 
among individuals, each particular individual had smaller 
variation in his antibody repertoire over time. These six 
patients had their first serum collection removed from 
further analysis to prevent inflating their impact on our 
results.

Frequency of protein recognition did not correlate with stage 
of disease
To determine whether the array could detect IgG to 
common prostate antigens, we first defined a ‘positive’ 
antibody response to individual peptides using previously 
described criteria.28 Using binding buffer as a negative 
control, no peptides met these criteria (not shown). Two 
examples of positive responses are shown in figure  2A. 

We specifically evaluated responses to peptides derived 
from well-defined prostate target antigens PSA, PAP and 
the androgen receptor (AR). Overall, 7.1% of patients 
with prostate cancer (13.3% of patients with mCRPC) 
assayed on the array displayed antibody responses against 
peptides derived from PSA, while 6.7% of controls had 
PSA responses; 8.2% of patients with prostate cancer 
(13.3% of patients with mCRPC) and 0% of controls had 
responses to PAP. Finally, 5.9% of patients with prostate 
cancer (13.3% of patients with mCRPC) and 20.0% of 
controls recognized peptides derived from the ligand-
binding domain of AR. Given the small sample sizes, 
none of the antibody responses to these proteins was 
significantly different in frequency in patients with cancer 
compared with controls.

We next tested the hypothesis that patients with higher 
disease burden would recognize more peptides, poten-
tially due to increased presentation of cancer-associated 
proteins.44 We found no correlation between stage of 
disease and the number of probes recognized at either 
the peptide level or the protein level. The median 
numbers of proteins recognized were 321 for controls, 
303 for new Dx, 353 for nmCSPC, 249 for nmCRPC and 
320 for mCRPC (figure  2B,C). The median numbers 

Figure 2  Frequency of protein recognition did not correlate with stage of disease. (A) Example microarray data for technical 
replicates of a single protein (ADT14) with the 212 signal threshold indicated by the dashed line. Positive calls are marked in 
red. In yellow is a negative call that did not meet the sliding window criterion. The number of (B) peptides and (C) proteins 
recognized by each patient, categorized by clinical stage of disease. mCRPC, castration-resistant metastatic disease; 
nmCRPC, castration-resistant non-metastatic prostate cancer; nmCSPC, castration-sensitive non-metastatic prostate cancer.



6 Potluri HK, et al. J Immunother Cancer 2020;8:e001510. doi:10.1136/jitc-2020-001510

Open access�

of peptides were 919 for controls, 832 for new Dx, 712 
for nmCSPC, 708 for nmCRPC and 754 for mCRPC. We 
noted a substantial amount of heterogeneity in antibody 
responses among patients. For instance, the number 
of proteins recognized by controls ranged from 188 to 
922. Similarly, we did not observe an association between 
subject age and number of proteins recognized (data not 
shown).

Nearly all proteins on the array were recognized by serum 
antibodies of patients with prostate cancer
Having established that there was a large diversity in 
antibody repertoires among patients, we next examined 
whether there were any broad trends in the types of 
proteins that were recognized. While only 0.4% of calls 
were positive overall, 20% of peptides were recognized 
by at least one subject. Nearly all proteins (1570 of 1611, 
97%) had one or more peptides recognized by at least 
one subject. Conversely, there were no proteins that were 
recognized by all patients. Most proteins (1326 of 1611, 
82%) were recognized by both controls and patients with 
cancer (figure 3A). As expected, one of the largest cate-
gories of proteins that were not recognized were ORFs 
from lncRNAs (figure 3B, online supplemental table 2); 
however, contrary to our expectations, the majority of 
lncRNAs (141 of 148, 95%) were recognized by at least 
one patient (figure 3A).

The composition of antibody targets changes with clinical 
stage of disease
We hypothesized that while the overall number of 
proteins recognized may not increase with burden of 
disease, the composition of proteins recognized may be 
different. We employed a KW test to identify peptides that 
had significantly different fluorescence intensities across 
clinical stages and controls. This test identified 13 279 

