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Abstract

BACKGROUND.—Polygenic risk scores comprising established susceptibility variants have 

shown to be informative classifiers for several complex diseases including prostate cancer. For 

prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated 

with prostate cancer risk at a genome-wide significant level will improve disease prediction.

METHODS.—We built polygenic risk scores in a large training set comprising over 25,000 

individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD 

pruning additional variants were prioritized based on their association with prostate cancer. Six-

fold cross validation was performed to assess genetic risk scores and optimize the number of 

additional variants to be included. The final model was evaluated in an independent study 

population including 1,370 cases and 1,239 controls.

RESULTS.—The polygenic risk score with 65 established susceptibility variants provided an area 

under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the 

AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5 E-08). All novel 

variants were located in genomic regions established as associated with prostate cancer risk.

CONCLUSIONS.—Inclusion of additional genetic variants from established prostate cancer 

susceptibility regions improves disease prediction.
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INTRODUCTION

After extensive genotyping efforts in several large international consortia a total of 100 

prostate cancer susceptibility loci have been identified to date [1]. Overall, these established 

single nucleotide polymorphisms (SNPs) have been estimated to explain 33% of the familial 

risk of prostate cancer. Individually, these SNPs accounted for a modest part of disease risk 

and their ability to individually discriminate between prostate cancer cases and unaffected 

controls was limited. However, by combining established risk SNPs in polygenic risk scores 
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the predictive performance of prostate cancer risk has proven to be substantial [2–6]. Eeles 

and coworkers showed, by using a polygenic risk score consisting of 68 established prostate 

cancer risk SNPs, that men in the top 1% of the risk distribution have more than four-fold 

increased risk for prostate cancer compared with those with average risk [7]. This effect size 

is similar to that conferred by deleterious BRCA1 [8,9] and BRCA2 [10–12] mutation 

carriers, undergoing targeted screening in clinical trials [13]. Moreover, a polygenic risk 

score including 35 established prostate cancer risk SNPs has recently shown to decrease the 

number of biopsies by 23% at a cost of 3% fewer cases detected in a Swedish cohort of men 

that underwent biopsy of the prostate [14].

Several studies of complex diseases [15] have shown that by including SNPs that do not 

individually achieve genome-wide significant levels, an increasing proportion of heritability 

can be explained. Regarding prostate cancer, two studies that applied this approach have 

provided inconsistent results; in one study a modest increase in predictive performance was 

observed by relaxing inclusion thresholds of available SNPs [16], while the other study 

reported no significant improvement in prediction capacity [17]. These observations are in 

line with results from a recent methodological study concluding that power (i.e., sample 

size) is of importance in order to improve the predictive capacity of polygenic risk scores 

[18].

The aim of this study was to explore the possibility to improve predictive performance of a 

polygenic risk score, comprised only of established prostate cancer risk SNPs, by including 

additional genetic markers that have so far not been associated with prostate cancer risk at a 

genome-wide significant level. Utilizing over 13,000 cases and 14,000 controls from the 

PRACTICAL consortium with genotypes available from a collection of approximately 

83,000 SNPs distributed across the genome, we developed a cross-validated polygenic score 

and assessed its predictive performance in an independent population.

MATERIAL AND METHODS

Study Subjects - PRACTICAL

The international prostate cancer genetics consortium (PRACTICAL) is a part of the 

Collaborative Oncological Gene-environment Study (COGS [19]) with three other cancer 

genetics consortia (breast, ovarian, and BRCA1/2 mutation carriers). The initial aim of the 

COGS project was to design an Illumina Custom Infimum array (iCOGS), where each 

consortium nominated SNPs in three categories: markers indicated by genome-wide 

association studies (GWAS), fine-mapping of already established susceptibility regions, and 

candidate genes. PRACTICAL’s part of COGS has been described in detail previously [7]. 

