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SUMMARY

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly 

understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung 

tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of 

transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells 

progressively adopt alternate lineage identities, computationally predicted to be mediated through 

a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively 

isolated from mouse tumors and human patient-derived xenografts display high capacity for 

differentiation and proliferation. The HPCS program is associated with poor survival across 

human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle 

underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.

Graphical abstract
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INTRODUCTION

Tumors are cellular societies in which the phenotype, or state, of each cancer cell is 

influenced by multiple cell-intrinsic and cell-extrinsic factors. The diversity of cancer cell 

states within tumors poses a challenge for effective cancer therapies (Lawson et al., 2018). 

The nature and sequence of the genetic events that define some common cancers have been 

characterized in detail over the past three decades (Fearon and Vogelstein, 1990; Hutter and 

Zenklusen, 2018), as have the expression profiles of bulk mouse and human tumors in late 

stages of tumor progression (Ambrogio et al., 2016; Campbell et al., 2016; Feldser et al., 

2010; Winslow et al., 2011). However, our increasingly fine understanding of genetic events 

occurring during tumorigenesis is not yet matched by a similar understanding of the 

progression of cancer cell states at the molecular and functional levels, especially for early 

microscopic neoplasias that cannot be readily detected in patients. In particular, we do not 

know the diversity of these states at different points along tumorigenesis, how reproducibly 

they would arise in a defined genetic context, how the states of different cells in the same 

tumor relate to, support, or compete with each other, and what role they may play in driving 

tumor progression or response to therapy.
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Genetically engineered mouse models (GEMM) of human cancer and single cell RNA-Seq 

(scRNA-Seq) can together help address this gap. ScRNA-Seq is a powerful tool for 

characterizing the molecular identity of individual cells in tissues, including in solid tumors 

(Lambrechts et al., 2018; Patel et al., 2014; Tirosh et al., 2016a; Tirosh et al., 2016b; Zilionis 

et al., 2019). However, it has typically been applied to advanced tumors in humans analyzed 

at a single point in time, thus limiting one’s ability to infer temporal changes over processes 

that take years in patients. In particular, the spectra of cell states that exist in advanced 

human tumors may represent transitions that occurred over short or far longer time scales 

(Neftel et al., 2019). This limitation can be addressed by studying cancer GEMMs, which 

allow spatiotemporal control over tumor development in the context of mammalian 

physiology.

Emerging evidence indicates that LUAD predominantly arises from a subset of alveolar type 

2 (AT2) cells (Desai et al., 2014; Nabhan et al., 2018; Sutherland et al., 2014; Treutlein et 

al., 2014; Zacharias et al., 2018). In GEMMs of lung adenocarcinoma (LUAD), viral 

expression of Cre recombinase in AT2 cells leads to somatic activation of oncogenic KRAS-

G12D with or without deletion of the p53 tumor suppressor (referred to here as “K” and 

“KP” models, respectively) (Jackson et al., 2005; Jackson et al., 2001; Sutherland et al., 

2014). K tumors rarely progress beyond adenomas, whereas the KP tumors evolve over a 

span of >12 weeks into advanced LUADs. These models accurately mimic human lung 

adenoma and adenocarcinoma progression at the molecular and histopathological levels 

(Jackson et al., 2005; Jackson et al., 2001; Winslow et al., 2011), as well as in their response 

to chemotherapy (Oliver et al., 2010), making them well-suited for studying tumor 

evolution, heterogeneity and treatment responses.

RESULTS

LUAD progression is characterized by a dramatic and reproducible increase in phenotypic 
diversity

To initiate lung tumors, we delivered adenoviral vectors encoding Cre recombinase under 

the control of an AT2 cell-specific surfactant protein-C promoter [AdSPC-Cre; (Sutherland 

et al., 2014)] into the lungs of Rosa26LSL-tdTomato/+ (“T”), KT, or KPT mice. We isolated 

live tdTomato+/CD45−/CD11b−/TER119−/CD31− cells (Tammela et al., 2017) at defined 

time points and performed full-length scRNA-Seq using a modified SMART-Seq2 protocol 

(Figure 1A–C; STAR Methods). To characterize malignant cell diversity along 

tumorigenesis, we collected 3,891 high quality, single cell full-length transcriptomes from 

39 mice at eight distinct stages of LUAD evolution, defined by genetic perturbation and time 

point, starting with normal AT2 cells and ending with fully formed LUADs (Figure 1A–C; 

Figure S1A–C; STAR Methods).

The single cell expression profiles spanned 12 clusters with distinct expression patterns 

discovered by unsupervised clustering (Shekhar et al., 2016) (Figure S1D; STAR Methods), 

showing increasing cellular phenotypic heterogeneity with tumor progression (Figure 1C, 

D). The growing diversity was reflected in that cells from later time points (late adenoma 

and LUAD) were members of a larger number of clusters (Figure 1C, D; Figure S1C, E) and 

showed a more diverse expression pattern (Figure 1E; Figure S1F; STAR Methods). Cells 
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from p53 mutant KPT tumors were the most heterogeneous, consistent with the established 

role of p53 in restricting cancer progression and safeguarding lineage commitment 

(Kastenhuber and Lowe, 2017).

The increased cell state heterogeneity during tumor progression was remarkably 

reproducible from tumor to tumor within and across mice, and was in line with each tumor’s 

histopathological progression (Figure 1B). Late-stage adenocarcinomas contained the unique 

“late onset” subpopulations (clusters 10, 11, and 12; Figure 1D; Figure S1E) in addition to 

all cellular states detected at the earlier steps of tumor initiation, including the very earliest 

cell states found in normal AT2 cells and in early neoplasias. Furthermore, most of the 

cancer cell phenotypes were present in each of the individually micro-dissected KPT tumors 

at 30 weeks (Figure 1F; Figure S1G). Notably, cluster 5 and 9 cells were present in every 

tumor analyzed, both across and within mice and individual tumors. Thus, in this genetically 

defined animal model, tumors undergo a relatively ordered and reproducible diversification 

of transcriptional states.

Diversity in gene copy number variation is not a sufficient determinant of phenotypic 
heterogeneity in LUAD

We next tested whether genetic heterogeneity underlies the phenotypic diversity in advanced 

adenocarcinomas (KPT 30 weeks), which had the largest number of cell states (Figure 1E, F; 

Figure S1E, G). Previous studies have demonstrated that the mutational landscape of K and 

KP tumors is dominated by chromosomal copy number alterations and that the tumors do 

not develop recurrent point mutations (Chung et al., 2017; McFadden et al., 2016; Westcott 

et al., 2015). We therefore inferred chromosomal copy number variations (CNVs) from each 

cell’s scRNA-Seq profile (Figure 1G; Figure S1H–J), using a method we previously 

demonstrated and validated in multiple human tumors (STAR Methods) (Jerby-Arnon et al., 

2018; Patel et al., 2014; Puram et al., 2017; Tirosh et al., 2016a; Tirosh et al., 2016b; 

Venteicher et al., 2017). KPT cells harbored more CNVs when compared to KT tumors at 

corresponding time points (Figure S1H, I), consistent with previously published results and 

the established role of p53 in maintaining genome integrity (Chung et al., 2017; Kastenhuber 

and Lowe, 2017; McFadden et al., 2016; Westcott et al., 2015). In a subset of the KPT 
tumors at 30 weeks we estimated DNA copy number by whole genome sequencing (WGS) 

of individual tumor cells (scDNA-Seq) (Figure 1H, I; Figure S1K, L; n = 3), which was 

highly concordant with the scRNA-Seq-based inference. There was considerable inter- and 

intratumoral heterogeneity in the single cell CNV patterns, which increased with tumor 

progression (Figure S1H, I). Prominent shared CNVs across mice and tumors implicated 

common clonal founders (“trunks”) for each tumor (Figure 1G, H; Figure S1J, K).

We classified the CNV patterns into subtypes based on scDNA-Seq data (Figure 1H; Figure 

S1K), and assigned each cell analyzed by scRNA-Seq into these clonotypes (Figure S1L). 

Surprisingly, cell subtypes defined by CNV patterns did not directly align with the 

transcriptional classes (Figure 1H, I; Figure S1K–M). Specifically, cells harboring highly 

similar CNV patterns were members of multiple transcriptionally distinct clusters (Figure 1I; 

Figure S1L, M) and cells with different CNVs belonging to different clonotypes were 

members of the same transcriptional cluster (Figure 1I; Figure S1L, M). These results 
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suggest that substantial phenotypic heterogeneity in the KP tumors is reproducibly acquired 

and not simply a result of gene CNV.

Loss of alveolar identity and acquisition of features associated with lung progenitors, 
embryonic endoderm, and epithelial-to-mesenchymal transition during LUAD progression

The 12 transcriptional clusters were associated with distinct expression signatures (Table S1) 

that corresponded to known mouse cell identity programs, with more divergent states 

emerging in advanced tumors, suggesting a reversal of the lung developmental trajectory 

(Figure 2A; Figure S2A). We characterized each cellular subset with a signature of 

differentially expressed genes (Table S1; STAR Methods), which we compared to a 

published Mouse Cell Atlas scRNA-Seq dataset (Han et al., 2018) (Figure 2A). Cells in the 

early-emerging clusters 1 and 2 expressed features of normal AT2 cells and were present in 

most tumors throughout LUAD progression (Figure 2A; Figure 1D). Distinct subpopulations 

that emerged first in adenomas (clusters 3 and 4) lost some AT2 transcriptional identity, but 

retained features of the lung epithelial lineage (Figure 2A). Most populations that emerged 

in adenocarcinomas (clusters 6–10 and 12, Figure 1D) had features of intestinal and/or 

gastric or embryonic liver epithelium – all endodermal tissues derived from the embryonic 

primordial gut (Cao et al., 2019; Nowotschin et al., 2019) (Figure 2A). This suggests that 

LUAD evolution is characterized by a loss of fidelity of the lung lineage and emergence of 

alternative related fates. Indeed, features of embryonic lineages more primitive than the 

primordial gut emerged in multiple subsets of lung tumor cells during tumor progression 

(Cao et al., 2019; Nowotschin et al., 2019) (Figure 2B). These changes were associated with 

the previously described loss of expression of the lung lineage-defining transcription factor 

Nkx2–1 as well as loss of the AT2 markers Sftpc and Lyz2, correlating with induction of 

developmental master regulators Hnf4a (primordial gut) and Hmga2 (primordial gut, 

developing lung) (Snyder et al., 2013; Winslow et al., 2011) (Figure 2C; Figure S2A).

Interestingly, one late-emerging subpopulation (cluster 11, Figure 1D) bore no resemblance 

to epithelial cells, adopting a mouse embryonic fibroblast-like state and an expression 

program consistent with epithelial-to-mesenchymal transition (EMT) (Dongre and 

Weinberg, 2019) (Figure 2A). Only late-stage adenocarcinomas contained a subpopulation 

that had fully undergone EMT, indicating that LUAD tumors remain largely epithelial until 

late stages. Finally, our analysis confirmed heterogeneous expression of previously 

published markers of LUAD cell subpopulations (Guinot et al., 2016; Tammela et al., 2017; 

Zheng et al., 2013) (Figure S2B).

A highly mixed program emerges during LUAD evolution

As our results pointed to a highly dynamic acquisition of cell states across the tumor 

evolution continuum, we next explored continuous changes in transcriptional programs and 

cell-state transitions using non-negative matrix factorization (NMF) (Kotliar et al., 2019; Lee 

and Seung, 1999; Puram et al., 2017) (STAR Methods). We uncovered 11 transcriptional 

programs, five of which particularly highlighted gradual phenotypic changes during tumor 

progression (Figure 2D, E; Figure S2C; Table S2). Three of the five programs were 

consistent with the emergence of the different cell identity programs we uncovered above: a 
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program associated with AT2 cell features present at the onset of LUAD development, an 

Embryonic liver-like program, and an EMT program emerging at a later stage (Figure 2D).

In addition, we uncovered two previously unknown cell programs, an early program 

associated with a mix of AT1 and AT2 cell features (“Mixed AT1/AT2” state) and another 

program that did not match a consistent, defined cell identity program (“Highly mixed” 

state; Figure 2D; Table S2). The Mixed AT1/AT2 program was characterized by co-

expression of AT1 markers, such as Hopx and Pdpn, together with AT2 markers Sftpc and 

Lyz2 (Figure 2D; Figure S2A; Table S2). This AT1/AT2-like program may mimic common 

alveolar progenitors in development or bi-potent alveolar progenitor cells in mature lungs 

(Desai et al., 2014; Nabhan et al., 2018; Treutlein et al., 2014; Zacharias et al., 2018). 

Conversely, the Highly mixed program displayed features of drastically different cell types, 

ranging from trophoblast stem cells to chondroblasts and kidney tubular epithelium (Table 

S2), suggesting that cells in this state are capable of exploring a broad phenotypic space. 

Interestingly, a subset of cells expressing the Highly mixed program also expressed a portion 

of the late-emerging EMT program (Figure 2D).

We performed immunostaining for highly specific markers for these programs (Figure 2E, F; 

Figure S2D), including one marking the Highly mixed program (claudin-4, encoded by 

Cldn4, e.g. Figure 2E, F “3”). Interestingly, we detected cells that co-expressed markers of 

distinct programs, suggesting that these cells may be in the process of transitioning from one 

state to another. For example, some cells co-expressed lysozyme (encoded by Lyz1 and 

Lyz2) and claudin-2 (encoded by Cldn2, e.g. Figure 2E, F “1”) and may thus be in transition 

between the AT2-like state and the Embryonic liver-like state. Other cells (e.g., Figure 2E, F 

“2”) expressed both claudin-2 and claudin-4, suggesting that they are in transition between 

the Embryonic liver-like and the Highly mixed state.

Relating the clusters and programs, we found that of the 12 clusters, cluster 5 was strongly 

enriched for the Highly mixed program (Figure 2G, H; Figure S2E). Notably, cluster 5 cells 

were present in both early adenomas and fully formed LUADs across all mice and tumors 

(Figure 2I; Figure S2F) and distinctly expressed Slc4a11, a gene associated with poor 

overall survival in grade 3/4 serous ovarian cancers (Qin et al., 2017) (Figure S2H–J).