significant peptides (online supplemental table 3). We 
used principal component analysis (PCA) to visualize the 
residual fluorescence levels after subtracting the grand 
mean fluorescence level for each peptide and observed 
that patients tended to group with other patients with 
the same clinical stage of disease (figure  4A). Patients 
with castration-resistant tumors, and mCRPC in partic-
ular, tended to cluster especially closely to one another. 
Notably, controls did not exhibit this clustering. We were 
particularly interested in the subset of peptides that had 
significantly different fluorescence signals in patients 
with cancer compared with controls. We identified these 
peptides by using a Wilcoxon rank-sum test and specif-
ically focused on those that had differences in median 
fluorescence of at least twofold in patients with cancer 
compared with controls (figure  4B, left; online supple-
mental table 4). To discover which peptides were driving 
the especially strong clustering of patients with mCRPC, 
we repeated this procedure to find peptides with signifi-
cantly different fluorescence in patients with mCRPC 
compared with all other patients (figure 5B, right; online 
supplemental table 5). Unexpectedly, we detected only 
110 peptides associated with the cancer versus control 
comparison, but found 4246 peptides in the mCRPC 
versus all other comparisons.

We applied this same approach to identify the number 
of peptides that had significantly higher or lower signals 
in patients in one clinical stage of disease compared with 
patients in the previous clinical stage. The largest change 
in number of recognized peptides occurred between the 
castration-sensitive (nmCSPC) and castration-resistant 
(nmCRPC) populations (figure 4C; online supplemental 
tables 6–9). Examples of the fluorescence signals of 
peptides that are detected by this strategy are shown in 
figure 4D,E.

Figure 3  Nearly all proteins on the array were recognized by serum antibodies of patients with prostate cancer. Percentage 
of proteins that were recognized by only controls (control-exclusive), percentage of proteins recognized by at least one control 
and one cancer patient (control and cancer), percentage of proteins not recognized by any controls but recognized by at least 
one cancer patient (cancer-exclusive) and percentage not recognized at all (never recognized), categorized by subcellular 
localization. (B) Characteristics of the proteins that were not recognized by any controls or patients tested. The x-axis 
represents the percentage of the 41 proteins that were not recognized that fall into each category.
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Specific proteins were preferentially recognized in patients 
with cancer and patients with mCRPC
From our initial list of 13,279 peptides, we identified 
6708 of these peptides that were significant in one of 
the six comparisons made in figure 4B,C. We visualized 
the residual fluorescence levels of these peptides after 
removing the grand mean for each peptide in figure 5A. 
As in figure 4A, we observed high similarity in antibody 

profiles between patients with the same stage of disease. 
We next more closely examined the sets of proteins we 
had identified earlier for common features and associa-
tions with cellular processes. GO analysis revealed that the 
genes corresponding to the 68 peptides that were recog-
nized more robustly in patients with cancer compared 
with controls were associated with mRNA export from 
the nucleus and the cell-cell contact zone (figure  5B). 

Figure 4  The composition of antibody targets changes with clinical stage of disease. (A) Principal component analysis plot 
obtained by using the set of 13 279 significantly changed peptides identified by the Kruskal-Wallis test then subtracting the 
grand mean of log2 fluorescence levels across patients for each peptide. Each point represents a patient, colored by clinical 
stage. (B) Volcano plots depicting peptides that met the 5% Benjamini-Hochberg (BH) false discovery rate (FDR) cut-off based 
on the Wilcoxon p values (horizontal lines) and had at least a twofold difference in median log2 fluorescence values between 
the stages being compared (vertical lines). The number of significantly increased peptides is shown on the right of each plot, 
the number of significantly decreased peptides is shown on the left, and the overall number of significantly changed peptides is 
shown at the top. Significant peptides are colored red. The left plot indicates peptides that had significantly different signals in 
patients with cancer compared with controls. The right plot indicates peptides that had significantly different signals in patients 
with mCRPC compared with all other groups. (C) Volcano plots indicating peptides that had significantly different signals 
between patients with consecutive clinical stages of disease. Box plots displaying fluorescence signals in (D) all patients with 
cancer compared with controls and (E) patients with nmCRPC compared with patients with nmCSPC in three example peptides 
that met both the twofold signal change and BH-adjusted p-value criteria. Box width is proportional to sample size. mCRPC, 
castration-resistant metastatic disease; nmCRPC, castration-resistant non-metastatic prostate cancer; nmCSPC, castration-
sensitive non-metastatic prostate cancer.
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GO analysis of the 3123 peptides that had particularly 
strong antibody responses in patients with mCRPC 
showed an enrichment for proteins associated with 
nucleic acid binding, RNA metabolism, gene regulation 

and downregulation of metabolism (figure  5C). One 
of the significant terms within the ‘non-membrane-
bounded organelle’ term was the cytosolic large ribo-
somal subunit. To investigate the large difference in 