In this study we included all 85,278 SNPs (out of totally 211,155 on the iCOGS chip) that 

were nominated by PRACTICAL, specifically chosen to be relevant for prostate cancer. The 

main component of these markers (74,001 SNPs) was selected based on a meta-analysis of 

four prostate cancer GWAS. An additional 13,739 SNPs were selected to fine-map already 

established prostate cancer susceptibility regions and 1,398 SNPs were selected to explore 

candidate genes in key biological pathways (including hormone metabolism, HOX class of 

genes, the cell cycle and DNA repair). After quality control assessment 82,895 SNPs 

remained for analysis in the present study.
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The iCOGS chip was genotyped in approximately 50,000 subjects in 32 sub-populations of 

PRACTICAL. Most of these studies represent either population-based cases-control studies 

or nested case-control studies. To avoid overfitting, we excluded 5,293 subjects that were 

previously used in GWAS analysis for nomination of SNPs to the iCOGS chip. Furthermore, 

we restricted this study to only include men of European ancestry below 70 years-old at time 

of study enrollment. The age limit was selected to create a study population that could 

potentially benefit from prostate cancer screening. Finally, each included sub-study that did 

not contribute both prostate cancer cases and controls was excluded, resulting in a final 

study sample comprising 13,532 cases and 14,242 controls from 21 different studies (Table 

I).

Prediction Model

The prediction model that we aimed to optimize for discrimination between prostate cancer 

cases and controls was a logistic regression with two polygenic risk scores (sum of risk 

alleles, weighted by the log OR of each SNP), one containing 65 established risk SNPs and 

the second including novel markers. The development of this model was exclusively 

performed in a training set and thereafter evaluated in an independent test set. The UK Study 

of Epidemiology and Risk factors in Cancer Heredity (SEARCH) with 1,370 cases and 

1,239 controls was chosen as the external test set, since it is a population-based study and 

has a similar structure as our target population, i.e. men aged <70 years with European 

ancestry. The rest of the data (i.e., excluding SEARCH) with 12,153 cases and 13,003 

controls were used to train the model.

The primary goals with the training set were to determine the optimal number of novel SNPs 

that should be added to the model, aside from already known risk markers, in order to 

optimize the predictive capacity, and to determine weights (log odds ratios) for SNPs 

included in the two polygenic risk scores. To avoid over fitting when the optimal genetic 

profile for risk prediction was developed we used six large sub-populations in the training 

data for internal validation: Australia (MCCS + QLD), Denmark (CPCS1 + 2), PROTECT, 

UKGPCS, STHM1, and USA (FHCRC + MAYO). The model development procedure was 

implemented as follows:

1. Individual associations of each SNP with prostate cancer were assessed in 

logistic regression, assuming a log-additive genetic model and adjusting for 

population stratification (six principal components), setting one internal 

validation population aside.

2. Linkage Disequilibrium (LD) - based pruning was performed, i.e., one SNP with 

lowest P-value (in step1) was selected from each LD-block (r2> = 0.2).

3. A genetic risk score was created with 65 established risk SNPs (54 directly 

genotyped and 11 surrogates with r2 > 0.8). Log odds ratios obtained in step 1 

were used as weights.

4. From the LD-pruned list, novel SNPs were added one by one, ordered by P-value 

(starting with lowest), into a second risk score. The two risk scores were fitted as 

covariates in a logistic regression model.
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5. Every time a SNP was added to the second risk score in step 4, the prediction 

performance of the model was assessed in the internal validation population that 

was set aside, by the area under the receiver operator characteristic (ROC) curve 

(AUC).

6. We iterated between steps 1–5 six times, each time setting aside different 

validation data.

Among the six models (one per excluded internal validation set) in the training data with the 

same number of added SNPs to the polygenic risk score, the mean value of the predictions 

was calculated. The maximum of this average AUC was used to determine the optimal 

number of top ranked SNPs to include in the final prediction model. In order to construct the 

final risk score for this model, weights were obtained and SNPs were ranked according to P-

values, using results from logistic regressions (as before, adjusting for six principal 

components on an LD-pruned set of SNPs) on the complete training set.