An optimal transport model predicts that the Highly mixed program marks a high-plasticity 
cell state (HPCS) forming a key transition point between other states

Based on the timing of cluster 5’s emergence, its expression of the Highly mixed program, 

and its particular persistence across tumors, we hypothesized that cells in cluster 5 may form 

a key transition point and give rise to the heterogeneity observed in advanced tumors. To 

explore this hypothesis, we modeled the likelihood of transitions between cell states as a 

temporal coupling between cells along a time course using our Waddington-Optimal 

Transport (Waddington-OT) algorithm (Schiebinger et al., 2019) (STAR Methods). Where 

some clusters were transcriptional “sinks”, having low probabilities of giving rise to other 

states (in particular clusters 3 and 11), others (clusters 2, 4, 5, 6 and 9) had both higher 

potential to give rise to other cellular states and a substantial number of incoming 

trajectories, suggesting they may be important transition points in tumor evolution. Cluster 5 

had the most abundant and robust connections with other cellular states across the time 
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course (Figure 3A; Figure S3A). This was evident even when compared to other clusters of a 

similar “age distribution” such as cluster 2, 3 or 4 (Figure S3A). Given this prediction and 

that cluster 5 contained cells with a highly mixed cellular identity, we designated this cell 

state a high-plasticity cell state (HPCS).

The LUAD cell subset comprising the HPCS can be prospectively isolated based on TIGIT 
expression

To functionally interrogate cluster 5 cells comprising the HPCS state, we queried our data 

for surface markers whose expression is enriched in this subset (Figure S2G). Surprisingly, 

the Tigit (T cell immunoreceptor with IgG and ITIM domains) gene was a marker of the 

HPCS subset (Figure S3B top). TIGIT is a co-inhibitory immunoreceptor typically 

expressed in lymphocytes, and has been studied in the context of autoimmunity, viral 

immunity, and cancer (Manieri et al., 2017).

We validated the association between Tigit expression and the HPCS (cluster 5 cells) by 

prospective isolation of TIGIT+ and TIGIT− KP LUAD cells from primary autochthonous 

tumors at 20 weeks post-initiation, followed by droplet based scRNA-Seq of 26,739 cells. 

This analysis indicated a strong association of TIGIT+ cells with the HPCS signature (Figure 

3B, C). Quantitative PCR (qPCR) indicated robust enrichment of Tigit and the most specific 

cluster 5/HPCS marker, Slc4a11, in the TIGIT+ KP LUAD cell fraction (Figure S3D). We 

also confirmed by qPCR for Epcam that the isolated cells were of epithelial (tumor) origin, 

rather than immune cells (Figure S3D).

The HPCS has a distinct chromatin accessibility profile

We hypothesized that the HPCS may represent a distinct program reflected in a unique 

chromatin state. To test this hypothesis, we profiled cluster 5 cells by performing single-cell 

assay for transposase-accessible chromatin sequencing (scATAC-Seq) on TIGIT+ and TIGIT
− cells, along with bulk ATAC-Seq of matching populations. As expected, TIGIT+ tumor 

cells had increased accessibility at genes defining the cluster 5 signature (Figure 3D–F; 

Figure S3D; Table S3). We further scored the chromatin accessibility signatures identified in 

the accompanying article (LaFave et al., 2020) and found that TIGIT+ cells had a higher 

module accessibility score for modules characterized by low Nkx2.1 accessibility (module 

1), late stage of progression (module 9), and high Runx2 (module 2) (Figure 3G; Figure 

S3E). Consistently, we found that Nkx2–1 expression was lower in HPCS cells (Figure 2C), 

the Runx2 locus was more accessible in TIGIT+ cells (by bulk ATAC-Seq, Figure S3F), and 

Runx2 expression was higher in HPCS cells (Figure S3G). Notably, LaFave et al. identified 

RUNX2 as a driver of the metastatic phenotype in the primary tumors (LaFave et al., 2020) 

and CD109 signaling activity through the Jak/Stat pathway has been shown to contribute to 

this phenotype (Chuang et al., 2017). Consistently, we found that CD109 marks cluster 11 

(EMT, Figure S2G). Thus our findings suggest that the HPCS likely serves as a precursor to 

the EMT state that acquires metastatic capacity in the primary tumor (Chuang et al., 2017).

TIGIT+ KP LUAD cells are highly plastic in vitro and in vivo

Besides giving rise to EMT (cluster 11), our Waddington-OT model predicted that the HPCS 

cells are capable of giving rise to multiple other cell states (clusters) (Figure 4A). To 
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functionally evaluate the phenotypic plasticity of cluster 5 cells, we evaluated the diversity 

of isolated primary TIGIT+ LUAD cells in 3D tumor sphere cultures by scRNA-Seq (Figure 

4B). As comparators, we profiled cells from tumor sphere cultures of (i) all TIGIT− cells; 

and (ii) the CD109+ EMT cell state (cluster 11), which was predicted to be fixed (Figure 4A; 

Figure S3B bottom). Overall, tumor spheres arising from the TIGIT+ population had the 

greatest diversity of cell states, followed by the TIGIT− cells (a population depleted of 

HPCS cells) and finally the CD109+ EMT-like cells (cluster 11) (Figure 4C, D; STAR 

Methods), consistent with the Waddington-OT model (Figure 4A).

To investigate the differentiation potential of HPCS cells in vivo, we isolated primary TIGIT
+ and TIGIT− LUAD tumor cells by FACS from mice harboring autochthonous KP tumors 

and transplanted the subsets intratracheally into the lungs of immunodeficient NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. We assessed the diversity of the cells both pre-

transplantation and in the resulting tumors by droplet-based scRNA-Seq (Figure 4E). As 

expected, TIGIT+ HPCS cells were more homogenous pre-transplantation when compared 

to the TIGIT− cells (Figure 4F). Yet, transplanted tumors derived from TIGIT+ HPCS-

enriched cells had higher diversity than those derived from TIGIT− cells (Figure 4G–I; 

STAR Methods). Collectively, our findings indicate that cluster 5 represents a high-plasticity 

cell state with robust potential for cell state transitions in vitro and in vivo.

LUAD cells enriched for the HPCS show high proliferative potential and marked 
chemoresistance

We found that isolated HPCS (TIGIT+) cells were more efficient at forming tumor spheres 

than TIGIT− cells in 3D cultures (Figure 5A, B). To examine the tumor-propagating 

potential of the HPCS cells in vivo, we isolated TIGIT+ and TIGIT− cells from 

autochthonous KP LUAD tumors (STAR Methods) and transplanted them orthotopically 

into the lungs of immunodeficient NSG recipient mice (Figure 5C). The HPCS cells grew 

faster and propagated a greater number of tumors than the TIGIT− cells (Figure 5D, E).

We next examined the relative ability of HPCS cells to resist chemotherapy by scRNA-Seq 

of advanced KPT LUAD tumors 72 h after a single dose of cisplatin, a component of first-

line chemotherapies for advanced-stage LUAD patients (Gandhi et al., 2018; Schiller et al., 

2002) and a well-characterized chemotherapy agent in the KP LUAD model (Oliver et al., 

2010). Annotating the post-treatment cells with the previously identified cell cluster labels 

from the tumor progression time course (Figure 1D; Figure S4A), we observed a significant 

compositional difference between cells treated with cisplatin vs. vehicle control (Figure 5F–

H; Figure S4B, p < 1×10−20 for association between cluster 5 and cisplatin treatment, 

Fisher’s exact test). Notably, out of all 12 clusters found in advanced KP LUAD tumors, 

cells in the HPCS (cluster 5) exhibited the lowest cell cycle score (Figure S4C). This may in 

part explain why the HPCS cells are resistant to chemotherapy, which targets proliferating 

cells.

Our results suggest that the HPCS is associated with particularly aggressive features, 

including robust potential for differentiation and proliferation as well as drug resistance. 

Such aggressive features are frequently associated with cancer stem-like cells (CSCs) (Batlle 

and Clevers, 2017; Kreso and Dick, 2014). To interrogate whether the HPCS correlates with 
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known stem cell types, we performed a comparison of the HPCS signature with 1,197 

previously published cancer and normal tissue stem cell signatures. We found weak, but 

significant correlations between only eight of these signatures and the HPCS, suggesting that 

the HPCS is largely distinct from known stem cell identities (Figure S4D; Table S4; STAR 

Methods).

Cancer cells in a similar high plasticity cell state are present in human LUAD tumors and 
associate with poor survival

Finally, we explored the relevance of the HPCS in human LUAD tumors, finding important 

correspondence to our observations in the mouse model. First, immunostaining of human 

LUAD tissues for markers of the different programs revealed cells representing the 

transitions observed in the mouse model (Figure S5A; Figure 2F). Additionally, an analysis 

of 9,543 scRNA-Seq profiles of malignant cells from 20 human LUAD tumors across three 

published datasets (Lambrechts et al., 2018; Laughney et al., 2020; Zilionis et al., 2019) 

showed that cells with the Highly mixed/HPCS program assignment were present in each of 

these tumors (Figure 6A; Figure S5B–G).

Importantly, in an analysis of The Cancer Genome Atlas (TCGA) bulk RNA-Seq data (The 

Cancer Genome Atlas Research, 2014), LUAD tumors that express the Highly mixed, EMT, 

High-cycling, and GI-epithelium programs were associated with worse survival, whereas the 

AT2-like, Embryonic liver-like, and Mixed AT1/AT-like states were associated with a more 

favorable prognosis (Figure 6B; Table S5; p = 2.4×10−4, 4.2×10−3, 3.6×10−2, 2.4×10−2, 

5.6×10−3 respectively, Cox proportional hazards model; p = 4×10−4 in the full model 

including all NMF programs). A cluster-based analysis of the same TCGA LUAD data also 

demonstrated worse survival for cluster 5/HPCS (Figure 6C; Table S5; p = 2.35×10−2, Cox 

proportional hazards model). Notably, the significance of association of the Highly mixed 

program did not require KRAS or TP53 mutations (Figure S5H; Table S5). Accordingly, 

high CLDN4 expression, a marker of the Highly mixed state, predicted poor outcomes in 

human LUAD (Figure S5I) (Gyorffy et al., 2013). The Highly mixed state and cluster 5/

HPCS signatures also predicted poor outcomes in a pan-cancer analysis across the pooled 

TCGA collection (Figure 6D, E; Table S5; p < 2×10−16 for a model including all NMFs, 

Cox proportional hazards model), suggesting that features of the HPCS may generally define 

aggressive cancers. As in mouse lung adenomas and LUAD tumors, some cells expressing 

the HPCS program were present in each of the 15 primary human LUAD tumors and in five 

metastases examined by scRNA-Seq (Lambrechts et al., 2018; Laughney et al., 2020; 

Zilionis et al., 2019) (Figure 7A). Notably, SLC4A11 was a marker of the cell state in both 

mouse and human LUAD tissues (Figure S6A, B).

We next evaluated whether HPCS-like cells in human LUAD tumors contained cell surface 

markers compatible with flow cytometry. We did not detect TIGIT mRNA or protein in 

human LUAD (data not shown), suggesting that some features of the HPCS signature are 

species-specific. Instead, we identified alternative putative cell surface markers based on the 

expression profiles of human LUAD cells (from three published datasets) that showed the 

highest overlap with the mouse HPCS signature (Figure 7A; Figure S6C; STAR Methods). 

In particular, ITGA2, encoding integrin α2 (CD49B), a subunit of the integrin α2β1 
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collagen receptor (Hynes and Naba, 2012; Tuckwell et al., 1995), was expressed at high 

levels in both human and mouse LUAD HPCS cells (Figure S6D; Table S1; Table S3).

We next surveyed integrin α2 expression in 135 human LUAD patient tissues and identified 

heterogeneity in integrin α2 signal, with 39.3% of patients (53 of 135) with tumor samples 

containing at least 10% integrin α2Hi tumor cells (defined as the top 15% of integrin α2 

expressing cells). Notably, 40.7% of patients (55 of 135) had tumor samples with at least 

10% claudin-4Hi tumor cells (defined as the top 15% of claudin-4 staining), and 19.3% (26 

of 135) had tumor samples with at least 10% of tumor cells staining both claudin-4Hi and 

integrin α2Hi (Figure 7B; Figure S6E, F). These results suggest that the Highly mixed cell 

state and the HPCS is present in a significant fraction of LUAD patients.

Finally, we tested whether the integrin α2Hi human LUAD cells functionally recapitulate 

features of the mouse LUAD HPCS, including high plasticity and the capacity to proliferate. 

We found that integrin α2Hi tumor cells prospectively isolated from three independent PDX 

models formed significantly more tumor spheres compared to integrin α2Lo cells (Figure 

7C–E; Figure S6E; STAR Methods). We also performed droplet-based scRNA-Seq on tumor 

spheres and observed that the integrin α2Hi human LUAD cells gave rise to spheres with 

higher transcriptional diversity than the integrin α2Lo bulk of the tumor (Figure 7F). Taken 

together, these results suggest that a HPCS-like state also exists in human LUAD and may 

have significant implications as a driver and biomarker of tumor progression and drug 

resistance in the clinic.

DISCUSSION

Here, we used scRNA-Seq to study cell state changes during tumor evolution in a mouse 

model of LUAD mimicking the oncogenic transformation processes observed in human 

disease (Jackson et al., 2005; Jackson et al., 2001), where mutations in oncogenes, such as 

KRAS, are thought to occur early, followed by inactivation of the p53 pathway (Campbell et 

al., 2016; The Cancer Genome Atlas Research, 2014). Transcriptional heterogeneity grew 

dramatically during tumor progression, but the process was stereotypic and reproducible 

across individual tumors within a mouse and between mice. Further, some states were shared 

between the K and KP genotypes. Thus, phenotypic diversity, as captured by transcriptional 

states, is reproducible in this cancer model, suggesting the existence of deterministic 

programs governing the emergence and maintenance of heterogeneity.

One straightforward hypothesis was that this cell state variation is a direct outcome of 

underlying genetic variation, consistent with a model of tumor progression where every step 

is governed by the acquisition of a novel driver mutation (Fearon and Vogelstein, 1990). 

However, the CNV patterns and transcriptional states of individual cells were not directly 

aligned in the KP tumors, suggesting that additional factors besides genetic drivers, such as 

tumor microenvironment and epigenetic changes (LaFave et al., 2020), influence cell states 

during tumor evolution.