Figure 5  Specific proteins were preferentially recognized in patients with cancer and patients with mCRPC. (A) Heatmap 
depicting the difference in log2 fluorescence levels between each peptide in each patient and its grand mean across patients, 
displaying only the set of 6708 peptides that met the secondary selection criteria. Patients are grouped by stage across the 
x-axis, while peptides are clustered along the y-axis. (B) Waterfall plot depicting a gene ontology (GO) analysis of proteins 
that had significantly more antibody recognition in patients with cancer than controls. The top row indicates the GO term that 
encompasses the most genes corresponding to significant peptides. For the second row, these genes are then removed from 
the list and the GO term that encompasses the most genes in the remainder of the list is chosen. Genes identified by this 
process are counted along the x-axis to visualize overlapping GO terms. Waterfall plots depicting GO analysis of proteins that 
had significantly increased antibody responses in (C) patients with mCRPC compared with all other patients or (D) patients 
with nmCRPC compared with patients with nmCSPC. mCRPC, castration-resistant metastatic disease; nmCRPC, castration-
resistant non-metastatic prostate cancer; nmCSPC, castration-sensitive non-metastatic prostate cancer.
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antibody repertoires between patients with nmCSPC 
and nmCRPC, we performed GO analysis on the 2612 
peptides with significantly higher signal in nmCRPC than 
nmCSPC. We identified differences in recognition of 
proteins associated with nucleic acid binding, chromatin 
structure, amide metabolism and protein localization to 
the membrane (figure 5D).

Antitumor vaccination elicited increased antibody responses 
over time, unlike androgen deprivation therapy
Based on our finding that individual patients tended to 
have relatively small variation in their antibody responses 
over time, we hypothesized that this could make the 
microarray particularly sensitive for detecting changes 
induced by treatment in a longitudinal analysis. To test 
the potential of this platform for studying treatment 
effects, we used the serial serum samples available from 
the 40 patients with nmCSPC who were treated with 
either ADT or an investigational DNA vaccine. Consis-
tent with our observations in figure  1E, we found high 
correlation between samples from an individual patient 
over time (figure 6A).

We next fit a linear mixed-effects model to determine if 
there were any peptides against which there was increased 

signal over time. In the vaccine-treated patients, we 
found 5680 significant peptides that had a coefficient of 
time fixed-effect of at least 0.3333, indicating a twofold 
increase in signal every 3 months (online supplemental 
table 10). We were unable to detect any peptides against 
which ADT-treated patients developed increasing anti-
body signal over time using this procedure (figure 6B). 
Examples of the fluorescence levels of 3 peptides over 
time in ADT-treated and vaccine-treated patients are 
shown in figure 6C.

PAP-targeted DNA vaccination causes similar increases in 
antibodies against proteins associated with nucleic acid 
binding and gene regulation in multiple patients
We visualized the changes in peptide recognition over 
time in vaccine-treated patients by plotting the residuals 
of the null model in the heatmap in figure 7A. This further 
demonstrated that vaccine-treated patients had robust 
increases in antibody responses to these 5680 peptides. 
To characterize these peptides, we performed GO anal-
ysis. We found that a significantly enriched set of these 
antibodies were specific to nucleic acid binding proteins. 
There were also more antibodies against proteins associ-
ated with RNA metabolism, ion binding and ribosomal or 

Figure 6  Antitumor vaccination elicited increased antibody responses over time, unlike androgen deprivation therapy (ADT). 
(A) The mean correlation coefficient among all pairs of different individuals (average pair) compared with the average correlation 
coefficient among all technical replicates (replicate) and the average correlation among samples collected from the same 
patient at different time points (same patient). Error bars represent SD. (B) Volcano plots depicting peptides to which there was 
increased signal following treatment with ADT or vaccine by at least twofold every 3 months, corresponding to a coefficient 
of time fixed-effect of 0.3333 (vertical line), and met the 5% Benjamini-Hochberg (BH) false discovery rate (FDR) cut-off using 
both Kenward Roger (KR) and Satterthwaite F-tests. Significant peptides are colored red. (C) Example box plots displaying 
log2 fluorescence levels for three peptides at baseline, 3 months and 6 months, in patients treated with ADT or vaccine. PAP, 
prostatic acid phosphatase.

https://dx.doi.org/10.1136/jitc-2020-001510
https://dx.doi.org/10.1136/jitc-2020-001510
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nucleolar cellular components than would be expected 
by chance (figure 7B).