In the external test data (SEARCH), the association between prostate cancer and the two risk 

scores (both treated as linear predictors) was evaluated using a logistic regression model. 

Both improvement in AUC (DeLong nonparametric test [20]) and the continuous version of 

Net Reclassification Index (NRI) [21,22] were used to evaluate the final prediction model in 

the test data, when the novel SNP risk score was added to the established risk score. Finally, 

the association between prostate cancer and ordered categories of the final polygenic risk 

score (containing both established and novel SNPs together) was assessed with logistic 

regression.

RESULTS

In the initial training step, performing cross-validated SNP selection, substantial variation in 

the predictive performance of the polygenic scores was observed between the different 

internal validation study samples (Fig. 1). In the model with the risk score containing only 

the 65 established risk SNPs, AUC values ranged between 0.64 and 0.69 for the different 

populations. In general we observed improved predictive performance, with a maximum 

increase in AUC of approximately 0.01, when additional SNPs were added to the model. 

Using the mean AUC of the six internal validation samples, the optimal predictive capacity 

in the training data was obtained when 68 SNPs were added to the model (Fig. 1, 

Supplementary Table). Of note, each of the additional 68 selected SNPs was located in a 

genomic region already established as associated with prostate cancer risk.

In the external independent test sample (SEARCH) strong statistical association was 

observed both between the genetic score composed of the 65 established SNPs (P = 5.0E-16) 

and the score composed of the additional 68 SNPs (P = 2.5E-10). The AUC increased 

significantly (P = 0.0012) from 0.67, using only established risk SNPs, to 0.68 when the 

optimal genetic risk profile derived from the training set was added (Table II). Furthermore, 

the optimal model including the 68 additional SNPs showed a significantly improved NRI, 

both in cases and controls separately and overall, compared with the model with only 

established risk SNPs (Table II). Stratifying individuals by their genetic profile resulted in a 

linear trend of increasing ORs (Table III). Compared with the reference category (40–60%), 
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individuals with lowest risk scores (lowest 5% percentile) had 84% decreased risk of 

prostate cancer, while individuals with highest risk scores (highest 5% percentile) had a 

four-fold increased relative risk of prostate cancer.

DISCUSSION

Individual prostate cancer risk profiling, using polygenic risk scores, has the potential to 

facilitate risk stratification in targeted screening and prevention programs. In this study we 

optimized a polygenic risk score starting with a set of established prostate cancer 

susceptibility variants and then included additional variants until maximum discrimination 

was achieved. We observed substantial variations in predictive capacity between our training 

populations with AUC values ranging between 0.65 and 0.71. This may suggest that the 

utility of the derived risk score varies between different populations. However, the diverse 

ascertainment schemes applied in the included studies most likely explain the observed 

difference in discrimination between the study populations. Final assessment of the derived 

polygenic risk model was performed in the SEARCH population. SEARCH is a population-

based case-control study ascertained in UK utilizing regional cancer- and population 

registers. In this population the optimal model gave an AUC of 0.68 and we argue that this is 

a representative assessment that can be generalized to other European populations.

Interestingly, a similar trend in AUC values could be observed when novel SNPs were added 

to the prediction models when different validation samples (except for STHM1) in the 

training data were used. An initial increase in the AUC, peaking at around 68 added 

markers, followed by a decline when more markers were added. Furthermore, the 68 top 

associated novel SNPs in the training sample significantly improved predictions in the 

independent SEARCH study. Thus, the iCOGS chip is enriched with additional genetic 

variants that improve prostate cancer risk prediction in addition to already established 

susceptibility variants. Of note, all 68 non-established variants included in the optimal 

prediction model were located in already established prostate cancer susceptibility regions. 

This suggests that fine-mapping of established regions may reveal additional genetic variants 

that are independently associated with prostate cancer risk.

