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Abstract

For large-scale vision tasks in biomedical images, the labeled data is often limited to train effective 

deep models. Active learning is a common solution, where a query suggestion method selects 

representative unlabeled samples for annotation, and the new labels are used to improve the base 

model. However, most query suggestion models optimize their learnable parameters only on the 

limited labeled data and consequently become less effective for the more challenging unlabeled 

data. To tackle this, we propose a two-stream active query suggestion approach. In addition to the 

supervised feature extractor, we introduce an unsupervised one optimized on all raw images to 

capture diverse image features, which can later be improved by fine-tuning on new labels. As a use 

case, we build an end-to-end active learning framework with our query suggestion method for 3D 

synapse detection and mitochondria segmentation in connectomics. With the framework, we 

curate, to our best knowledge, the largest connectomics dataset with dense synapses and 

mitochondria annotation. On this new dataset, our method outperforms previous state-of-the-art 

methods by 3.1% for synapse and 3.8% for mitochondria in terms of region-of-interest proposal 

accuracy. We also apply our method to image classification, where it outperforms previous 

approaches on CIFAR-10 under the same limited annotation budget. The project page is https://

zudi-lin.github.io/projects/#two_stream_active.
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1 Introduction

Deep convolutional neural networks (CNNs) have advanced many areas in computer vision. 

Despite their success, CNNs need a large amount of labeled data to learn their parameters. 

However, for detection and segmentation tasks, dense annotations can be costly. Further, in 

the biomedical image domain, annotations need to be conducted by domain experts after 

years of training. Thus, under the limited annotation budget, it is critical to effectively select 

a subset of unlabeled data for annotation to train deep learning models.

Active learning is a common solution that iteratively improves the prediction model by 

suggesting informative queries for human annotation to increase labels. There are three main 

categories of query suggestion approaches that have been explored for CNNs: uncertainty-

based [44,42,52], expected model change-based [53], and clustering-based methods [43]. 

However, all these methods use features extracted from CNNs that are trained on the labeled 

set (Fig. 1a, →). For example, core-set [45] uses the last feature space before the 

classification layer to find representative queries, and learning-loss [53] takes multiple 

features maps to estimate the loss of the model prediction. Therefore, these methods can be 

biased towards the feature distribution of the small labeled set. Notably, in many biomedical 

image applications, the labeled dataset is far from representative of the whole dataset due to 

its vast quantity and great diversity.

To address this challenge, we propose a two-stream active clustering method to improve 

query suggestion by introducing an additional unsupervised feature extractor to capture the 

image statistics of the whole dataset (Fig. 1a,→). During active learning, we combine 

features extracted by both the supervised and unsupervised streams from the unlabeled data 

(Fig. 1b). The unsupervised stream can better select representative samples based on image 

features even when the supervised model makes wrong predictions. Given new annotations, 

we can further finetune the unsupervised feature extractor to make the embedding space 

more discriminative. For the clustering module, we show that combining the features from 

both streams in a hierarchical manner achieves significantly better query suggestion 

performance than directly concatenating the feature vectors.

We test our method in the field of connectomics, where the goal is to reconstruct the wiring 

diagram of neurons to enable new insights into the workings of the brain [26,31]. Recent 

advances in electron microscopy (EM) allow researchers to collect brain images at 

nanometer resolution and petabyte scale [21,56]. One crucial task is to detect and segment 

biological structures like synapses and mitochondria for a deeper understanding of neural 

anatomy and activation patterns [2] (Fig. 2a–b). However, most labeled connectomics 

datasets [11,30] are only a few gigavoxels in size, hundreds of times smaller than the 

unlabeled volume needed for down-stream biological analysis (Fig. 2c).

With our two-stream active clustering as the key component, we build an end-to-end 

framework with a base model and an annotation workflow. Before active learning, our base 

model achieves state-of-the-art results on public benchmarks. Besides, our annotation 

workflow reduces interactive error correction time by 26%, as shown by a controlled user 

study. With this framework, we finished the dense annotation of synapse objects and 
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mitochondria semantic mask for a (50 μm)3 EM image volume (300 gigavoxels) in the rat 

visual cortex, called EM-R50, which is over 100× larger than existing datasets. For the 

evaluation of active learning approaches on this connectomics dataset, our method improves 

the performance of previous state-of-the-art methods by 3.1% for synapses and 3.8% for 

mitochondria, respectively, in terms of the accuracy of the region-of-interest (ROI) 

proposals. We further perform ablation studies to examine the importance of different 

framework components and hyper-parameters. To demonstrate its broader impact, we also 

benchmark our method on natural image classification (CIFAR-10), which outperforms 

previous state-of-the-art methods by over 2% under a limited annotation budget ≈ 5% of the 

total training images.