DISCUSSION
The purpose of this study was to perform a comprehen-
sive survey of tumor-associated serum antibody responses 
in patients with prostate cancer and to determine whether 
antibody profiles changed with disease progression. 
Previous examinations of serum antibodies in patients 
with prostate cancer focused mainly on diagnostic appli-
cations; thus, a more complete picture of patient anti-
body repertoires has been lacking. We addressed this by 
designing the largest reported prostate cancer-specific 

peptide microarray, capable of measuring IgG responses 
to over 177,000 peptides. Our major findings were (1) 
the microarray data were highly reproducible, (2) the 
overall number of peptides recognized was not greater in 
patients with more advanced disease, (3) the composition 
of patient antibody repertoires changed with later stages 
of disease, (4) most antibody signatures were largely stable 
within individuals over time and (5) this approach was 
able to track changes elicited by therapy in individuals.

Here, we have shown that this novel prostate cancer-
specific peptide microarray yields highly reproducible 
measurements of serum IgG levels with high correlation 
of technical replicates and negligible background fluores-
cence signal. The microarray’s measurements also exhib-
ited generally strong concordance with existing literature 
on serum antibodies in patients with prostate cancer. A 
previous study using ELISA detected anti-PSA antibodies 
in 11% of patients with mCRPC.44 Similarly, the microarray 
detected PSA responses in 13.3% of patients with mCRPC. 
Looking at PAP, ELISA detected antibody responses in 
5.5% of patients, while the microarray detected antibody 
responses in 8.2% of patients with prostate cancer. On the 
other hand, ELISA detected antibodies specific for the 
AR ligand-binding domain in 17.1% of patients, whereas 
the microarray detected antibody responses in 5.9% of 
patients.45

Based on reports that individual proteins like PSA and 
PAP are more recognized in patients than controls, we 
hypothesized that patients with more advanced disease 
would have antibodies against more proteins. Previous 
studies have focused on the use of antibody profiling as 
a diagnostic tool to discover proteins that are recognized 
more in patients with prostate cancer than controls.7 15 16 
Because these studies focused only on antibodies that 
are enriched in patients with prostate cancer, they were 
unable to address this question of whether the overall 
number of antibody responses changes with clinical stage 
of disease. Our microarray approach also allowed us to 
examine the classes of proteins recognized by patients in 
each clinical stage.

Contrary to our expectations, we did not observe an 
increase in the number of peptides recognized with more 
advanced disease. While the overall number of antibody 
responses did not appear to increase, we found that the 
composition of proteins recognized changed. Interest-
ingly, we discovered that the vast majority of predicted 
lncRNA ORF gene products were recognized by at least 
one subject, with a large proportion recognized exclu-
sively in patients with cancer. This could be the result 
of unstable peptides being translated from lncRNAs at 
higher rates due to the dysregulation induced by pros-
tate cancer. Alternatively, it is possible that some of these 
genes with predicted ORFs represented poorly anno-
tated protein coding genes rather than true lncRNAs. 
We found significant changes in antibody responses 
against one of the lncRNAs, PCAT-14 (PRCAT104), in 
the transition to castration-resistant disease and non-
metastatic to metastatic disease, but not in earlier stage 

Figure 7  Prostatic acid phosphatase (PAP)-targeted 
DNA vaccination causes similar increases in antibodies 
against proteins associated with nucleic acid binding and 
gene regulation in multiple patients. (A) Heatmap of the 
fluorescence residuals from the null model for each of the 
5680 peptides that were significantly increased in vaccine-
treated patients. Samples from vaccine-treated patients at 
each collection time point (baseline, 3 months and 6 months) 
are grouped together along the x-axis, while peptides 
are clustered along the y-axis. The order of the columns 
(patients) is consistent across the three timepoints for ease of 
comparison. (B) Waterfall plot of gene ontology (GO) analysis 
of proteins recognized more following vaccine.
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transitions. PCAT-14-specific antibodies also increased 
following vaccination. Interestingly, previous work has 
shown that PCAT-14 encodes a peptide and that loss of 
PCAT-14 is associated with metastatic progression and 
poor outcomes.46–48 Further study of serum antibodies 
targeting this lncRNA is warranted.