In contrast to embryogenesis, where new states emerge and preceding states are lost (Cao et 

al., 2019; Nowotschin et al., 2019), we found that during tumor progression new states are 
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acquired and preceding states are maintained even in advanced tumors. Our results suggest 

that disruption of normal developmental programs is a major organizing principle in the 

acquisition of new states: we first observed alternative lung epithelial programs, followed by 

several alternative programs mimicking the primordial gut, and finally the emergence of 

cells with a mesenchymal state, indicating a complete EMT (Figure S6G). Whereas each of 

these cell states emerged at a different characteristic time, all persisted in tumors once they 

arose, such that more advanced tumors were composed of a growing assortment of cells with 

an increasing diversity of states.

Our analysis highlighted one particular cell state, which was not similar to any defined or 

previously reported program, as the hub of cell state transitions in the tumor. This high-

plasticity cell state (HPCS) was enriched in cluster 5, the only cluster whose cells were 

present in a significant fraction in all mouse adenomas and LUAD tumors analyzed, as well 

as in scRNA-Seq profiles of human LUAD tumors (Lambrechts et al., 2018; Laughney et al., 

2020; Zilionis et al., 2019).

Interestingly, we found that the HPCS develops not only in advanced KrasG12D mutant, p53 

deficient KPT adenocarcinomas, but also in early stage KrasG12D mutant, p53 proficient KT 
adenomas. Thus, it is the cell states downstream of the HPCS rather than the HPCS itself 

that depend on p53 status or, more broadly, the stage of tumor progression: The HPCS can 

give rise to more diversity and more aggressive cell states, such as EMT, in advanced p53 

mutant adenocarcinomas when compared to p53 wild-type adenomas (Figure S6G). These 

findings cast p53 as a guardian of lineage fidelity, whose deletion enables cancer cells to 

sample a broader range of phenotypic space. However, growth signals that naturally drive 

tissue regeneration – that become co-opted by oncogene activation upon transformation – 

may suffice to give rise to at least some plasticity even in p53 proficient cells, as suggested 

by our results and recent work on wound healing and tumorigenesis in the skin (Ge et al., 

2017).

Our findings are surprising, as they do not support an intuitive model whereby lineage 

erosion occurs gradually from a “leading edge” of progressively more de-differentiated cells. 

Rather, LUAD heterogeneity appears to arise from a highly plastic cell state that emerges 

rapidly in tumorigenesis and persists in advanced tumors. Furthermore, we found that 

isolated HPCS cells can functionally give rise to the entire diversity of observed cell states in 

the tumor in vivo, spanning a range of defined cancer cell states in established tumors. For 

instance, a subset of the HPCS-expressing cells partially activated the EMT program, 

suggesting that the HPCS may be a prerequisite to EMT. Skin and mammary tumor models 

(Pastushenko et al., 2018) and human head and neck cancers (Puram et al., 2017) were 

recently shown to contain a “pre-EMT” state, which may in fact represent a HPCS in these 

cancer types.

Cell plasticity has been postulated to contribute to failure of chemo-, targeted- and 

immunotherapies (Arozarena and Wellbrock, 2019; Gupta et al., 2019; Horn et al., 2020). A 

particularly fascinating example is the conversion of lung and prostate adenocarcinomas to a 

neuroendocrine lineage, which is occasionally observed as a response to highly effective 

targeted therapies. This lineage conversion causes the tumors to lose dependence on 
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oncogene activity and become resistant to oncoprotein-targeted therapies (Beltran et al., 

2019; Quintanal-Villalonga et al., 2020). Given that HPCS cells were enriched shortly 

following platinum-based chemotherapies, it is possible that the acquisition of the 

neuroendocrine lineage during extreme therapeutic pressure occurs through a HPCS. Our 

results implicate the HPCS as a cell state that is strongly associated with LUAD treatment 

resistance, motivating its therapeutic targeting.

The HPCS shares functional features of both normal tissue stem cells and CSCs, including 

robust growth and differentiation potential (Batlle and Clevers, 2017; Kreso and Dick, 

2014). However, the HPCS gene expression signature was largely distinct from published 

normal and cancer stem cell signatures. CSCs have classically been identified and studied 

using candidate markers derived from normal stem cells. In contrast, we discovered the 

HPCS using an unsupervised profiling approach and computational modeling, which led us 

to uncover unexpected markers for this cell state that have previously not been implicated in 

CSCs (e.g. TIGIT, integrin α2 and Slc4a11). These results suggest that the HPCS represents 

a truly distinct cell state with importance in human LUAD and, possibly, human cancers 

more broadly. Indeed, the HPCS predicted poor survival not just in LUAD, but even in an 

analysis pooling all cancers represented in TCGA, suggesting that features that define the 

HPCS are particularly malignant or that similar HPCSs may exist across the spectrum of 

human cancers. Thus, the HPCS signature may enable identification of similar plastic states 

in other cancer types and biological contexts.

In conclusion, we have shown that increased transcriptional heterogeneity coupled with 

lineage infidelity and plasticity are hallmarks of tumor progression in a mouse model of 

LUAD, and that these features are present in human tumors. Whereas increased plasticity is 

highly reproducible and greater in tumors where p53 is inactivated, the phenotypic variation 

itself is largely independent of specific genetic alterations. In addition to programs reflecting 

lung and other epithelial cell states, a high-plasticity cell state appears at the nexus of these 

developmental cell state transitions, and is associated with resistance to chemotherapy, high 

growth potential, and poor survival in patients. Our work casts the HPCS as a key driver of 

tumor progression and intra-tumoral heterogeneity, underscoring the importance of targeting 

plastic cell states in cancer therapy.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Tuomas Tammela 

(tammelat@mskcc.org).

Materials availability—This study did not generate new unique reagents.

Data availability—Processed scRNAseq data is available for download or interactive 

exploration at the Broad Single Cell Portal at the following URLs:
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https://singlecell.broadinstitute.org/single_cell/study/SCP971 https://

singlecell.broadinstitute.org/single_cell/study/SCP972/ https://singlecell.broadinstitute.org/

single_cell/study/SCP973/

Raw data for SmartSeq2 scRNA-Seq, 10x scRNA-Seq, CNV, scDNA-Seq, and Bulk ATAC 

available from GEO: GSE152607

Code availability—Relevant code and instruction, which may be used to reproduce the 

principle results presented here is provided on GitHub: https://github.com/matanhofree/

lungTumorEvolution.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—Briefly, to generate Wnt-conditioned media, the L-WRN mouse fibroblast cell 

line (ATCC, catalog #CRL-3276) was grown to confluency on a tissue culture dish using D-

MEM (Gibco, catalog #10313039) supplemented with 1% penicillin/streptomycin and 1% 

glutamine (see Key Resources Table) at 37 C. The media was then aspirated and replaced 

with fresh supplemented D-MEM. Media was then collected and refreshed after every 3rd 

day for two harvests. Harvested media was filtered through a 0.45μM filter, aliquoted, and 

kept frozen at −80 C for future use.

Mouse 3-dimensional tumor sphere cultures—Primary 3D tumor sphere cultures 

were generated from tumors isolated from 30–34 week-old mice bearing 17–22 week old 

LUAD tumors. The entire primary culture was used in the downstream experiments as 

described in the manuscript.

Mouse cultures were plated on Matrigel as previously described (Tammela et al., 2017). 

Briefly, 350–1000 KP primary mouse LUAD cells were mixed in 50% Matrigel (Corning, 

catalog #CB-40230C) and 50% Advanced DMEM/F12 (Gibco, catalog #12634028) and 

plated on 10–12 μl of Matrigel on an 8 chambered coverglass (Thermofisher, catalog 

#155379). The solution was allowed to solidify at 37° C and then Advanced DMEM/F12 

supplemented with Gentamicin, Penicillin-Streptomycin (Gibco, catalog #15140163), 10 

mM HEPES (Gibco, catalog #15630080), and 2% heat-inactivated fetal bovine serum was 

added to fully cover the Matrigel plug. Cultures were grown in standard tissue culture 

conditions at 37° C. Media was refreshed every 1–3 days.

Human 3-dimensional tumor sphere cultures—Primary 3D tumor sphere cultures 

were generated from patient-derived xenografts (PDXs) implanted into NSG mice as 

described below.

Human tumor sphere cultures were plated using tissue culture treated plates with inserts 

(Plates: Falcon, catalog #353504; Inserts: Falcon, catalog #353095). Briefly, up to 10,000 

primary patient-derived xenograft LUAD cells were mixed in 50% Matrigel and 50% 

Advanced DMEM/F12 and plated on the insert. Human organoid media with appropriate 

supplements (Table S6) was added to the well before the addition of the insert. Cultures 

were grown in standard tissue culture conditions at 37° C. Media was refreshed every 2–3 

days.
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Mice—We used C57BL/6 x Sv129 mixed background mice from the following previously 

published strains: KrasLSL-G12D (Jackson et al., 2001), Trp53flox/flox (Marino et al., 2000), 

Rosa26LSL-tdTomato (Madisen et al., 2010), and Rosa26LSL-Luciferase (Safran et al., 2003). In 

addition, we used NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (aka NSG mice) (Ishikawa et al., 2005) 

(The Jackson Laboratory, catalog #005557) in our allotransplant and patient-derived 

xenograft studies. Tumors were induced in K or KP mice with 0.5–2.5 × 108 PFU of 

AdSPC-Cre (Sutherland et al., 2011) or 2 × 108 PFU of AdCMV-FlpO (Iowa). Mice in all 

experiments were monitored by the investigators and veterinary staff at the Department of 

Comparative Medicine at Massachusetts Institute of Technology (MIT), MA or by the staff 

at the Research Animal Resource Center at Memorial Sloan Kettering Cancer Center 

(MSKCC), NY with food and water provided ad libitum. Mice were treated in accordance to 

all relevant institutional and national guidelines and regulations. Animal studies were 

approved by the Committee for Animal Care at MIT, MA (institutional animal welfare 

assurance no. A-3125–01) or the Institutional Animal Care and Use Committee at MSKCC, 

NY (protocol #17–11-008). For all mouse experiments, sex did not appear to significantly 

influence the resulting tumor transcriptome analysis. A complete list of mice along with age, 

sex, and age of tumor used in experiments is available (Table S6).

Human samples.—Histologic human LUAD samples from MSKCC were obtained under 

MSKCC IRB #06–107 and IRB #12–245. MSK-IMPACT profiling (Samstein et al., 2019) 

was previously performed and the cBioPortal (Cerami et al., 2012; Gao et al., 2013) was 

used to identify LUAD patient samples with KRAS and TP53 mutations. Human samples 

assembled in tissue microarrays in this study from Vanderbilt University Medical Center and 

the Tennessee Valley Health Care Systems were collected with informed consent from 

subjects enrolled on Institutional Review Board-approved protocol 000616 that complies 

with all relevant ethical regulations at Vanderbilt University Medical Center and the 

Tennessee Valley Health Care Systems, Nashville Campus, TN.

Primary tumors for generation of PDX models were obtained with informed consent from 

patients under protocols approved by the MSKCC Institutional Review Board as above as 

well as MSKCC IRB #14–091. MSK-LX984 was derived from a 70-year-old man with lung 

adenocarcinoma harboring somatic TP53R283P, CDKN2AA36Pfs*17, DNMT3BX558_splice, 

MAXH81Pfs*5, and PALB2E1120* mutations as well as an amplification in MAPK1 and 

deletions in MAP2K4, FLCN, and NCOR1. MSK-LX1012 was derived from a 52-year-old 

woman with lung adenocarcinoma harboring somatic mutations KRASG12A, EGFRL858R, 

and PIK3CAH1047R along with amplifications in CDK4, MDM2, and TERT. MSK-LX1182 

was derived from a 68-year-old woman with a lung adenocarcinoma harboring somatic 

mutations NF1Q2721*fs6, TP53S241F, RASA1S247Lfs*6, and KEAP1E343* as well as an 

amplification of MET. A complete list of annotated tissue sections and PDXs used is 

available (Table S6).

METHOD DETAILS

Isolating cells from lung adenocarcinomas—Mice with LUAD tumors were 

euthanized at 2, 12, 20, or 30 weeks following tumor induction. We chose these time points 

because they reflect key stages in LUAD progression: atypical adenomatous hyperplasia 
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(AAH) (KT and KPT at 2 weeks), adenoma (KT at 12 and 30 weeks), adenoma-to-LUAD 

transition (KPT at 12 weeks) and LUAD (KPT at 20 and 30 weeks). We micro-dissected 

large KPT tumors individually at 20 and 30 weeks, whereas all other samples were harvested 

by dissociating entire lungs containing mixtures of neoplasias in various stages of tumor 

progression. Following euthanasia, mice were perfused with S-MEM (Gibco, catalog 

#11380037) through the right ventricle of the heart. Dissected lungs or microdissected 

tumors were dissociated either with protease and DNAse solution in the Lung Dissociation 

Kit (Miltenyi Biotech, catalog #130–095-927) followed by mechanical dissociation using 

gentleMACS “C” columns (Miltenyi Biotech, catalog #130–093-237) according to the 

manufacturer’s instructions (Tammela et al., 2017), or by a mixture of Dispase II (Gibco, 

catalog #17105–041, final concentration 0.6 U/ml), Collagenase Type IV (Thermo Fisher 

Scientific, catalog #17104019; final concentration 0.083 U/ml), and DNase I (Sigma-

Aldrich, catalog #69182–3; final concentration 10 U/ml) in S-MEM solution containing 

Gentamicin (Gibco, catalog #15750–060, final concentration 20 μg/ml) at 37°C for 30 min 

(Table S6). The dissociated cells were filtered using a 100 μm strainer and spun at 300 g for 

5 min at room temperature. The supernatant was removed by aspiration and red blood cell 

lysis was performed using ACK (Thermo Fisher Scientific, catalog #A1049201). Cells were 

then washed with media and pelleted at 300 g for 5 min at 4°C. The supernatant was 

removed, and the pellet resuspended in Fluorescence-Activated Cell Sorting (FACS) buffer 

media (200 mM EDTA with 250 μl heat-inactivated FBS in PBS) before being passed 

through a 40 μm strainer and counted for use in FACS below.

Dissociation of patient-derived xenografts—Primary tumors collected for generation 

of patient-derived xenografts (PDX) models were obtained with informed consent from 

patients under protocols approved by the MSKCC Institutional Review Board. Subcutaneous 

flank tumors were generated as described previously (Daniel et al., 2009).