Contributions.

First, we introduce a novel active learning method that incorporates information from an 

unsupervised model to improve the effectiveness of query suggestions. Second, our method 

achieves state-of-the-art results for detection and segmentation tasks on connectomics 

datasets and image classification on CIFAR-10. Third, we release the code and a densely 

annotated connectomics dataset (100× bigger than current datasets) to facilitate future 

researches.

2 Related work

Synapse Detection and Mitochondria Segmentation.

Synapse detection and mitochondria segmentation are two popular tasks in connectomics. 

Due to the complex shapes, bounding box-based detection [38] and segmentation [12] 

methods can have poor performance. Thus, most previous works for biomedical vision 

directly predict the semantic segmentation of the object and generate bounding-box 

proposals for the detection task via post-processing.

For synapse detection, previous approaches focus on segmenting the synaptic cleft region 

using hand-crafted image features [25,2,17,19,24,37] or learned features [39]. To further 

predict synapse polarity, the direction of information transmission among neurons, recent 

works apply random forest classifiers [23,49], neural networks [18,5,14,34], and 

combinations [7]. For mitochondria segmentation, earlier works leverage various image 

processing techniques and manually-designed image features [32,50,30,27,46,36]. Recent 

methods employ 2D or 3D fully convolutional network architectures [33,6] to regress the 

semantic mask.

In this paper, we adopt the 3D U-Net [40] model for both synapse detection and 

mitochondria semantic segmentation. Incorporating recent deep learning techniques 

including residual blocks [13] and squeeze-and-excitation blocks [16], our model achieves 

top performance on public connectomics benchmarks.

Active Learning.

Active learning methods iteratively query human annotators to obtain new informative 

samples to label and then improve the base model. Transductive active learning [54] aims to 
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improve the later step by training the base model on the additional unlabeled data with 

pseudo labels. The similarity graph among samples [3,35,57] is often used to generate 

pseudo labels from manual annotations. We focus on the former step to suggest better 

queries [45], where traditional methods use uncertainty-based sampling [42,52], and 

diversity-based optimization [9,10]. Tailored for neural networks, recent works explore ideas 

of maximizing feature coverage [43], margin-based sampling [55], expected error-based 

selection [53] and adversarial learning [8].

Besides the image classification task, active learning has been applied to object detection for 

different image domains [4,48,1]. Roy et al. [41] formulates the detection task as a 

structured prediction with novel margin sampling techniques and Vijayanarasimhan et al. 
[51] scales up the labeling process with crowdsourcing. Kao et al. [20] proposes location-

aware measures for query suggestion. Instead of solely using the feature extractor optimized 

on the labeled set, our key insights are to improve query suggestions with unsupervised 

image information and fine-tune the learned feature extractor to distinguish ambiguous 

samples.

3 Active Learning Framework Overview

Our active learning framework for large-scale vision tasks in connectomics has three 

components: base model, query suggestion, and annotation (Fig. 3). We here describe our 

base model and annotation workflow, leaving the query suggestion method for Sec. 4. 

Further details are in the supplementary document.

Overview.

During active learning on unlabeled images, the base model first predicts dense probability 

map and generates regions of interest (ROIs). Then the proposed query suggestion method 

extracts features for all ROIs and suggests queries through the two-stream clustering for 

annotation. With the new annotation, in addition to fine-tuning the base model, we further 

fine-tune the proposed query suggestion model to make it more discriminative in query 

suggestion.

Model Prediction.

The base model handles two tasks: synapse detection and mitochondria segmentation. The 

irregular shapes make it hard to directly predict 3D bounding boxes for synapses, while the 

vast volume quantity makes it infeasible to conduct pixel-wise annotation for mitochondria. 

Therefore, following common practice for biomedical images, we first predict a dense 

semantic probability map and apply connected component labeling with post-processing to 

generate ROI proposals. We thus unify two different tasks as judging the correctness of ROIs 

in active learning. Since finding false positives from proposals is more efficient than locating 

false negatives in the vast volume, we re-balance the weights between foreground and 

background pixels to ensure a high recall.