It has been argued that a prediction model should at minimum have an AUC of at least 0.75 

in order to have any benefits in a screening context [23]. The rather modest improvement 

(0.01 increase in AUC) in predictions that we demonstrated by adding 68 novel SNPs, 

suggests that there is noise (false positives) in our data that needs to be removed in order to 

improve the predictive capacity. In addition, it is most likely that the iCOGS chip contains 

genetic markers further down in the P-value ranked list that are truly associated with prostate 

cancer risk that could further improve the prediction capacity if included in the polygenic 

score. Therefore, future efforts assessing even larger study populations with genome-wide 

data hold promise to further improve polygenic risk prediction of prostate cancer. However, 

the risk stratification achieved in our independent test sample (SEARCH) already shows that 

we can identify sub-groups in the tails of the risk score distributions with extremely high and 

low risk of prostate cancer, which may be useful in a prostate cancer screening setting. 

Furthermore, by combining a genetic risk score with established biomarkers, such as PSA 
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level and family history of disease, would probably improve predictions substantially 

[5,24,25]. Prostate cancer intervention studies addressing this possibility are warranted.

A strength with our study is the large sample size of the training data set, which is known to 

be an important factor regarding the accuracy of genetic scores for individual prediction 

[24]. We found that the risk score containing 68 novel SNPs was significantly associated 

with prostate cancer in our external test sample (SEARCH), adjusting for already known 

markers. In a similar study [17] that used GWAS data from a much smaller study population 

no improvement in risk prediction was achieved by adding additional variants to established 

markers, probably due to limited statistical power [18]. Another advantage with our study 

was the enrichment of prostate cancer risk variants on the iCOGS chip. Most variants on the 

chip were selected based on previous prostate cancer GWAS studies, therefore we can 

expect a larger proportion of truly associated variants on the iCOGS chip compared to a 

general genome-wide array.

CONCLUSION

In summary, we have derived a polygenic prediction model that improves discrimination 

between prostate cancer cases and controls. Further studies exploring the utility of polygenic 

risk stratification in screening and prevention programs are warranted.
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Fig. 1. 
Prediction performance in different study populations included in the training set. The left 

plot shows prediction performance when up to 5,000 novel SNPs are added to the prediction 

model. The right plot is zoomed in on the part where the predictions increase. The black line 

corresponds to the mean AUC.

Szulkin et al. Page 11

Prostate. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Szulkin et al. Page 12

TABLE I.

Study Populations From PRACTICAL Included in Risk Prediction Analysis

Study Country No. cases No. controls

Training data - Internal validation samples

 CPCS1 Denmark 454 2122

 CPCS2 Denmark 212 621

 FHCRC USA 696 662

 MAYO USA 584 348

 MCCS Australia 1525 1179

 QLD Australia 156 60

 ProtecT UK 1509 1473

 STHM1 Sweden 1413 1522

 UKGPCS UK 2351 2184

Training data - Other samples

 CAPS Sweden 299 147

 EPIC EU 586 1001

 EPIC-Norfolk UK 177 361

 ESTHER Germany 255 265

 MEC USA 308 298

 MOFFITT USA 297 81

 PCMUS Bulgaria 84 92

 Poland Poland 283 259

 ProMPT UK 109 2

 ULM Germany 495 176

 UTAH USA 360 150

Total (training data) 12153 13003

External test sample

 SEARCH UK 1370 1239

Total 13532 14242
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TABLE III.

Risk Distribution in Different Percentiles of a Genetic Risk Score, Containing Both 65 Established and 68 

Novel SNPs, Evaluated in an External Test Sample

Percentiles (%) OR (95% CI) P value

0–5 0.16 (0.1,0.27) 4.43e-12

5–10 0.52 (0.35,0.77) 0.0012

10–20 0.41 (0.3,0.56) 2.85e-08

20–30 0.82 (0.61,1.1) 0.18

30–40 0.92 (0.69,1.24) 0.60

40–60 1.00(ref) –

60–70 1.36 (1.01,1.84) 0.046

70–80 1.6 (1.18,2.16) 0.0026

80–90 2.58 (1.86,3.56) 9.66e-09

90–95 2.37 (1.56,3.6) 5.07e-05

95–100 4.00 (2.51,6.39) 6.5e-09
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