PDX tumors were dissected off the flank of immunocompromised NSG mice (Jackson 

Laboratory, catalog #005557). Tumor samples were minced using fresh razor blades in a 

sterile dish. Tumors were then transferred to a gentleMACS C tube (Miltenyi Biotech, 

catalog #130–093-237) with 7 ml of RPMI and TDK enzymes (Miltenyi Biotech, catalog 

#130–095-929). The tube was then placed inverted on a gentleMACS dissociator (Miltenyi 

Biotech, catalog #130–096-427) with a heater attached. A pre-selected program 

(37C_h_TDK_3) was used for dissociation. After dissociation (~1hr), the dissociated tumor 

cells were transferred to a 50 ml tube with a 70 μm MACS SmartStrainer (Miltenyi Biotech, 

catalog # 130–098-462) and washed with 20–25 ml of FACS buffer. The sample was then 

centrifuged at 300 g for 5 min and the supernatant discarded. The cell pellet was 

resuspended in up to 5 ml of ACK Lysing Buffer (Lonza, catalog #10–548E) and kept at 

room temperature for 2 min. 20–25 ml of FACS buffer was added and another spin at 300 g 
for 5 min was performed. The supernatant was then discarded and cells resuspended in PBS.

Fluorescence-activated cell sorting (FACS)—Cells were prepared as above and Fc 

block was added on ice for 5 min prior to being stained with the appropriate antibody panel 

(Table S6). Cells were stained for 20 min before washing twice with FACS buffer media. 

Five-min, 300 g spins at 4°C were performed in between washes to pellet the cells. YO-
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PRO-1 (Invitrogen, catalog #Y3603) or DAPI (final concentration 1 μg/ml) was added to 

each sample to identify dead cells and FACS was performed at either the Swanson 

Biotechnology Center Flow Cytometry Core Facility at the Koch Institute for Integrative 

Cancer Research or the Flow Cytometry Core Facility at Sloan Kettering Institute/MSKCC, 

using a BD FACS Aria Sorter. Cells for single cell experiments were sorted using the ‘single 

cell purity’ mode; cells for culture and allotransplant were sorted using ‘yield’ mode. Cancer 

cells in the LUAD progression study were sorted as (CD45/CD31/CD11b/TER119)−/

tdTomato+/DAPI− live cells. To isolate TIGIT+ cancer cells, dissociated tumor cells were 

stained and sorted for live (CD45/CD31/CD11b/CD11c/F4/80/TER119)−/EPCAM+/YO-

PRO1−/TIGIT+ cells. TIGIT− cells were sorted as live (CD45/CD31/CD11b/CD11c/(F4/80)/

TER119)−/EPCAM+/YO-PRO1−/TIGIT− cells. CD109+ cells were sorted from tumors 

generated in KPT mice and gated as (CD45/CD31/CD11b/CD11c/(F4/80)/TER119)−/

tdTomato+/YO-PRO-1−/CD109+ live cells. We confirmed that the isolated TIGIT+ cells 

belonged to cluster 5/HPCS by qPCR (described below) for cluster 5 markers (Tigit, Epcam, 
and Slc4a11). Gusb was used as a housekeeping control. qPCR primer sequences are 

available (Table S6 and Key Resources Table).

Integrin α2Hi and integrin α2Lo cells were isolated from patient-derived xenografts grown in 

NSG mice by flow cytometry. Tumors were dissociated as above and sorted as live (anti-

human CD45, CD31, CD11b, CD11c) −/(anti-mouse CD45/TER119/H-2Kd/CD31)−/(anti-

human EPCAM)+/DAPI−/Integrin α2Hi) cells. Integrin α2Hi cells were defined as the top 

15% of the integrin α2-expressing cells; integrin α2Lo cells represented the rest of the 

tumor.

Plate-based scRNA-Seq—Cells were dissociated as above, stained with DAPI and live 

cells were sorted as described above into 96 well plates containing 5 μl of TCL Buffer 

(Qiagen, catalog #1031576) with 1% beta-mercaptoethanol. Plates were processed by a 

modified SMART-Seq2 protocol (Picelli et al., 2013), with the following modifications: 

RNA from single cells was first purified with Agencourt RNAClean XP beads (Beckman 

Coulter, catalog #A63881) using Bravo Automated Liquid Handling Platform prior to oligo-

dT primed reverse transcription with Maxima reverse transcriptase (Thermo Fischer, catalog 

#EP0752) and locked TSO oligonucleotide (Exiqon, custom made), which was followed by 

a 21 cycle PCR amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, 

catalog #KK2601). The WTA product was purified using Agencourt AMPure XP beads 

(Beckman-Coulter, catalog #A63881) and a Bravo Automated Liquid Handling Platform. 

Libraries were tagmented using the Nextera XT Library Prep kit (Illumina, catalog 

#FC-131-1096) with custom barcode adapters (Table S6). Libraries from 384 cells with 

unique barcodes were combined and sequenced using a NextSeq 500 sequencer (Illumina, 

catalog #FC-404-2005) at the Broad Genomics Platform.

Droplet-based scRNA-Seq—Mice with LUAD tumors were prepared and stained as 

above. Live cells were collected and processed directly by droplet based scRNA-Seq using 

the 10X genomics Chromium Single Cell 3’ Library & Gel bead Kit V2 according to 

manufacturer’s protocol. An input of 6,000 cells was added to each 10x channel with a 
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median recovery of 3,266 cells. Libraries were sequenced on an Illumina Nextseq (Illumina, 

catalog #FC-20024907) or HiSeqX (132 bp reads) at the Broad Genomics Platform.

Single-cell DNA sequencing—Single tumor cells were isolated by microaspiration after 

tumor dissociation, and genomic DNA was amplified with the GenomePlex Single Cell 

Whole Genome Amplification Kit (Sigma, catalog #254–457-8). Amplified DNA was 

purified, barcoded and pooled, and sequenced on an Illumina HiSeq2000 at the MIT Bio-

Micro Center.

Bulk ATAC-Seq—Bulk assay for transposase-accessible chromatin sequencing (ATAC-

Seq) via Omni-ATAC was performed as described previously (Corces et al., 2017) with 

slight modifications: Briefly, ~10,000 cells were resuspended in 1 ml of cold ATAC 

resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in 

water). Cells were centrifuged at 500 g for 5 min in a pre-chilled (4 °C) fixed-angle 

centrifuge. After centrifugation, the supernatant was carefully aspirated not to perturb the 

cell pellet. Cell pellets were then resuspended in 35 μl of ATAC-lysis buffer (ATAC-RSB 

containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin (Promega, catalog #G9441)) 

by pipetting up and down. This cell lysis reaction was incubated on ice for 3 min. After 

lysis, 1 ml of ATAC-wash buffer (ATAC-RSB containing 0.1% Tween-20 (without NP40 or 

digitonin)) was added, and the tubes were inverted to mix. Nuclei were then centrifuged for 

10 min at 500 g in a pre-chilled (4 °C) fixed-angle centrifuge. Supernatant was removed and 

nuclei were resuspended in 10 μl of transposition mix (25 μl 2× TD buffer, 2.5 μl transposase 

(Illumina, catalog #15027865), 16.5 μl PBS, 0.5 μl 1% digitonin, 0.5 μl 10% Tween-20, and 

5 μl water) by pipetting up and down six times. Transposition reactions were incubated at 37 

°C for 30 min in a thermomixer with shaking at 1,000 rpm. Reactions were cleaned up with 

Qiagen MinElute PCR Purification Kit (Qiagen, catalog #28004). ATAC-Seq libraries were 

amplified with 10 PCR cycles and sequenced on NextSeq 550 (paired-end 35 bp).

Single-cell ATAC-Seq—Samples for single-cell ATAC-sequencing were isolated from 

primary tumors by flow cytometry as above and then frozen in Bambanker Cell Freezing 

Medium (Lymphotec, catalog #302-14681) for at least 24 h. Cells were then thawed and 

processed as per manufacturer’s guidelines (Chromium Single Cell ATAC Reagent Kit v1 

chemistry, catalog #1000083).

Quantitative PCR (qPCR)—RNA was isolated from whole tumors or sorted cell 

populations using either the Qiagen RNeasy Plus Mini kit (catalog #74136) or Micro kit 

(catalog #74034) as appropriate per manufacturer’s instructions. cDNA was synthesized 

using either the SuperScript VILO cDNA synthesis kit (Invitrogen, catalog #11754050) or 

the PrimeScript RT Reagent kit (Takara, catalog #RR037B). qPCR was performed in 

quadruplicate with 1–2 μl of cDNA (diluted 1:10 if necessary) using the Powerup SYBR 

mix (Applied Biosystems, catalog #A25778) and run on the QuantStudio 7 Flex Real-Time 

PCR System. The ΔΔCT method was used to compare markers of interest and expression 

was normalized to Gusb. All oligonucleotides used in this study are listed in Table S6.

Isolation of mouse LUAD tumor spheres—TIGIT+, CD109+, and TIGIT−/CD109− 

cells were isolated from 17–19 week LUAD tumors using FACS as above and plated at a 
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density of <1000 cells per well on an 8-chamber coverglass (Thermofisher, catalog #155379 

with Matrigel as above. Tumor spheres were grown for 11 days before counting and 

dissociation for scRNA-Seq.

Isolation of LUAD PDX tumor spheres—Integrin α2Hi and Integrin α2Lo cells were 

isolated from three PDXs (MSK-LX984, MSK-LX1012, MSK-LX1182) using FACS as 

above and plated on tissue culture-treated plates with inserts (Plates: Falcon, catalog 

#353504; Inserts: Falcon, catalog #353095) at a density of up to 10,000 cells per well. 

Tumor spheres were grown for 22 days before quantification.

Dissociation of tumor spheres—For dissociation of the organoids for single cell 

sequencing in a 24 well plate, media was replaced with 200 μl dissociation mix (50 μl 

Corning Dispase, catalog #354235; 150 μl Advanced DMEM/F12 supplemented media as 

above) per well and the plate incubated at 37°C for 30 min. 1 ml of cold PBS was added to 

each well and the media transferred to a 15 ml tube PBS was added to the tube to increase 

the volume to 10 ml, followed by a 300 g 5min spin at 4°C. The supernatant was gently 

aspirated, with the goal of leaving about 300–500 μl of supernatant. 500 μl of TrypLE 

(Gibco, catalog #12604013) was added and the tube incubated at 37°C for 5 min. Serum 

containing Advanced DMEM/F12 was then added and the contents transferred to a sterile 

filter top tube. The cells were pelleted by a 300 g 5min spin at 4°C and the supernatant 

carefully removed.

Generation of orthotopic mouse LUAD allotransplants—TIGIT+ and TIGIT− cells 

containing an active Rosa26LSL-Luciferase allele were sorted from 18–21-week old LUAD 

tumors using FACS as above in yield mode and orthotopically allotransplanted into three 

(receiving TIGIT+ cells) and five (receiving TIGIT− cells) 35-week old immunodeficient 

NSG mice at 28,000 transplanted cells per mouse. After 8 weeks, tumors were harvested. 

scRNA-Seq was performed both pre-transplantation (using ‘purity’ mode for enrichment) 

with the remaining cells harvested (using ‘yield’ mode) for transplantation. Tumor cells 

were harvested 8 weeks post-transplantation (using ‘purity’ mode).

Chemotherapy—The response of the KP model to cisplatin chemotherapy has been 

carefully characterized in a previous study (Oliver et al., 2010): the tumors undergo a nadir 

in proliferation and the peak of a second wave of apoptosis at 72 h following a single dose of 

cisplatin. Mice with 20 week old LUAD tumors were treated with freshly prepared cisplatin 

(EMD-Millipore, catalog #232120) in PBS at 7 mg/kg body weight intraperitoneally as 

previously described (Oliver et al., 2010). Tumors were extracted at 72 h following cisplatin 

or vehicle administration and isolated for scRNA-Seq.

In vivo bioluminescence—TIGIT+ and TIGIT− cells containing an active 

Rosa26LSL-Luciferase allele were sorted from 18–21-week old LUAD tumors and 

orthotopically allotransplanted into fourteen 8-week old immunodeficient NSG mice at 

50,000 transplanted cells per mouse. After 39 days, mice were administered 100 mg kg D-

Luciferin (Perkin Elmer, catalog #122799) via intraperitoneal (IP) injection. Ten min after 

injection, mice were imaged on an IVIS Spectrum imaging system (Perkin Elmer, catalog 
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#124262) with 1-min exposure and medium binning. Average radiance was recorded in ROIs 

surrounding the chest cavity of each mouse.

Immunohistochemistry—Tissues were fixed in either Shandon Zinc Formal-Fixx 

(Thermo Scientific, catalog #6764255), 10% neutral buffered formalin, or 4% PFA for 24–

48 h at 4° C and embedded in paraffin. Manual immunohistochemistry was performed using 

Vector Labs reagents (ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) Polymer Detection 

Kit, catalog #MP-7401–50; Mouse-on-Mouse ImmPRESS HRP (Peroxidase) Polymer Kit, 

catalog #MP-2400; ImmPACT DAB Peroxidase (HRP) Substrate, catalog # SK-4105) as per 

manufacturer protocols. Antibodies and dilutions used are available in Table S6.

Multiplexed IF—Automated immunofluorescence (IF) staining was performed at the 

Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center using a 

Discovery XT processor (Ventana Medical Systems). The tissue sections were 

deparaffinized with EZPrep buffer (Ventana Medical Systems), antigen retrieval was 

performed with CC1 buffer (Ventana Medical Systems). Sections were blocked for 30 min 

with Background Buster solution (Innovex), followed by avidin-biotin blocking for 8 min 

(Ventana Medical Systems). Multiplexed immunofluorescence stainings were performed as 

previously described (Yarilin et al., 2015). Staining was performed in the following order: 

Anti-Claudin-4 (Invitrogen, catalog #36–4800, 5 μg/ml), anti-Claudin-2 (Invitrogen, catalog 

#32–5600, 5 μg/ml), anti-Lysozyme (DAKO, catalog #A0099, 2 μg/ml). After staining slides 

were counterstained with DAPI (Sigma Aldrich, catalog #D9542, 5 μg/ml) for 10 min and 

coverslipped with Mowiol mounting reagent. Secondary antibodies used for visualization 

were AF488 (Claudin-4), AF594 (Claudin-2), and AF546 (Lysozyme). Slides were scanned 

to acquire fluorescence signal.