In Fig. 3a, we show an example for synapse detection. Each synapse instance has a pre-

synaptic (purple) and a post-synaptic (cyan) segment, and we predict a three-channel 

probability map representing pre- and post-synaptic regions and their union. We align 
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extracted ROIs to a reference orientation to normalize its rotation variation. To this end, we 

select the 2D slice with the biggest area from the 3D instance, apply the principal 

component analysis (PCA) of the mask, and rotate the instance to align its first principal 

component to the vertical direction. For synapse, we further make sure the pre-synaptic 

segment (gray) is on the left.

Annotation.

We focus on the correctness of ROIs instead of the pixel-level correctness of the mask. 

During annotation, an annotator judges the ROI to be correct if the mask within covers more 

than half of the ground truth mask in this ROI. In practice, thanks to the performance of the 

base model, annotators find most predicted instances are unambiguously right or wrong. We 

built a browser-based labeling interface, where annotators can click on each suggested query 

to change its label, e.g., from True to False (Fig. 3c). For better judgment, we display both 

image patches and predicted instance masks to annotators. For annotation efficiency, we 

display the selected query samples in a grouped manner using our clustering results instead 

of a random order (Sec. 6.3).

4 Two-stream Active Query Suggestion

Compared to previous methods, our two-stream active query suggestion introduces an 

additional unsupervised feature extractor that is trained on all images to capture dataset 

statistics. We then cluster unlabeled data with the two-steam features and use cluster centers 

as query samples for annotation (Sec. 4.1). With new annotations, we further fine-tune the 

image feature extractor to adjust the feature space for better query suggestions in the next 

round (Sec. 4.2).

4.1 Two-Stream Clustering

For the task of deciding the correctness of ROI proposals, we use the predicted mask from 

the base model for the supervised stream and its corresponding raw image for the 

unsupervised stream. We first apply the feature extractor to reduce the feature dimension for 

each stream. Then, we fuse the two-stream clustering results to partition the unlabeled data 

into smaller subsets where the samples share similar features to make the cluster centers 

more representative.

Feature Extraction Network.—We train the feature extraction model through self-

supervision. Specifically, we train a variational auto-encoder (VAE) [22] to regress the input 

through a bottleneck network structure (Fig. 4a) and use the embedded features as the low-

dimensional representations. The VAE model consists of an encoder network E and a 

decoder network D. We use several convolutional layers for the encoder, followed by a fully 

connected layer to predict both the mean and standard deviation of the low-dimensional 

embedding vector. For the decoder, we use deconvolution (or transposed convolution) layers 

to learn to reconstruct the input image from the embedding vector.

The loss function for the VAE is the sum of the ℓ1 reconstruction loss and the KL-divergence 

between the distribution of the predicted embedding feature and the standard normal 
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distribution. In practice, we use samples with a fixed patch size where the mask or image is 

rotated and aligned when training the VAE. We then only use the VAE mean vector as the 

extracted feature.

Feature Fusion.—Given the extracted image and mask features, we propose two designs 

of clustering architectures to fuse such two-stream information: late-fusion clustering and 

hierarchical clustering (Fig. 4b). Inspired by the two-stream architecture designs for video 

action recognition [47], we design a late-fusion strategy to directly concatenate image and 

mask features and feed into a clustering module C. We expect that with the combined 

features from two streams, the clustering method can better distinguish ambiguous samples.

Another strategy is the hierarchical clustering that clusters the mask features and the image 

features sequentially. The intuition behind the design is that since the embedding spaces for 

both extractors can be very different (e.g., dimension, and distance scale), the hierarchical 

approach can alleviate the needs for rebalancing. In the hierarchical clustering, the members 

of each of the N mask clusters separated in the first round are further divided into M sub-

clusters by applying the k-means algorithm on the unsupervised image VAE embedding 

space, which yields MN clusters in total. We show in Sec. 6.2 that conditioning the image 

clustering on the mask features can prevent the image features, which are of high dimension 

than mask features, from dominating the results. Therefore hierarchical clustering can better 

suggest queries compare to late-fusion.