We also found that the sets of proteins associated with 
patients with mCRPC and the transition from nmCSPC 
to nmCRPC were significantly enriched for ribosomal 
proteins and other non-membrane bound organelles. 
It is possible that the upregulation of the translational 
machinery required to support rapid cell division in 
cancer leads to a greater abundance in ribosomal 
proteins. This lends further credence to observations 
made by Wang et al that two of the five coding proteins 
they identified in their screen for prostate cancer-specific 
antibodies were ribosomal and the majority of the other 
proteins they identified came from untranslated regions.7 
In fact, we identified many of the same proteins when 
looking at mCRPC-associated proteins, such as BRD2, 
RPL13a, RPL22 and LAMR1. We also identified proteins 
detected by Taylor et al, and Ummanni et al, such as ACPP, 
VCP and PRDX6.15 16 The increases in antibodies against 
proteins involved in gene regulation and RNA metabo-
lism in patients with nmCRPC and mCRPC may be due 
to the large changes in transcription associated with the 
development of castration resistance.49

Despite the power of this approach, we were limited to 
observing antibody responses to 1611 proteins that are 
all highly expressed in prostate cancer and it is possible 
that there are humoral responses to other targets that 
may be expressed at lower levels that we did not capture. 
Our analysis was also limited by our relatively small sera 
sample size, with only 15 patients for most disease stages, 
including mCRPC. However, the fact that we were able 
to detect such large differences between disease stages 
with this sample size demonstrates the sensitivity of 
this approach. This sample size was sufficient to detect 
large changes in the antibody signatures in patients with 
castration-sensitive versus castration-resistant disease. 
These small sample sizes, however, limited any clinical 
interpretation or association of antibody signatures with 
long-term outcome, and these will be focuses of future 
study. We took a cross-sectional approach to identi-
fying antibody profiles associated with each stage of 
disease rather than following individual patients across 
the lengthy natural history of prostate cancer, which 
also prevented us from observing changes in individual 
patients with different stages of disease. However, we were 
able to obtain longitudinal data from a subset of patients 
for a period of 6 months.

Our longitudinal analysis with sample collections 
at baseline, 3 months and 6 months revealed that it is 
possible to identify individual subjects at multiple time 
points based on their antibody signature. Others have 
demonstrated that healthy individuals have largely 
unchanged responses over time to a panel of self-
antigens,50 51 although we are, to our knowledge, the first 

to observe this phenomenon with an array of this size 
and the first to study it in the setting of prostate cancer. 
Despite this individual signature, we did observe common 
recognized proteins among patients with the same clin-
ical stage of disease. Due to the lack of large random 
fluctuations in antibody responses over time, this plat-
form appears particularly suited to identifying changes 
in individuals over time induced by disease or treatment. 
This demonstrates the potential value of this platform 
for future more extensive studies specifically evaluating 
antigen spread, to determine whether the development 
of antibody responses is associated with clinical outcome, 
and contrasting the effects of different immunotherapies 
on patient antibody repertoires.

Most strikingly, we have shown that treatments can 
modulate a patient’s antibody repertoire, at least during 
a 6-month study period. We found that antigen-specific 
vaccination elicited greater increases in off-target anti-
body responses over time than did traditional targeted 
therapy, showing that this may be a method of quantifying 
antigen spread caused by treatment. Our data are consis-
tent with previous findings examining antibody responses 
following treatment with Sipuleucel-T, but we were able 
to study a greater number of prostate cancer-associated 
peptides and compare the effects of immunotherapy with 
the effects of ADT.14 These specific proteins to which 
patients receiving the PAP vaccine developed increasing 
responses may be useful as biomarkers of response to 
therapy. Interestingly, we did not identify any proteins 
to which patients receiving ADT developed increasing 
responses, in contrast to findings in our previous work.18 
It is possible that changes in antibody responses in ADT-
treated patients were too low in magnitude to meet our 
selection criteria. These data suggest that ADT itself is not 
driving the majority of the dramatic differences in anti-
body profiles between patients with nmCSPC to nmCRPC. 
Rather, it may be a direct consequence of changes in the 
biology of the tumor and gene expression that occur 
during the development of castration resistance. Future 
studies will use this platform to identify antibody signature 
changes that are specific for various types of immunother-
apies and quantifying the number and nature of anti-
gens recognized following therapy. In particular, we are 
interested in studying in detail the associations between 
antibody responses and clinical outcomes, as we hypoth-
esize that induction of antibodies to larger numbers of 
antigens, and potentially certain types of antigens, may 
lead to improved clinical outcomes such as prolonged 
progression-free survival and overall survival.
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