Single-molecule mRNA in situ hybridization—Single-molecule mRNA in situ 
hybridization was performed on formalin-fixed paraffin-embedded tissues using the manual 

Advanced Cell Diagnostics RNAscope 2.5 HD Detection Kit (catalog # 322360) per the 

manufacturer’s instructions. Antigen retrieval times were 20 min for mouse and human 

tissues. Protease digestion times were 15 min for mouse LUAD tumor tissues and 30 min for 

human LUAD tumor tissues. Probes are listed in Table S6.

COMPUTATIONAL ANALYSIS

scRNA-Seq processing and quality filtering—For plate-based scRNA-Seq by 

SMART-Seq2, reads were aligned against Gencode GRCm38.p5 (M15) mouse reference 

using STAR (v2.5.4b), and transcript abundance was quantified using RSEM (v.1.3.0). For 

each cell bam, Picard-Tools CollectRnaSeqMetrics was run on each genome aligned bam 

and summary statistics were collected (Table S7). Cell were excluded from further analysis 

based on the following criteria: (1) Fewer than 1000 genes; (2) Fewer than 500,000 reads 

aligned. Additionally, for each plate we exclude cells deviating by >2 times the interquartile 

range (IQR) above/bellow the upper/lower quartile for: (1) number of genes-expressed; (2) 

total read counts (3) or mean expression of housekeeping panel (Tirosh et al., 2016a). 

Similarly, we exclude cells per plate deviating by >2×IQR above the top quartile for 

proportion of mitochondrial reads, proportion of intergenic reads, or total count of ribosomal 
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RNA reads, and by >2×IQR below the bottom quartile for proportion aligned reads and 

expression of tdTomato marker transcript. Next, gene level read count summaries were 

sampled (with replacement) to a uniform depth of 500k reads per cell. In order to further 

account for differences in amplification efficiency and sequencing depth, read counts were 

transformed to log2(100k+1) normalized abundance, which was used for all downstream 

analysis unless indicated otherwise.

For droplet-based scRNA-Seq, Cellranger v3.1 was used to align reads to the mm10 mouse 

reference sequence, and its output processed using the dropletUtils R package for excluding 

chimeric reads, and identification and exclusion of empty cell droplets (Griffiths et al., 2018; 

Lun et al., 2019). We excluded any chimeric read that had less than 80% assignment to cell 

barcode. Cell barcodes were tested for emptiness against a background generated based on 

barcodes with 1000 to 10 UMIs, with cutoffs determined dynamically based on channel 

specific characteristics. We further estimate the saturation of UMIs and genes in individual 

cells by subsampling reads without replacement in each cell barcode, in incremental 

fractions of 2%, with 20 repeats. A saturation function of the form y = ax
(x + b) + c was fit 

based on the number of UMIs observed (Table S7). We excluded cell barcodes based on any 

one of following criteria: (1) Fewer than 500 genes; (2) Fewer than 5,000 reads; (3) Fewer 

than 1,000 transcript UMIs, (4) Less than 30% reads mapping; (5) Per cell estimated 

sequencing saturation less than 0.3; (6) Non-empty droplet FDR > 0.1; (7) Expression of 

tdTomato > 8 TP10k. In addition, a subset of 10x channels reaching high UMI sequencing 

saturation (Table S7), were filtered to retain only UMIs captured by 2 or more reads.

Dimensionality reduction and clustering—We clustered the plate-based scRNA-seq 

profiles across all time points using a non-negative matrix factorization (NMF) and a graph 

clustering-based approach, as follows. First, we identified transcriptionally over-dispersed 

genes within each experimental batch by examining the difference of the coefficient of 

variation (CV) with the median CV for other genes with a similar mean expression (Satija et 

al., 2015). A robust set of ~2,000 genes is retained based on an elbow-based criterion, 

applied to the median of over-dispersed difference statistic based on 200 samples of 75% of 

cells. Next, subsampling 80% of genes and samples, we used NMF to reduce the dimension 

of the full dataset to between 20 and 40 dimensions (Lee and Seung, 1999). The loading 

matrices (i.e., activations) of these NMF components were used to calculate a cosine 

similarity k-nearest-neighbors (k-NN) graph (k=21). This graph was clustered using stability 

optimizing graph clustering (Delvenne et al., 2010; Shekhar et al., 2016). A final clustering 

of 14 subsets was determined based on an elbow-criteria of mean cluster silhouette. Two 

clusters of 44 and 35 cells were excluded from further analysis as either suspected doublets 

and or recombination in off-target cells (club cells).

Visualization of single cell profiles—We generated tSNE plots from NMF loading 

matrices, with a perplexity value of 30 and the Barnes-Hut approximation method (Van Der 

Maaten, 2014).

We generated PHATE maps (Moon et al., 2019) using normalized single cell expression 

profiles of the same top over-dispersed genes as used for clustering (above), and the 
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following input parameters: k=21 nearest neighbors, square root potential heat diffusion 

kernel (pot_method=‘sqrt’), 4,000 feature landmarks for metric multi-dimensional scaling 

(n_landmarks=4000, 30 input principle components (npca=30), distance=‘cov’).

Differentially expressed genes—Differentially expressed genes (DEG) were identified 

using a Poisson-Tweedie model on unscaled transcript counts normalized to uniform counts 

by sampling reads. Genes were identified as differentially expressed in a particular set of 

cells if they met all of the following criteria: (1) Benjamini-Hochberg FDR < 0.1; (2) 

Minimum expression in at least 10% of cells; and (3) Area under a receiver operating curve 

(AUROC) > 0.60, (4) log fold change vs. cells in all other subsets > 1.5, and (5) log-fold 

change vs. cells in any other subset is highest within the set.

Pearson residuals of contingency tables—The Pearson residual is a measure of 

relative enrichment for cells in a contingency table. It is calculated here as: R = obs − exp
exp , 

where the expected value is calculated as the product of row and column marginal 

probabilities by the total count.

Estimating heterogeneity within a timepoint—Heterogeneity of single cell profiles 

within a timepoint was quantified by examining the average pairwise Normalized Mutual 

Information (NMI) between the profiles within each time point. Using 100 differentially 

expressed genes per each of 12 subtype clusters and top 100 NMF genes per each of 11 

NMF programs (above; Differentially expressed genes, and below; Novel expression 

programs by NMF) (total of 2,374 genes), we discretized expression per gene into 10 bins. 

In order to account for differences in the number of cells across samples, we subsampled 

100 cells from each time-point (or mouse) 100 times and calculated the median NMI across 

each within-timepoint sampled pair. NMI was calculated between each pair of cells x and y 

by first calculating the mutual information I(X; Y ) = ∑x ∑y p(x, y)log p(x, y)
p(x)p(y)  and then 

normalizing it by the entropy of each cell: NMI(X, Y ) = I(X; Y )
H(x)H(Y ) . To estimate a p-value 

for the difference in NMI value between two groups we compare the number of sub-samples 

from in A group vs all those in another B group and report P = (∑i ∑j |Ai < Bj | + 1)/(|A| ∙ |B| 

+ 1).

Single-cell DNA copy number quantification—Sequencing reads were aligned to 

reference GRCm38.p mouse genome reference using BWA (0.7.17). Duplicate reads were 

marked with SAMBLASTER (v0.1.24). CNVkit (v0.9.6) was used to quantify read 

abundance in genomic window of 200 kb, and normalized for GC content and mappability, 

excluding outlier bins. Segmentation was performed using a three state HMM for amplified 

and deleted regions (Talevich et al., 2016).

Copy number inference from scRNA-Seq profiles—Single cell copy number was 

estimated following our previously published method (Tirosh et al., 2016a). Briefly, we 

square root log transformed TP100k expression values to stabilize variance (Anscombe 

transform), and capped per-cell, and per-gene expression to the 99th percentile to reduce the 

effect of outliers (i.e., for each cell, genes expressed above the 99th percentile are set to the 
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99th percentile, next for each gene, cells expressed above 99th percentile are set to the 99th 

percentile). Next, genes were assigned to each of 20 expression bins by mean expression in a 

reference normal, here assigned to be all cells from the “T” only timepoint. For each 

chromosome, all genes were ordered by the location of the Transcription Start Site (TSS), 

and the mean expression value in a sliding window of 25 million bases was calculated (with 

a step size of one million bases), corresponding to ~100 genes windows. For each cell and 

window, we compared the mean expression to a null distribution of gene samples drawn to 

match the normal mean expression, i.e., for a window of k genes, we drew k genes from 

matching expression bins in the normal reference sets (as in single-cell gene set enrichment 

below). The raw mean expression per cell and window was normalized by subtracting the 

mean of the resampling-based null distribution. Additionally, an empirical p value was 

calculated by comparing to the null distribution and used to filter for likely spurious CNV 

events.

Matching RNA inferred CNV to DNA CNVs—For three 20-week KP tumors for which 

we had both single cell DNA-Seq and single cell RNA-Seq, we matched between DNA-

based single cell CNVs and RNA-inferred single cell CNVs, by relating each single cell 

RNA-based inferred CNV profile to the most similar DNA-based single cell CNV profile by 

the L1-norm distance.

Single cell gene set enrichment—We performed single cell gene-set enrichment as 

previously described (Chihara et al., 2018; Tirosh et al., 2016a). Briefly, genes were split 

into 20 bins by mean expression across all cells, where the 20 bins were defined based on 

the distribution of all genes’ expression. Gene expression was centered, scaled, and 

transformed using the logistic function to the [0,1] range. Given a gene set signature of k 
genes, the mean of the normalized expression for the set was calculated in each cell as a raw 

signature score. This score was then compared against a null distribution of 1,000 randomly 

selected signatures, each consisting of k genes, drawn such that the mean expression of each 

of the k genes matches the same global mean expression bin of a gene in the original 

signature. The final per cell activity score is calculated as the per cell raw score centered by 

the mean score of the signatures from the null distribution. This final score is subsequently 

normalized to have mean of zero and standard deviation of one (z-score). We calculate an 

empirical p value of association with the clustering to 12 subtypes (of Figure 1D) by 

comparing an ANOVA F-statistic for the true raw score, with the distribution of the F-

statistic of the randomly selected signatures. The tested gene sets, and their sources are listed 

in Table S8.

Novel expression programs by NMF—To identify robust transcriptional programs, we 

adapted a consensus NMF procedure (Kotliar et al., 2019). We used as input 1,346 NMF 

expression weight components identified across 50 subsampled repeats used for clustering, 

as described above (see section on Dimensionality reduction and clustering). We excluded 

outlier components by sorting components by their cosine distance to the 20th nearest 

neighbor and excluding components with unusually high distance by an elbow-based 

criterion. Next, we constructed a symmetric k-nearest neighbors (k-NN) graph (k=30), and 

identified clusters of highly similar components in this graph, using stability optimizing 
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graph clustering, with an exponentially varied scale parameter (0.1 to 10, resulting in 42 to 3 

clusters). The components in each cluster were median-averaged into a single component, 

resulting in a short list of “consensus NMF” components. These were used as the 

initialization component matrix for a second round of NMF of all cells and highly variable 

genes (as described in Dimensionality reduction and clustering). We selected a solution with 

11 NMF components based on an elbow criterion of reconstruction error of the input data 

matrix.

To characterize the novel transcriptional programs identified with this procedure, we used 

the top 100 genes in each of the 11 components, ranked by the following weighting scheme: 

For the ith gene and jth component we define the scaled weight as follows: 

W Sij = W ij ∗ logmaxk ≠ j
wij
W ik . This weighting scheme prioritizes for high weight (highly 

expressed) and unique genes in each component. We tested for enrichment of the top 100 

genes in each program in a compendium of gene sets listed in Table S8, with the 

hypergeometric test. P values were adjusted by a Benjamini-Hochberg false discovery rate 

procedure.

Optimal transport—To estimate robust transport maps of single cell profiles we adapted 

the Waddington-Optimal Transport (Waddington-OT) approach that we previously reported 

(Schiebinger et al., 2019). Briefly, Waddington-OT estimates, for a set of cells C at a given 

time point, its “descendant distribution” at a later time point as the mass distribution over all 

cells at that later time point. This is estimated by transporting C according to a temporal 

coupling between cells learned by the model. Similarly, the cell set C’s “ancestor 

distribution” at an earlier time is the mass distribution over all cells at that earlier time point, 

obtained by “rewinding” time according to the temporal coupling. In our case, after learning 

the model over the cells in our data, we used it to examine the connection between cell 

clusters across consecutive time points, by defining the sets C by membership in the 12 

clusters in the respective time point (Figure 3A; Figure S3A).

We calculated transport maps between cells in each pair of consecutive time points, except 

that we merged KT and KPT 2-week samples due to low numbers of healthy cells in the 

KPT sample (Figure 1G), such that we had the following transitions: T→{KT2,KPT2}, 

{KT2,KPT2}→KT12, KT12→KT30, {KT2,KPT2}→KPT12, KPT12→KPT20, and 

KPT20→KPT30. For each pair of time points we use the cosine similarity of NMF loading 

matrices for each cell (as described in section Novel expression programs by NMF), as the 

input distance measure for inferring a transport map from each cell in the starting time point 

to a distribution of cells in the subsequent time point, with parameters lambda1 = 1, lambda2 

= 25, and a uniform growth rate. We performed the OT inference procedure 20 times using 

random seeds and the mean across runs was used as the OT map estimate for each pair of 

time points.