Query Suggestion.—Given the clustering result from either late-fusion or hierarchical 

clustering, we run an additional round of clustering (e.g., k-means) with Q clusters and use 

the samples with minimum distances to each cluster center as queries presented to the 

annotators. Thus the annotator needs to annotate in total MNQ samples. In the ablation study 

(Sec. 6.2), we will examine the query suggestion effectiveness and efficiency with different 

hyper-parameter choices.

4.2 Active Clustering

Since the encoders are learned in an unsupervised manner, we expect that with new 

annotations, we can improve the encoder to encourage the learning of more discriminative 

features. Therefore we adaptively adjust the embedding space of the encoder with new labels 

to make the clustering module active.

Triplet Loss.—We employ the triplet loss [15] to incorporate new label information into 

the encoder. Suppose that we have a set of labeled positive and negative instances. After 

randomly select one positive sample xP and one negative sample xN as anchors, we hope that 

the third sample x becomes close to xP and distant from xN if it is positive, and vice versa. 

This can encourage the encoders to learn more discriminative features and facilitate query 

suggestions since samples share the same label are closer while different classes are 

projected further apart. Following Hoffer et al. [15], we calculate the distances as

dP = ϕ(x) − ϕ xP 2, dN = ϕ(x) − ϕ xN 2, (1)
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where ϕ(x) indicates features extracted from the encoder. We then define the loss function 

for adjusting the feature extractor as

LTriplet x, xp, xN = edp

edp + edN
, edN

edp + edN
− 1

2

2
(2)

to minimize dP and maximize dN. Incorporating the triplet loss enables the active adjusting 

of the feature space to be more discriminative, which can further improve the effectiveness 

of query suggestion.

4.3 Learning Strategy

Inference Phase.—(Fig. 3, solid line) For both synapses and mitochondria, the base 

model was initially trained on a small manually labeled volume of size (5μm)3, comparable 

to public benchmark datasets. We conduct sliding-window prediction for the large test 

volume of size (50μm)3 and use the connected component algorithm to generate ROI 

candidates for active learning. The VAE of the mask encoder Es model is trained on the 

aligned patches with predicted object masks, while the image encoder Eu is trained with 

image patches uniformly sampled from the whole volume to capture diverse texture 

information.

Fine-tuning Phase.—(Fig. 3, dashed line) For active clustering, the Eu is initialized by 

fine-tuning it with labeled patches from the small labeled volume. Then the queries are 

generated with two-stream hierarchical clustering by successively using the latent spaces of 

both Es and Eu. After query annotation, we fine-tune the image encoder with new ground 

truth labels and apply it for future iterations of query suggestion. For non-active clustering, 

we conduct the same hierarchical clustering but use the original Eu trained under a totally 

unsupervised setting. In both cases, the new query samples are used to fine-tune and improve 

the base model as a standard active learning practice.

5 EM-R50 Connectomics Dataset

With our two-stream active query suggestion method, we annotated, to the best of our 

knowledge, the largest 3D EM connectomics image volume datasets with dense synapses 

object and mitochondria mask annotation. Specifically, we imaged a tissue block from Layer 

II/III in the primary visual cortex of an adult rat at a resolution of 8×8×30nm3 using a multi-

beam scanning electron microscope. After stitching and aligning the images on multi-CPU 

clusters, we obtained a final volume of 50 μm cube. We also apply deflickering, frame 

interpolation, and image de-striping techniques to improve image quality.

Annotation Quantity.

All ROIs are annotated by three neuroscience experts, and we take the majority decision 

mapped back to the volume as the final label. In total, we obtain around 104K synapses, and 

mitochondria mask that occupies around 7.6% of the voxels. Compared to benchmarks like 

CREMI [11] and Lucchi [28] in connectomics, EM-R50 dataset is over 150× larger in image 

volume size, and over 100× larger in terms of the number of synapse instance.
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Instance Diversity.

To exhibit instance diversity, we show 3D meshes of all synapses and mitochondria within a 

subvolume (Fig. 5b). We use representative 2D slices for each 3D ROIs during annotation, 

and we show the variation of instance shape and orientation (Fig. 5c).

6 Experiments on Connectomics Datasets

We first benchmark our query suggestion method against others on the EM-R50 dataset for 

the ROI-level accuracy for synapse and mitochondria. Then we examine the design choices 

of the proposed method and the whole active learning pipeline through ablation studies, 

public benchmarks, and user studies.

6.1 Comparing with State-of-the-art Methods

Dataset and Metric.—We randomly sample a subset of ROIs for synapses and 

mitochondria from EM-R50 for the benchmark experiments. The number of samples in the 

training-test split is 28.7K-10K and 20K-5K for synapse and mitochondria, respectively. We 

use the ROI proposal accuracy of the base model after fine-tuning as the evaluation metric 

for active learning methods.

Methods in Comparison.—We compare our method with random uniform sampling, 

core-set [43], and learning-loss [53] approaches under a two-iteration scenario. For all the 

methods, after generating queries with a fixed annotation budget (1,280 instances, ≈ 5% of 

the training set), we use new labels to fine-tune the base network and evaluate the updated 

network prediction.

Results on Synapse.—The initial accuracy of the network on the active learning test 

split is 0.811. We fine-tune the network using the instances suggested by different methods 

from the training set, where it has an initial accuracy of 0.762. To prevent overfitting, we 

construct mini-batches from the initial labeled volume with a ratio of 0.25. After first-round 

fine-tuning, the accuracy of the synapse proposals is increased to 0.892 for the test set, 

which outperforms random uniform sampling, core-set, and learning-loss (Table 1, Round 

1). For our method, the new annotations are used to fine-tune the image encoder Eu. After 

another round of active clustering and fine-tuning the base model, the test accuracy is 

increased to 0.926, which shows that our method outperforms previous approaches 

significantly on synapse detection (Table 1, Round 2).

Results on Mitochondria.—Since other structures like lysosome and artifacts caused by 

tissue staining and imaging look similar to mitochondria, the initial accuracy on the 

unlabeled ROIs is only 0.57. After applying our approach, the accuracy is improved to 0.809 

on the test set, which outperforms core-set [43] method by 4.2% and the learning-loss [53] 

by 3.8% (Table 1). We observe that the accuracy improvement is relatively small for 

mitochondria at the second active learning round. This may result from the intrinsic 

ambiguity of the mitochondria feature, where even human experts are not confident about 

the label.
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Discussion.—Despite the state-of-the-art performance of core-set [43] and learning-loss 

[53] on natural image benchmarks, those methods are less effective in handling the 

connectomics tasks due to two reasons. First, both methods use features from the supervised 

model, which can hardly capture the images features in the large unlabeled volume. Second, 

for the learning-loss approach, estimating the prediction loss with the global-average-

pooling (GAP) module can ignore the useful structure information of objects. Nevertheless, 

we also compare the CIFAR-10 image classification benchmark (Sec. 7), where the methods 

are optimally tuned by the authors, for an even fairer comparison.

6.2 Ablation Analysis of Two-Stream Active Query Suggestion

In this part, we validate our design choices of the proposed two-stream active clustering 
module through ablation studies. Since the goal of query suggestion in active learning is to 

find the most “representative” samples for annotation, we perform the experiments to 

evaluate how different hyper-parameter and design choices influence the accuracy of 

annotation under a limited label budget.

Dataset and Metric.—We use the synapse benchmark dataset above to perform the 

ablation study. Suppose that after sliding window inference of the detection model, we have 

N proposed instances with an accuracy of p. Here p is the number of correct predictions over 

the total number of ROIs. By fixing the annotation budget s, the baseline accuracy is defined 

by the expectation of the accuracy that can be achieved by random one-by-one annotation, 

which is p(1 − s
N ) + s

N . For example, with an initial accuracy of 0.7, randomly annotating 

10% of the instances can improve the overall accuracy by 3%, since 70% of the queries are 

positive, and no errors can be corrected by annotating them. Then for evaluating the 

proposed methods, after annotating the cluster representatives in the clustering module, we 

assign the major representative labels to all samples in that cluster and calculate the label 

accuracy of the ROIs.

Effect of Two-Stream Clustering.—We examine the active learning method accuracy 

with respect to the number of clusters and clustering architectures. Note that we fix the 

number of representatives Q = 5. Initially, for the instance proposals generated by the 

detection model, we assign ‘correct’ labels to all instances, and the accuracy is 0.762. As 

shown in Table 2, both with manual annotation of 4.46% of the data, random annotation can 

increase the accuracy by 4.46% × (1 − 0.762) ≈ 0.01, while our clustering module can 

increase the label accuracy by around 0.08 in absolute value. Besides, combining two-stream 

information with late fusion performs worse than the ‘mask only’ design. This is because the 

dimension of image embedding space is 1,000 to achieve reasonable reconstruction 

performance, which is much larger than the mask embedding space (20). Image embedding 

tends to dominate the result with direct concatenation and clustering using the same distance 

metric.