Bulk ATAC-Seq—Analysis was performed using the ENCODE ATAC-Seq pipeline 

(v1.5.4, https://github.com/ENCODE-DCC/atac-seq-pipeline), with default parameters, for 

initial quality control analysis. The pipeline was run once for each condition, inputting 

FASTQ files from the mouse replicates (n = 4). A final peak list was generated by 
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processing the resulting BAM files generated by the ENCODE ATAC-Seq pipeline with 

Samtools (v1.8; http://www.htslib.org/) to: (1) filter the BAM files to contain only the main 

chromosomes, (2) subsample each BAM file to the minimum number of reads observed 

across all replicates and conditions, and (3) merge BAM files from each replicate for each 

condition. MACS2 (v2.2.6) (Zhang et al., 2008) was used to call peaks, bedtools (v2.26.0; 

https://bedtools.readthedocs.io/en/latest/) to filter blacklisted regions (as defined by the 

ENCODE project) and merge the peak files from the experimental conditions, and the 

featureCounts function from the Subread package (v2.0.0; http://subread.sourceforge.net/) to 

generate a matrix of peak counts from the merged peak list and filtered BAM files. DESeq2 

(v1.26.0) (Love et al., 2014)was used to call differentially accessible peaks in R (v3.6), with 

~Mouse + Tigit_status as the design variable. Peaks were considered differentially 

accessible if they had an FDR adjusted p value less than 0.1. HOMER (v4.11) (Heinz et al., 

2010) was used to annotate peaks. The UCSC Genome Browser (Kent et al., 2002) was used 

to visualize peaks.

scATAC-Seq data processing—We used the Cell Ranger ATAC (v1.2) pipeline (10x 

Genomics) to generate single-cell accessibility counts. First, we used cellranger-atac 
mkfastq to generate demultiplexed FASTQ files from the raw sequencing reads. We then 

aligned these reads to the mouse mm10 genome and quantified chromatin accessibility 

counts using cellranger-atac count. This pipeline performs barcode error correction, PCR 

duplicate marking, peak calling and cell calling, and produces both a filtered peak cell 

barcode matrix, and a fragment file containing all fragments assigned to single cells.

scATAC-Seq quality control—Starting with the filtered peak cell barcode matrix, we 

further filtered out low quality cells using five per-cell quality control metrics: the total 

number of fragments overlapping peaks, the percent of fragments mapping to peaks, the 

percent of fragments overlapping blacklisted regions as defined by the ENCODE project, the 

ratio of mononucleosomal to nucleosome-free fragments, and the transcriptional start site 

(TSS) enrichment score as defined by the ENCODE project (https://www.encodeproject.org/

data-standards/terms/). We retained cells with between 1000 and 50000 fragments 

overlapping peaks, with at least 20% of the fragments mapping to peaks, with fewer than 5% 

of fragments mapping to blacklisted regions, with the ratio of mononucleosomal to 

nucleosome-free fragments less than five, and with TSS enrichment score greater than two.

scATAC-Seq dimensionality reduction—We analyzed the cells passing quality control 

using the R packages Signac (v0.2.1) (https://github.com/timoast/signac) and Seurat (v3.1.2) 

(https://github.com/satijalab/seurat) (Butler et al., 2019). We performed term frequency 

inverse document frequency (TF-IDF) normalization on the peak cell barcode matrix using 

RunTFIDF, which normalizes across both cells and peaks, to control for differences in cell 

sequencing depth and to increase values for peaks that occur more rarely across cells. We 

chose features (peaks) for dimensionality reduction and clustering using FindTopFeatures, 

which ranks peaks based on the total number of fragments in a peak across all cells. We 

retained the top 90% of peaks. We next performed a singular value decomposition to reduce 

dimensionality of the data, with the function RunSVD, and retained the left and right 

singular vectors associated with the 30 largest singular values. We performed graph-based 
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Louvain clustering using FindNeighbors and FindClusters, with k = 20 for the k-nearest 

neighbor algorithm and the resolution parameter set to 0.8. We visualized gene activity and 

clustering results on Uniform manifold Approximation and Projection (UMAP) using 

RunUMAP. The UMAP was calculated from the first 30 singular vectors of the 

dimensionally reduced data with the following settings: n.neighbors=30, min.dist=0.3, and 

spread=1.

Chromatin accessibility data was used to estimate a gene’s activity by assuming that gene 

expression is correlated with promoter accessibility. For each gene, we extracted its gene 

coordinates from the mouse genome using EnsDb.Mmusculus.v79, and then extended the 

resulting coordinates 2 kb upstream so that they covered both the gene body and promoter. 

The activity of each gene was estimated by counting how many fragments within each cell 

mapped to this extended region. To examine the activity of entire gene modules or signatures 

within single cells, we scored signature activity levels using AddModuleScore. This function 

calculates the average activity levels of the genes in a signature and then subtracts off the 

average activity levels of control gene sets (Tirosh et al., 2016a). The genes in the control 

sets are randomly chosen with the constraint that they have similar activity levels to the 

genes in the signature. This approach controls for technical differences in cell quality and 

library complexity across single cells that contribute to a signature’s activity level.

scATAC-Seq data integration—To integrate the TIGIT+ and TIGIT− scATAC-Seq 

datasets, we restricted analysis to peak regions that overlapped across both datasets using 

MergeWithRegions and performed the same dimensionality reduction and clustering 

analysis described above. To integrate the data while correcting for technical batch effects, 

we use Seurat v3 integration, which identifies correspondences between cells in the two 

datasets and applies a correction matrix to the peak cell barcode matrix (Stuart et al., 2019). 

We identified the corresponding cell subsets using FindIntegrationAnchors, where the 

dimensionality of both datasets was first reduced using canonical correlation analysis and 

the first 30 canonical correlation vectors were retained. We then calculated and applied a 

correction to the peak barcode matrix using IntegrateData, with the weight.reduction 

parameter set to use the dimensional reduction space calculated above. Finally, we took this 

corrected peak cell barcode matrix and applied the same dimensional reduction, clustering, 

and UMAP visualization described above.

Comparison to human scRNA-Seq data—Processed scRNA-Seq profiles from human 

LUAD tumors were downloaded from GSE127465, E-MTAB-6149, and E-MTAB-6653 

(Lambrechts et al., 2018; Laughney et al., 2020; Zilionis et al., 2019). Analysis was limited 

to lung adenocarcinoma samples and we examined only cells annotated by the authors as 

cancer cells.

Cross-cohort activity of NMF gene programs—Activity of NMF programs defined in 

the mouse time course study (“source dataset”) was estimated in additional secondary 

datasets from mouse or human (“target dataset”). For human, 1-to-1 gene orthologs were 

mapped between mouse and human using an ortholog table downloaded from Ensemble 

BioMart (v.96, downloaded June 11, 2019), retaining only 1:1 orthologs. For both human 

and mouse, the analysis was limited to 100 differentially expressed genes per each of 12 
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subtype clusters (Figure 1D) and top 200 NMF genes per each of 11 NMF programs (total of 

2,374 genes). The distribution of each gene was matched between the source and target 

cohort based on a matching of the empirical cumulative distribution functions (eCDF) of the 

gene in the target dataset to the eCDF of the gene in the source dataset, while ignoring zero 

values – that is, for a given gene the cell expressed at the nth percentile in the target cohort is 

assigned the expression of the nth percentile cell in the source. We excluded from analysis 

genes expressed in less than 1% of the cells in the target dataset, as well as genes showing a 

large deviation in mean expression between the two cohorts after normalization (defined as 

genes deviating from the predicted expression at an alpha < 0.0005, using a Gaussian 

process regression of the source mean expression to the target mean expression). The 

remaining genes were used to estimate the activity matrix (H) in the target cohort, using a 

nonnegative least-squares (NNLS) fit of the source NMF gene program (W) matrix on the 

transformed and normalized expression values of the target dataset. NNLS fit was performed 

using the Block Principal Pivoting method for solving the equation: minH>0‖X − WH‖F, 

where X is the input matrix for the target dataset, and W was a matrix of NMF gene 

programs (gene by k) learned from the source dataset (Kim and Park, 2008).

Cross-cohort cluster assignments—To transfer cluster assignments, we use a similar 

procedure to that for estimating NMF activities (section Cross-cohort activity of NMF gene 

programs). The procedure above was applied to each of 50 NMF activity matrices (H) for 

the target dataset generated by subsampling the source dataset, resulting in a matrix of 1,346 

activity features in the target dataset. Next, a multiclass gradient boosting tree classifier was 

trained to on the activity feature matrices to predict cluster type (using the XGBoost package 

v. 0.82.0.1 in R v3.5.3). This classifier was used to predict cluster assignments in the target 

dataset on the set of NMF activity features.

Comparison of HPCS to stem cell signatures—We quantified enrichment between 

our HPCS cluster or the highly mixed state/HPCS and known signatures for normal and 

cancer stem cells using the GeneOverlap R package (v1.22.0) (Shen and Sinai, 2019), which 

is based on the hypergeometric distribution. To build a set of stemness signatures, we 

collected 1197 gene sets from the Molecular Signatures Database (MSigDB, v6.2) (Liberzon 

et al., 2015; Liberzon et al., 2011; Subramanian et al., 2005) and CellMarker (downloaded 

on 2019/10/22) (Zhang et al., 2019), mapped them to mouse genes using the orthology 

mapping from Mouse Genome Informatics (http://www.informatics.jax.org/), and filtered 

the signatures to retain only those with “_stem_” in their name and at least four genes in the 

gene set; our final set of stemness signatures contained 1,197 gene sets. We defined our 

HPCS gene set by the set of 406 differentially expressed genes marking cluster 5, and our 

highly mixed state/ HPCS gene set as the 103 genes defining this NMF program. We 

calculated enrichment using newGeneOverlap and testGeneOverlap, with a genomic 

background of 25,656 – the number of genes in our RNA expression data expressed in 10 or 

more cells. P values were adjusted for multiple comparisons using p.adjust in R, with the 

‘fdr’ correction method. All analyses were carried out in R (v3.6). Gene sets that showed 

significate enrichment (Padj ≤ 0.01), were manually curated to validate that they are truly 

enriched in normal or cancer stem cells and that the signature did not represent an 

experimental perturbation that may have confounded the conclusion. Gene sets from the 
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following studies were identified: (Bystrykh et al., 2005; Gal et al., 2006; Gattinoni et al., 

2011; Ramirez et al., 2012; Villanueva et al., 2011); in addition a gene ontology set 

“GO_POSITIVE_REGULATION_OF_STEM_CELL_PROLIFERATION” was identified. 

Curated gene sets are plotted based on Padj and Jaccard Index in Figure S4D. The Jaccard 

index was calculated by the number of intersecting genes between the two gene sets divided 

by the union of the two gene sets. We only found significant correlations between the HPCS 

and eight of these signatures, including several hematopoietic stem cell signatures, an adult 

stem cell signature, as well as an embryonic stem cell signature (Bystrykh et al., 2005; Gal 

et al., 2006; Gattinoni et al., 2011; Ramirez et al., 2012; Villanueva et al., 2011), with the 

largest overlap including only 14 (8.24%) of the 170 genes in the signature (Figure S4D; 

Table S4).

Human clinical data analyses—Processed RNA-seq expression data was downloaded 

from https://gdc.cancer.gov/about-data/publications/pancanatlas. Clinical annotations were 

downloaded from http://www.linkedomics.org/data_download/. All survival outcomes data 

was transformed to months. We excluded patients older than 85 at time of diagnosis, or 

having reported post-surgery residual disease (LUAD analysis only), the latter because this 

appeared to be a strong confounder of outcome with few observations. When calculating 5-

year survival we capped the survival period at 60 months and right censored patients with 

longer survival. Survival analysis was performed using a Cox proportional hazards model 

including terms for age, tumor purity, and stratified for stage (early – stage I or stage II, vs. 

advanced – stage III or stage IV) for LUAD and stratified by cancer type for PANCAN. 

Kaplan-Meier plots were drawn by dividing the NMF activities or cluster gene signatures 

into 3 equal sized bins. NMF activities or cluster signature activities (calculated as described 

above in Cross-cohort activity of NMF gene programs and Single cell gene set enrichment), 

are used as continuous predictors in a cox proportional-hazards model. Reported p values are 

for a likelihood-ratio test comparing the full model to one including only the baseline 

parameters (age, tumors purity and stage or cancer type). Genetic mutation information was 

downloaded from cBioportal on Feb 24th 2020. When testing for association with outcome 

in the context of genetic state, samples were considered mutated if these were annotated for 

any non-silent mutation or copy number amplification/deletion.

Computational tools—Software used for analysis of data during this project included, 

GraphPad Prism (version >= 8) MATLAB (version >= 9.2.0.556344-R2017a), R (version >= 

3.4), and Python (versions >= 2.7 and >= 3.6).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in the figure legends and main text above. 

Analysis was performed using Matlab, R and Python. For most small-scale experiments, 

significance was determined to control the family-wise type I error rate with α < 0.05 

(Bonferroni procedure). When appropriate, multiple hypothesis testing correction was 

employed using the Benjamini-Hochberg procedure at a false discovery rate (FDR) < 0.1.
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SIGNIFICANCE

Cellular states capable of promoting tumor progression and resisting therapies invariably 

exist in heterogeneous tumors. Thus, understanding how intra-tumoral heterogeneity is 

generated and maintained during tumor evolution is of tremendous importance for the 

development of effective cancer therapies. We discovered that the emergence and 

maintenance of cellular heterogeneity is driven by a high-plasticity cell state (HPCS) that 

is common to mouse and human lung tumors. Furthermore, we find that the HPCS 

harbors high tumorigenic capacity, is drug resistant and associates with poor patient 

prognosis. We expect the HPCS program to prove useful in identifying highly plastic cell 

states in other cancers and biological contexts. Targeting the HPCS may enable 

therapeutic strategies to suppress tumor heterogeneity and treatment resistance.
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Lung cancer progression is accompanied by a stereotypic expansion of heterogeneity

Cell state heterogeneity arises largely independently of genetic variation

State transitions occur via a HPCS harboring high differentiation & growth capacity

The HPCS is drug resistant and portends poor patient survival across all cancers

Cellular states capable of promoting tumor progression and resisting therapies exist in 

heterogeneous tumors. Marjanovic et al. discover that a high-plasticity cell state common 

to mouse and human lung tumors drives cellular heterogeneity, and is highly tumorigenic 

and drug resistant, as well as associates with poor patient prognosis.
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Figure 1. Increased transcriptional heterogeneity in mouse lung adenocarcinoma (LUAD) 
evolution is reproducible across individual tumors and mice, but cannot fully be explained by 
gene copy number variation (CNV).
(A) Experimental pipeline. (B) Tumor evolution in a LUAD GEMM. Top: genetic constructs 

of three mouse models profiled by scRNA-Seq at different time points. Middle and bottom: 

schematic (middle) and hematoxylin & eosin staining of tissue sections (bottom) at different 

phases of tumor progression. AT1: normal alveolar type 1 (AT1) cells; AT2: normal alveolar 

type 2 (AT2) cells, AAH: atypical adenomatous hyperplasia. Scale bar: 100 μm. (C) PHATE 

map embedding (STAR Methods) of scRNA-Seq profiles (dots) collected from the models 

Marjanovic et al. Page 37

Cancer Cell. Author manuscript; available in PMC 2021 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and time points in (B) (labels, top). Colored dots: Cells collected from the indicated sample; 

grey dots: all other cells. (D) Increased diversity of cell clusters with progression. Left: The 

fraction of cells (y axis) in each cluster (x axis) that are derived from each sample type 

(genotype and time point; colored as in (C)). Middle and Right: matched t-stochastic 

neighbor embedding (tSNE, left plot, STAR Methods) and PHATE map embedding (right 

plot, as in (C)) colored by either sample type (middle pair) or cluster number (STAR 

Methods) (right pair). (E) Reduced transcriptional homogeneity within time point with 

progression. Transcriptional heterogeneity is inversely proportional to the Normalized 

Mutual Information (NMI, y axis) between cells within in each sample type (genotype/time 

point combination, x axis), for either whole lung samples or microdissected single tumors. 