Effect of Active Clustering.—We examine the effect of active clustering for the feature 

extractors Eu and Es. There are three choices of the architectures, fine-tuning Es only, fine-

tuning Eu only, as well as fine-tuning both Es and Eu. As indicated in Table 3, fine-tuning 

only Es decreases the accuracy, because add supervision can distort the shape priors learned 
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by the mask VAE; fine-tuning only Eu have a significant improvement over the static 

hierarchical baseline; fine-tuning both Es and Eu decreases the Eu only performance, which 

further indicate that the shape information learned in Eu by self-supervision already contains 

distinguishable information that can be extracted from object masks. Therefore, we only 

fine-tuning Eu.

6.3 Ablation Analysis of Active Learning Pipeline

Besides the evaluation of the proposed query suggestion method above, we examine the 

performance of the other two modules in the whole pipeline.

Model Prediction: Pixel-Level Evaluation.—We provide pixel-level evaluations of the 

base model2 to show its effectiveness on small benchmark datasets and indicate the 

necessity of active learning on large datasets. For synaptic cleft, we evaluate on the CREMI 

Challenge dataset [11], which contains 3 training and 3 test volumes of the size 

1250×1250×125 voxels. The results are evaluated by two scores: the average distance of any 

predicted cleft voxel to its closest ground-truth cleft voxel (ADGT) for penalizing false 

positives and the average distance of any ground-truth cleft voxel to its closest predicted 

cleft voxel (ADF) for penalizing false negatives. The final ranking criterion (CREMI score) 

is the mean of ADGT and ADF over the three test volumes. For mitochondria, we evaluate 

the model on the Lucchi dataset [30], which contains 1 training and 1 test volumes of size 

1024×768×165 voxels. We use the standard VOC score, which is the average of the Jaccard 

index of the foreground and background pixels.

For synaptic cleft, our proposed model outperforms previous leading methods by 5% and 

ranks 1st among published results on the public leaderboard (Table 4, left). For 

mitochondria, our model achieves comparable results to the previous state-of-the-art 

methods [6,29], with ∼1% difference (Table 4, right). The results suggest that our base 

model is strong enough to enable a fair comparison of the following active learning methods 

on the large-scale benchmark dataset.

Model Prediction: Recall.—As objects are sparse in the images, correcting false positive 

is much easier than finding false negatives. Thus we rebalance the loss and reject batches 

without foreground pixels with a 95% probability to heavily penalize false negatives as in 

Heinrich et al. [14]. In return, the instance-level recall for synapses on a fully labeled 

validation volume is 0.94 (IoU threshold is 0.5), which is adequate for the ROI-based active 

learning experiments.

Annotation: Query Display Order.—To speed up the annotation, we sort the suggested 

query samples by their cluster indices and distance from their cluster centers. Such cluster-

based query display order potentially allows participants to scan and identify false 

predictions faster, as patches with similar features are grouped closer than those in a random 

ordering. For evaluation, we performed a user study with novices as a single factor between-

subjects experiment.

2Architecture details are shown in Fig. S-1 in the supplementary document.
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From the EM-R50 dataset, we randomly select 2.1K synapses, with 211 are false 

predictions. We recruited 20 novice participants and asked them to annotate as many 

synapses as possible within the 30-minute time frame after a 10-min proper instruction on 

the task. Each participant was randomly assigned to either our clustering method or random 

ordering of the synapses.

Our clustering method allows study participants to annotate synapse with higher throughput, 

930±237 synapses, compared to the random order, 670±224 (Fig. 6). Besides the efficiency 

improvement, the cluster-based query display order leads to a slight average accuracy 

improvement: for users with clustering 0.728 ± 0.087 compared to the random ordering with 

0.713 ± 0.114.

7 Application to Natural Image Classification

The proposed two-stream active query suggestion can be applied to image classification in 

the active learning setting. Instead of the predicted mask encoded by a VAE model, we use 

the class label prediction as the supervised stream feature.

Dataset and Metric.

CIFAR-10 has 60K images of size 32×32 pixels, with 50K for training and 10K for testing. 

Each image has a label from one of the ten classes. For evaluation, we use the top-1 

classification accuracy on the test split.

Methods in Comparison.

We use the same training protocol as Yoo et al. [53] for a fair comparison. For query 

suggestion methods, we compare with random uniform sampling, core-set [43], and 

learning-loss [53] approaches. For the active learning pipeline, we run a five-round 

comparison. We first uniformly sample 1K samples from the training set as the initial pool. 

After training the classification model, we apply different query suggestion approaches and 

label additional 1K samples from the unlabeled pool. Then we train the model from scratch 

again and conduct another round of query suggestion and labeling. We iterate the process 

until the total number of labeled samples reaches 5K.

Implementation Details.

For classification, we use the same ResNet-18 model as Yoo et al. [53]. During training, we 

apply data augmentation, including random crop and horizontal flip, and image 

normalization. During active learning, the number of training epochs is 200, and the mini-

batch size is 64. The learning rate of the SGD optimizer is initially 0.1 and decreased to 0.01 

after 160 epochs. For indicating the effectiveness of the unsupervised stream, we only use 

the two-stream clustering module of our query suggestion method. We pre-train the 

unsupervised stream feature with a VAE on all the training images with a latent dimension 

of 32. At the clustering phase, we fix the number of clusters at the output space and VAE 

latent space to be 50 and 20, respectively.
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Results.

Our proposed method outperforms the random uniform sampling and core-set methods, and 

is higher or comparable to the recent learning-loss approach (Fig. 7). Empirically, when the 

number of training samples is around 5% of the whole dataset (i.e., 2K, and 3K out of 50K 

training images), our method achieves 2–3% improvement upon the learning-loss approach.

8 Conclusion

In this paper, we demonstrate the effectiveness of our proposed two-stream active query 

suggestion method for large-scale vision tasks in connectomics under the active learning 

setting. Besides the state-of-the-art results on the connectomics data, we show its 

applicability to a natural image classification benchmark. We evaluate each module of our 

active learning pipeline through public benchmarks, ablation studies, and user studies. As a 

use case, we build a connectomics dataset from a (50 μm)3 cubic tissue with dense 

annotation of synapse and mitochondria.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Two-stream active query suggestion. Active learning methods transform unlabeled data into 

a feature space to suggest informative queries and improve the base model S. Previous 

methods optimize their feature extractor (Es) only on the labeled data. We propose a second 

one (Eu) trained unsupervisedly on all data to capture diverse image features, which can later 

be updated by fine-tuning with new annotations.
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Fig. 2. 
Two essential vision tasks in connectomics: (a) object detection of synapses to quantify the 

neuronal connectivity strength and (b) semantic segmentation of mitochondria to estimate 

the neuronal activity level. (c) However, the terabyte-level test data can be 100× larger than 

the training data, making active learning necessary.
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Fig. 3. 
Overview of our active learning framework. (a) The base model S predicts semantic masks, 

which are post-processed to generate ROIs. We align them to the same orientation for better 

clustering. (b) Our method adds an additional stream of unsupervised feature extracted by 

Eu. We apply hierarchical clustering to partition the unlabeled data and suggest cluster 

centers as queries for annotation. (c) Annotators provide True or False annotations for query 

samples that are used to fine-tune both the based mode S (black dashed line) and the 

proposed Eu (red dashed line).
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Fig. 4. 
Architectures for the two-stream active query suggestion model. (a) For model initialization, 

we train the supervised (Es) and unsupervised (Eu) feature extractors using VAEs. (b) For 

two-stream clustering, we compare two design choices to combine Eu and Es features in an 

either parallel (late-fusion) or hierarchical manner. The block Ci denotes the clustering 

algorithm. (c) For active clustering, we fine-tune Eu with triplet loss to encourage the 

learning of discriminative features.
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Fig. 5. 
EM-R50 connectomics dataset with dense synapse and mitochondria annotation. (a) We 

compare the size of the densely annotated image volume with other connectomics datasets 

(log-scale). To visualize the diversity of instance shape and orientation, we show (b) 3D 

meshes of synapses and mitochondria within a sub-volume, and (c) sample 2D image 

patches with corresponding mask annotations.
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Fig. 6. 
User study on annotation through-put. The box plots show the median and interquartile 

range of the number of annotated instances in a fixed time frame of 30 minutes.
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Fig. 7. 
Active learning results on the CIFAR-10 dataset. The accuracy improvement of our approach 

over previous state-of-the-art methods is most significant when training with a limited 

number of samples (2k and 3k out of total 50k images), similar to the annotation budget for 

EM-R50 (≈ 5%). Mean and standard deviation are estimated from 5 runs. We also show that 

the accuracy saturates after ten iterations of query suggestion (Fig. S-4 in the supplementary 

material).
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Table 1.