Box plots: upper, median, and lower quartile of 1,000 bootstrap samples, of 50 cells each, 

from the indicated time point; whiskers: 1.5 interquartile range. * p < 0.05, ** p < 0.01, *** 

p < 0.001 (STAR Methods). (F) Fraction of cells (y axis) in sample (x axis) that are 

members of each cluster (color code, as in D, right). The number of clusters observed in 

each individually plucked tumor is indicated at the top of the bars. (G) CNVs (red: 

amplifications, blue: deletions) across the chromosomes (columns) inferred from the 

scRNA-Seq of each cell (rows) from 12 KP tumors at the 30-week time point (STAR 

Methods). Color: the cluster membership of each cell. (H) Congruence between CNV 

profiles inferred from scDNA-Seq and scRNA-Seq. CNVs shown as in (G) for single cells 

(rows) of one individually microdissected KPT tumor at 30 weeks profiled by scDNA-Seq 

(top-left) or scRNA-Seq (bottom-left). Left color bar: Predominant clonotypes identified 

from scDNA-Seq (top-left) and assigned to scRNA-Seq cells (bottom-left). Far left color bar 

in scRNA-Seq panels: cell cluster membership as in (G). (I) A single clonotype matches 

multiple transcriptional states. PHATE map as in Figure 1D, colored by clonotype. See also 
related Figure S1.

Marjanovic et al. Page 38

Cancer Cell. Author manuscript; available in PMC 2021 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Loss of lung lineage fidelity in LUAD progression and emergence of a highly mixed 
identity program.
(A, B) Signature score (color bar, STAR Methods) of either adult [(Han et al., 2018; Zhang 

et al., 2019); (A), z-score)] or embryonic [(Cao et al., 2019; Nowotschin et al., 2019); (B), z-

score)] mouse cell signatures in the cells of each cluster (columns). In (B), signatures (rows) 

are ordered from most differentiated (top) to most primitive (bottom) cells. (C) PHATE 

maps (as in Figure 1D), with cells (dots) colored by expression (Log2(TPX+1), color bar) of 

Nkx2–1, Hnf4a, and Hmga2. (D, E) Five key gene programs highlight alternative cell type 
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programs, two key transition states and an EMT-like state. PHATE map (as in Figure 1D), 

with cells (dots) colored either by the activity of each program (D, NMF loading, color bar, 

see Figure S2C for additional programs, STAR Methods) or by the expression level (E, 

Log2(TPX+1), color bar) of a selected marker from the corresponding program. (F) 

Immunofluorescence for Lysozyme (AT2-like program), Claudin-2 (hepatocyte-like 

program), and Claudin-4 (highly mixed program). Pink numbered arrowheads indicate cell 

states or transitions in (D-F): 1 - AT2-like (lysozyme) to Embryonic liver-like (Claudin-2) 

transition; 2 – Embryonic liver-like (Claudin-2) to Highly mixed (Claudin-4) transition; 3 - 

Highly mixed program (Claudin-4). Scale bar: 20 μm. (G) Cells from cluster 5 show 

significantly elevated activity of the Highly mixed NMF program (t-test, p < 1×10 −16). (H) 

Cell scores for Highly mixed program (y axis) and a cluster 5 signature (x axis). Pearson R2 

= 0.78. Lighter dot color indicates higher cell density. (I) PHATE map embedding as in 

Figure 1D, with cells (dots) colored by score of the highly mixed program (left) or by cluster 

5 membership (blue, middle). Right: Proportion of cells (y axis) from cluster 5 (blue) in each 

sample (mouse or tumor; x axis), ordered by tumor progression. See also related Figure S2 

and Table S2.
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Figure 3. Identification of a highly plastic cell state with a distinct chromatin accessibility profile.
(A) Probability of cell state transitions as predicted by an optimal transport model. Two cell 

clusters (nodes, proportional to ‘pagerank’ score – proportion of time spent at node on a 

random walk) A and B are connected by a directed edge from A to B, if the cells in cluster A 
at time point t (color code, as in Figure 1B,C) are predicted by the optimal transport model 

to be ancestors of cells in cluster B at the next time point in that model. Edge thickness is 

proportional to the probability of the transition predicted by the model (low probability 

edges < 0.1, are excluded for graphical clarity). Right: Sub-graphs showing only edges 
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between clusters for selected time couplings (labels, top) are on the right. Line width is 

proportional to the probability of transition ranges from <0.01 for the thinnest line to 0.65 

for the thickest line. Dot size is proportional to the pagerank importance of each node, i.e. 
the amount of “time” spent in a random walk on the graph in any given node. (B) tSNE of 

cell profiles from primary tumor cells sorted as TIGIT+ (top) and TIGIT− (bottom) sampled 

to the same cell numbers, colored by membership in cluster 5 (blue). Cells sorted from n = 

12 mice. (C) Distribution of cluster 5/HPCS signature score (y axis) in TIGIT+ and TIGIT− 

cells (p = 3.08 × 10−25; Mann-Whitney U test). (D) UMAP embedding of scATAC-Seq 

profiles from 164 TIGIT+ (blue) and 3,787 TIGIT− (grey) cells from dissociated primary 

tumors of n = 5 mice (E) UMAP as in (D) but with cells colored by cluster 5/HPCS gene 

activity signature scores. (F) Distribution of cluster 5/HPCS gene activity signature score (y 

axis) in scATAC-Seq profiles of TIGIT+ and TIGIT− cells from n = 5 mice (p = 1.8×10−6, 

Wilcoxon rank-sum test). (G) Activity scores (color bar) of chromatin state modules (rows, 

from LaFave et al.) in TIGIT+ and TIGIT− sorted cells (columns) from n = 5 mice. See also 
related Figure S3 and Table S3.
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Figure 4. Prospectively isolated HPCS cells display high differentiation potential in vitro and in 
vivo.
(A) Prediction of plastic and static cell states by the optimal transport model. Graph as in 

Figure 3A, but showing all transitions (aggregate across all time points) to and from cluster 

5 (left) or 11 (right) cells. (B) Experimental design. TIGIT+ HPCS/cluster 5 cells (blue), 

CD109+(cluster 11) cells (gold), and all non-HPCS TIGIT− cells (grey) were sorted from 

17–22 week old LUAD tumors, and grown as tumor spheres for 11 days, followed by 

scRNA-Seq. (C) tSNE of scRNA-Seq profiles of cells from tumor spheres arising from 

TIGIT+ (blue), CD109+ (gold) and TIGIT− (grey) KP or KPT LUAD cells at 11 days after 

cell plating (n = 7 mice). (D) Transcriptional homogeneity. Normalized Mutual Information 

(NMI, y axis) between each of the three populations. Box plots: upper, median, lower 
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quartile of 1,000 bootstrap samples, of 50 cells each, from the indicated time point; 

whiskers: 1.5 interquartile range. * p < 0.05, *** p < 0.001 (STAR Methods). (E) 

Experimental design. TIGIT+ HPCS/cluster 5 cells (blue) and all non-HPCS TIGIT− cells 

(grey) were sorted from 18–21 week LUAD tumors, and orthotopically transplanted to lungs 

of NSG mice. (F) Normalized Mutual Information (NMI, y axis) within TIGIT+ and TIGIT− 

populations. Box plots: upper, median, lower quartile of 1,000 bootstrap samples, of 100 

cells each, from the indicated time point; whiskers: 1.5 interquartile range. * p < 0.05 (n = 2 

biological replicates, STAR Methods) (n = 6 mice). (G) NMI (y axis) between each 

population. Box plots: upper, median, lower quartile of 1,000 bootstrap samples, of 50 cells 

each, from the indicated time point; whiskers: 1.5 interquartile range. * p < 0.05. (H) 

Relative proportion of cells from TIGIT+ and TIGIT− transplanted primary tumor cells in 

each cluster (n = 5 TIGIT− vs 3 TIGIT+ allotransplant mice).
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Figure 5. LUAD cells in the HPCS show high growth potential in vitro and in vivo, and are 
chemoresistant in vivo.
(A) Experimental design. TIGIT+ HPCS/cluster 5 cells (blue) and all non-HPSC TIGIT− 

cells (grey) were sorted from 17–22 week LUAD tumors, and grown as tumor spheres for 11 

days, as in Figure 4B. (B) Number of tumor spheres per 500 cells plated (y axis) arising in 

individual tumor spheres (dots) from TIGIT+ vs. TIGIT− KPT LUAD cells after 11 days in 

3D culture (x axis). Data plotted as mean ± S.D. Two independent biological replicates are 

shown. ** p < 0.01; *** p < 0.001 (unpaired t-test). (C) Experimental design. TIGIT+ 

HPCS/cluster 5 cells (blue) and all non-HPCS TIGIT− LUAD cells (grey) expressing firefly 
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luciferase were sorted from 18–21-week tumors and orthotopically allotransplanted into 

immunodeficient NSG mice. Bioluminescence imaging and tumor harvest were performed 

at 39 days post-transplantation. (D) Average radiance (y axis) in allotransplanted tumors 

derived from TIGIT+ and TIGIT− sorted cells. Data plotted as mean ± S.D. * p < 0.05 (t-test; 

n = 4 TIGIT+ vs 11 TIGIT− allotransplants). (E) Number of surface tumors per 10,000 

transplanted cells (y axis) for TIGIT+ or TIGIT− cells in lungs of recipient mice. Data 

plotted as mean ± S.D. *** p < 0.001 (t-test). (F) Experimental design. Mice with 20-week 

LUAD tumors were subjected to treatment with vehicle or cisplatin (7 mg/kg); tumors were 

harvested after 72 hours. (G) tSNE of scRNA-Seq profiles from 20-week KPT LUAD 

tumors, collected 72 hours after administration of vehicle or cisplatin, colored by predicted 

membership (STAR Methods) in cluster 5 (blue) or 8 (green). Two independent mice were 

used per condition. (H) Relative enrichment (y axis, Pearson’s residual: 

(observed number of cells − expected number of cells)/ expected number of cells, STAR Methods) 

of cells in different clusters (x axis), after cisplatin treatment in KPT LUAD tumors in vivo. 

See also related Figure S4.
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Figure 6. HPCS-like program is expressed in human tumors and associates with poor survival.
(A) The high-plasticity program is expressed in individual malignant cells from human 

LUAD tumors. Left: PHATE map of the mouse LUAD cells (as in Figure 2D), colored by 

the program score. Right: For each of three scRNA-Seq studies of cancer cells from human 

LUAD tumors, shown are the violin plot (left) of the distribution of the Highly mixed/HPCS 

program scores (y axis) in the cancer cells of each tumor (x axis), and a tSNE of the profiles, 

with cells (dots) colored by their program scores. (B) Hazard ratio (HR, x axis, mean HR 

and 95%-confidence interval) for each NMF program (y axis) in LUAD patients in the 

TCGA as predicted by a Cox proportional hazards model independently fit to each NMF 
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activity term as a continuous variable (n = 403; STAR Methods). (C) Hazard ratio (HR, x 
axis, mean HR and 95%-confidence interval) for each cluster (y axis) in LUAD patients in 

the TCGA as predicted by a Cox proportional hazards model independently fit to each 

cluster activity term as a continuous variable (n = 403; STAR Methods). (D) Hazard ratio 

(HR, x axis, mean HR and 95%-confidence interval) for each NMF program (y axis) across 

all tumors with tumor purity information in TCGA (n = 5723) as predicted by a Cox 

proportional hazards model independently fit to each NMF activity term as a continuous 

variable (STAR Methods). (E) Hazard ratio (HR, x axis, mean HR and 95%-confidence 

interval) for each cluster (y axis) in all cancer patients in the TCGA as predicted by a Cox 

proportional hazards model independently fit to each cluster activity term as a continuous 

variable (n = 5723; STAR Methods). See also related Figure S5 and Table S5.
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Figure 7. Integrin α2Hi LUAD HPCS cells isolated from human patient-derived xenografts 
harbor high growth potential and plasticity.
(A) Cells in the HPCS are present across all profiled tumors. Fraction of cells that were 

mappable (y axis) from each tumor (x axis) that express the HPCS-like program. (B) 

Histograms showing the distribution of the fraction of pan-cytokeratin positive cells in 

human LUAD tissues staining for: Claudin-4 (left), Integrin α2 (middle), and both together 

(right). Vertical dotted lines represent the point at which at least 10% of a tumor stained 

strongly positive. (C) Experimental design. Integrin α2Hi and integrin α2Lo LUAD cells 

were isolated from three distinct human patient-derived xenograft (PDX) models, followed 

by 3D tumor sphere culture for 22 days. (D) Pan-cytokeratin and integrin α2 

immunofluorescence in one of the PDX models. Scale bar: 50 μm. (E) Fold change in 

growth (y axis) of tumor spheres derived from integrin α2Hi and integrin α2Lo cells. Data 

plotted as mean ± S.D. * p = 0.0216 (t test of the log2 transform of the shown fold change; n 

= 3 biological replicates) (F) NMI (y axis) between each population. Box plots: upper, 

median, lower quartile of 1,000 bootstrap samples, of 50 cells each, from the indicated time 

point; whiskers: 1.5 interquartile range. * p < 0.05 (STAR Methods). See also related Figure 

S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat Anti-Mouse CD16 / CD32 Monoclonal Antibody BD Biosciences Clone 2.4G2, Cat# 553142, RRID:AB_394657

Human TruStain FcX Biolegend Cat# 422301, RRID:AB_2847850

Rat Anti-Mouse CD45 Monoclonal Antibody, APC BD Biosciences Clone 30-F11, Cat# 559864, RRID:AB_398672

Rat Anti-Mouse CD31 Monoclonal Antibody, APC BD Biosciences Clone MEC 13.3, Cat# 561814, 
RRID:AB_10893351

Rat Anti-Mouse CD11b Monoclonal Antibody, APC BD Biosciences Clone M1/70, Cat# 561690, 
RRID:AB_10897015

Rat Anti-Mouse TER-119 Monoclonal Antibody, APC BD Biosciences Clone TER-119, Cat# 561033, 
RRID:AB_10584336

Rat Anti-Mouse CD45, FITC Invitrogen Clone 30-F11, Cat# 11-0451-82, 
RRID:AB_465050

Rat Anti-Mouse CD31, FITC Invitrogen Clone 390, Cat# 11-0311-82, RRID:AB_465012

Rat Anti-Mouse CD11b, FITC Invitrogen Clone M1/70, Cat# 11-0112-82, 
RRID:AB_464935

Hamster Anti-Mouse CD11c, FITC Biolegend Clone N418, Cat# 117305, RRID:AB_313774

Rat Anti-Mouse F4/80, FITC Invitrogen Clone BM8, Cat# 11-4801-82, 
RRID:AB_2637191

Rat Anti-Mouse TER-119/Erythroid Cells, FITC Biolegend Clone TER-119, Cat# 116206, 
RRID:AB_313707

Mouse Anti-Mouse CD109, AF647 Santa Cruz Biotechnology Clone C-9, Cat# sc-271085 AF647, 
RRID:AB_2847851

Rat Anti-Mouse CD45, APC Invitrogen Clone 30-F11, Cat# 17-0451-82, 
RRID:AB_469392

Rat Anti-Mouse CD31, APC Invitrogen Clone 390, Cat# 17-0311-82, RRID:AB_657735

Rat Anti-Mouse CD11b, APC Invitrogen Clone M1/70, Cat# 17-0112-82, 
RRID:AB_469343

Hamster Anti-Mouse CD11c, APC Biolegend Clone N418, Cat# 117310, RRID:AB_313779

Rat Anti-Mouse F4/80, APC Invitrogen Clone BM8, Cat# 17-4801-82, 
RRID:AB_2784648

Rat Anti-Mouse TER-119, APC Invitrogen Clone TER-119, Cat# 17-5921-82, 
RRID:AB_469473

Rat Anti-Mouse CD326 (EpCAM), PE Invitrogen Clone G8.8, Cat# 12-5791-82, 
RRID:AB_953615

Mouse Anti-Mouse TIGIT, BV421 Biolegend Clone 1G9, Cat# 142111, RRID:AB_2687311

Mouse Anti-Human CD45, FITC Invitrogen Clone HI30, Cat# 11-0459-42, 
RRID:AB_10852703

Mouse Anti-Human CD31, FITC Biolegend Clone WM59, Cat# 303104, RRID:AB_314330

Mouse Anti-Human CD11b, FITC Biolegend Clone ICRF44, Cat# 301330, 
RRID:AB_2561703

Mouse Anti-Human CD11c, FITC Biolegend Clone 3.9, Cat# 301604, RRID:AB_314174

Mouse Anti-Mouse H-2Kd, FITC Biolegend Clone SF1-1.1, Cat# 116606, RRID:AB_313741

Mouse Anti-Human CD326 (EpCAM), PE/Cy7 Biolegend Clone 9C4, Cat# 324222, RRID:AB_2561506

Mouse Anti-Human CD49b (Integrin α2), APC Biolegend Clone P1E6-C5, Cat# 359309, 
RRID:AB_2564198
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse Anti-Claudin 2 Invitrogen Clone 12H12, Cat# 32-5600, 
RRID:AB_2533085

Rabbit Anti-Claudin 4 Invitrogen Clone ZMD.306, Cat# 36-4800, 
RRID:AB_2533262

Rabbit Anti-Lysozyme DAKO Clone EC3.2.1.17, Cat# A0099, 
RRID:AB_2341230

Rabbit Anti-Prosurfactant Protein C Millipore Cat# AB3786, RRID:AB_91588

Rabbit Anti-Integrin α2 Abcam Clone EPR17338, Cat# 181548, 
RRID:AB_2847852

Rabbit Anti-RFP Rockland Cat# 600-401-379, RRID:AB_2209751

Bacterial and Virus Strains

Ad5mSPC Viral Vector Core, University 
of Iowa

N/A

Biological Samples

N/A

Chemicals, Peptides, and Recombinant Proteins

DAPI Sigma-Aldrich D9542-1MG

YOPRO-1 Invitrogen Y3603

Advanced DMEM/F12 Gibco 12634028

DMEM Gibco 10313039

B27 Supplement Gibco 17504044

FGF-7 (KGF) PeproTech 100-19

FGF-10 PeproTech 100-26-50ug

Noggin PeproTech 120-10C-50ug

EGF PeproTech AF-100-15-100ug

N-Acetylcysteine Sigma-Aldrich A9165-5G

Nicotinamide Sigma-Aldrich N0636-100G

SB431542 SelleckChem S1067

CHIR99021 Sigma-Aldrich SML1046-5MG

HEPES Gibco 15630080

Penicillin/Streptomycin Gibco 15140163

L/glutamine Gibco 35050061

Y-27632 SelleckChem S1049

D-Luciferin Perkin Elmer 122799

S-MEM Gibco 11380037

Dispase II Gibco 17105-041

Collagenase Type IV Thermo Fisher Scientific 17104019

DNase I Sigma-Aldritch 69182-3

Gentamicin Gibco 15750-060

ACK Thermo Fisher Scientific; 
Lonza

A1049201; 10-548E

TCL Buffer Qiagen 1031576
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maxima Reverse Transcriptase Thermo Fisher Scientific EP0752

Digitonin Promega G9441

Illumina Tagment DNA Enzyme Illumina 15027865

BamBanker Cell Freezing Medium Lymphotec 302-14681

Matrigel Corning CB-40230C

Penicillin-Streptomycin Gibco 15140163

Corning Dispase Corning 354235

TrypLE Gibco 12604013

Cisplatin EMD-Millipore 232120

Shandon Zinc Formal-Fixx Thermo Scientific 6764255

Vectashield with DAPI Vector Labs H-1200

ImmPACT DAB Peroxidase (HRP) Substrate Vector Labs SK-4105

Critical Commercial Assays

RNAscope® 2.5 HD Detection Reagents-RED ACDBio 322360

DapB ISH Probe ACDBio 310043

Ppib Mouse ISH Probe ACDBio 313911

Slc4a11 Mouse ISH Probe ACDBio 559521

Tigit Mouse ISH Probe ACDBio 319751

PPIB Human ISH Probe ACDBio 313901

SLC4A11 Human ISH Probe ACDBio 583931

Lung Dissociation Kit Miltenyi Biotech 130-095-927

Tumor Dissociation Kit Miltenyi Biotech 130-095-929

Agencourt RNAClean XP beads Beckman Coulter A63881

KAPA HiFi HotStart ReadyMix KAPA Biosystems KK2601

Agencourt AMPure XP beads Beckman Coulter A63881

Nextera XT Library Prep kit Illumina FC-131-1096

GenomePlex Single Cell Whole Genome Amplification 
Kit

Sigma 254-457-8

Qiagen MinElute PCR Purification Kit Qiagen 28004

Chromium Single Cell ATAC Library Kit v1 chemistry 10x Genomics PN-1000083

Qiagen RNeasy Plus Mini kit Qiagen 74136

Qiagen RNeasy Plus Micro kit Qiagen 74034

SuperScript VILO cDNA synthesis kit Invitrogen 11754050

PrimeScript RT Reagent kit Takara RR037B

Powerup SYBR mix Applied Biosystems A25778

ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) 
Polymer Detection Kit

Vector Labs MP-7401-50

Mouse-on-Mouse ImmPRESS HRP (Peroxidase) 
Polymer Kit

Vector Labs MP-2400

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Single cell RNAseq (SmatrtSeq2,10X, DNA, ATAC) & 
Bulk ATAC

This paper GEO: GSE152607

Human single cell lung adeno tumors Zilionis et al. GEO: GSE127465

Human single cell lung adeno tumors Lambrechts et al. E-MTAB-6653, E-MTAB-6653

Human single cell lung adeno tumors Laughney et al. GEO: GSE123903

TCGA LUAD MC3

TCGA PanCan LinkedOmics http://www.linkedomics.org/

Experimental Models: Cell Lines

Mouse L-WRN cell line ATCC CRL-3276

Experimental Models: Organisms/Strains

Mouse/B6.129: KrasLSL-G12D Jackson et al., 2001; The 
Jackson Laboratory

008179

Mouse/B6.129: Trp53flox/flox Marino et al., 2000; The 
Jackson Laboratory

008462

Mouse/B6.129: Rosa26LSL-tdTomato Madisen et al., 2010; The 
Jackson Laboratory

007905

Mouse/B6.129: Rosa26LSL-Luciferase Safran et al., 2003; The 
Jackson Laboratory

005125

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (aka NSG mice) Ishikawa et al., 2005, The 
Jackson Laboratory

005557

Oligonucleotides

GusB qPCR F - CCGACCTCTCGAACAACCG Roche Universal Probe 
Library

N/A

GusB qPCR R - GCTTCCCGTTCATACCACACC Roche Universal Probe 
Library

N/A

Tigit qPCR F - TGCCTTCCTCGCTACAGG Roche Universal Probe 
Library

N/A

Tigit qPCR R - TGCAGAGATGTTCCTCTTTGTATC Roche Universal Probe 
Library

N/A

Slc4a11 qPCR F - CGAGGATCCAGAACAGACCT Roche Universal Probe 
Library

N/A

Slc4a11 qPCR R - GAGATGTTTGTGCAAAGAAGGA Roche Universal Probe 
Library

N/A

Epcam qPCR F - TGTCATTTGCTCCAAACTGG Roche Universal Probe 
Library

N/A

Epcam qPCR R - GTTCTGGATCGCCCCTTC Roche Universal Probe 
Library

N/A

Recombinant DNA

N/A

Software and Algorithms

Code generated as part of this study This paper https://github.com/matanhofree/
lungTumorEvolution

Matlab (The Mathworks) https://www.mathworks.com/ R2019a

R https://cran.r-project.org/ v3.6.1

RSEM https://github.com/deweylab/
RSEM

v1.3.0
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cellranger (10X Genomics) https://
support.10xgenomics.com/

v3.1.0

Cellranger ATAC (10X Genomics) https://
support.10xgenomics.com/

v1.2.0

CNVkit https://github.com/etal/cnvkit/ v0.9.6

fastp https://github.com/OpenGene/ v0.20.0

ATAC-seq-pipeline https://github.com/ENCODE-
DCC/atac-seq-pipeline/

v1.5.4

Other

N/A

Cancer Cell. Author manuscript; available in PMC 2021 August 10.

https://support.10xgenomics.com/
https://support.10xgenomics.com/
https://support.10xgenomics.com/
https://support.10xgenomics.com/
https://github.com/etal/cnvkit/
https://github.com/OpenGene/
https://github.com/ENCODE-DCC/atac-seq-pipeline/
https://github.com/ENCODE-DCC/atac-seq-pipeline/

	SUMMARY
	Graphical abstract
	INTRODUCTION
	RESULTS
	LUAD progression is characterized by a dramatic and reproducible increase in
phenotypic diversity
	Diversity in gene copy number variation is not a sufficient determinant of
phenotypic heterogeneity in LUAD
	Loss of alveolar identity and acquisition of features associated with lung
progenitors, embryonic endoderm, and epithelial-to-mesenchymal transition during
LUAD progression
	A highly mixed program emerges during LUAD evolution
	An optimal transport model predicts that the Highly mixed program marks a
high-plasticity cell state (HPCS) forming a key transition point between other
states
	The LUAD cell subset comprising the HPCS can be prospectively isolated based
on TIGIT expression
	The HPCS has a distinct chromatin accessibility profile
	TIGIT+
KP LUAD cells are highly plastic in vitro and
in vivo
	LUAD cells enriched for the HPCS show high proliferative potential and marked
chemoresistance
	Cancer cells in a similar high plasticity cell state are present in human
LUAD tumors and associate with poor survival

	DISCUSSION
	STAR Methods
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data availability
	Code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Cell lines
	Mouse 3-dimensional tumor sphere cultures
	Human 3-dimensional tumor sphere cultures
	Mice
	Human samples.

	METHOD DETAILS
	Isolating cells from lung adenocarcinomas
	Dissociation of patient-derived xenografts
	Fluorescence-activated cell sorting (FACS)
	Plate-based scRNA-Seq
	Droplet-based scRNA-Seq
	Single-cell DNA sequencing
	Bulk ATAC-Seq
	Single-cell ATAC-Seq
	Quantitative PCR (qPCR)
	Isolation of mouse LUAD tumor spheres
	Isolation of LUAD PDX tumor spheres
	Dissociation of tumor spheres
	Generation of orthotopic mouse LUAD allotransplants
	Chemotherapy
	In vivo bioluminescence
	Immunohistochemistry
	Multiplexed IF
	Single-molecule mRNA in situ hybridization

	COMPUTATIONAL ANALYSIS
	scRNA-Seq processing and quality filtering
	Dimensionality reduction and clustering
	Visualization of single cell profiles
	Differentially expressed genes
	Pearson residuals of contingency tables
	Estimating heterogeneity within a timepoint
	Single-cell DNA copy number quantification
	Copy number inference from scRNA-Seq profiles
	Matching RNA inferred CNV to DNA CNVs
	Single cell gene set enrichment
	Novel expression programs by NMF
	Optimal transport
	Bulk ATAC-Seq
	scATAC-Seq data processing
	scATAC-Seq quality control
	scATAC-Seq dimensionality reduction
	scATAC-Seq data integration
	Comparison to human scRNA-Seq data
	Cross-cohort activity of NMF gene programs
	Cross-cohort cluster assignments
	Comparison of HPCS to stem cell signatures
	Human clinical data analyses
	Computational tools

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