Active learning performance comparison on our EM-R50 connectomics benchmark. Our two-stream query 

suggestion approach significantly out-perform previous methods in terms of the ROI proposal accuracy 

(higher is better).

Method
Synapse Mitochondria

Round 1 Round 2 Round 1 Round 2

Random 0.824 0.871 0.704 0.749

Core-Set [43] 0.847 0.895 0.726 0.767

Learning-Loss1 [53] 0.832 0.889 0.724 0.771

Two-Stream (Ours) 0.892 0.926 0.802 0.809

1Please check Sec. S-1 in the supplementary document for model details.
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Table 2.

Comparison of design choices for two-stream clustering. We compute the object detection accuracy by 

assigning the labels of the cluster centers to other cluster members. The number of candidates per cluster, Q, is 

fixed to 5.

Description Random
One-Stream Two-Stream

Mask-Only Image-Only Late-Fusion Hierarchical

Es clusters (N) - - 128 256 1 1 - 64 128 64 32

Eu clusters (M) - - 1 1 128 256 - 2 2 4 8

Total num. (MN) - - 128 256 128 256 256 128 256 256 256

Annotation ratio (%) 2.23 4.46 2.23 4.46 2.23 4.46 4.46 2.23 4.46 4.46 4.46

Accuracy 0.767 0.772 0.805 0.819 0.420 0.578 0.738 0.821 0.826 0.846 0.814
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Table 3.

Comparison of design choices for active clustering. We show the accuracy w/ or w/o fine-tuning feature 

extractors. Fine-tuning only Eu shows the best performance while fine-tuning Es can confuse the encoder, 

which leads to worse performance.

Active Encoder None Es Eu Eu and Es

Accuracy 0.846 0.830 0.880 0.871
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Table 4.

Pixel-level evaluation on public connectomics datasets. For synapse, ours ranks 1st among results in 

publications on the CREMI dataset (left). For mitochondria, ours is on-par with state-of-the-art methods on the 

Lucchi dataset (right).

Synapse CREMI ↓ ADGT ↓ ADF ↓ Mitochondria VOC ↑

DTU1 [14] 72.21 106.31 38.11 Cheng [6] 0.942

DTU2 [14] 67.56 109.67 25.46 Lucchi [29] 0.948

Base model (Ours) 63.92 97.64 30.19 Base model (Ours) 0.937

Comput Vis ECCV. Author manuscript; available in PMC 2020 December 17.


	Abstract
	Introduction
	Contributions.

	Related work
	Synapse Detection and Mitochondria Segmentation.
	Active Learning.

	Active Learning Framework Overview
	Overview.
	Model Prediction.
	Annotation.

	Two-stream Active Query Suggestion
	Two-Stream Clustering
	Feature Extraction Network.
	Feature Fusion.
	Query Suggestion.

	Active Clustering
	Triplet Loss.

	Learning Strategy
	Inference Phase.
	Fine-tuning Phase.


	EM-R50 Connectomics Dataset
	Annotation Quantity.
	Instance Diversity.

	Experiments on Connectomics Datasets
	Comparing with State-of-the-art Methods
	Dataset and Metric.
	Methods in Comparison.
	Results on Synapse.
	Results on Mitochondria.
	Discussion.

	Ablation Analysis of Two-Stream Active Query Suggestion
	Dataset and Metric.
	Effect of Two-Stream Clustering.
	Effect of Active Clustering.

	Ablation Analysis of Active Learning Pipeline
	Model Prediction: Pixel-Level Evaluation.
	Model Prediction: Recall.
	Annotation: Query Display Order.


	Application to Natural Image Classification
	Dataset and Metric.
	Methods in Comparison.
	Implementation Details.
	Results.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

