
https://e-jbm.org/    227

Copyright © 2020 The Korean Society for Bone and 
Mineral Research

This is an Open Access article distributed under the terms 
of the Creative Commons Attribution Non-Commercial Li-
cense (https://creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial use, distribu-
tion, and reproduction in any medium, provided the original 
work is properly cited.

The Role of Toll-Like Receptors in 
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Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast 
activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players 
in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lin-
eage cells in the presence of receptor activator of nuclear factor-κB ligand and macro-
phage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing 
several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the 
pattern recognition receptor family that are involved in recognizing pathogen-associat-
ed molecular patterns and damage-associated molecular patterns in response to patho-
gen infection. TLRs regulate osteoclastogenesis and bone resorption through either the 
myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-
containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a 
central role in the progression of osteolytic diseases, extensive research focusing on TLR 
downstream signaling in these cells should be conducted to advance the development 
of effective TLR modulators. In this review, we summarize the currently available infor-
mation on the role of TLRs in osteoclast differentiation and osteolytic diseases. 
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INTRODUCTION

Bone is continuously remodeled throughout life—old bone is resorbed by os-
teoclasts, while new bone is formed by osteoblasts.[1,2] Osteoclasts are the key 
players involved in the maintenance of bone homeostasis; however, an excess of 
osteoclast activity leads to pathological bone loss as seen in diseases, such as os-
teoporosis, arthritis, periodontitis, and several metastatic cancers.[2] Therefore, 
understanding osteoclast biology is important from a clinical perspective. 

Osteoclasts are derived from monocyte/macrophage lineage cells. Two indis-
pensable factors are required for osteoclast differentiation: receptor activator of 
nuclear factor (NF)-κB ligand (RANKL) and macrophage colony-stimulating factor 
(M-CSF).[3,4] M‐CSF is essential for the proliferation and survival of osteoclast pre-
cursors and guides the early step of osteoclastogenesis.[5] On the other hand, 
RANKL directly differentiates osteoclast precursors into mature osteoclasts by bind-
ing to its receptor RANK.[6] RANKL/RANK binding activates the NF of activated T 
cells (NFATc1), the master transcription factor for osteoclast differentiation, which 
induces the expression of various osteoclast-specific genes, such as tartrate-resis-
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tant acid phosphatase, cathepsin K, and dendritic cell-spe-
cific transmembrane protein.[7-10] Additionally, the syner-
gistic activation of RANKL/RANK signaling by immunore-
ceptor tyrosine-based activation motif-containing proteins, 
DNAX-activating protein of 12 kDa, and Fcγ receptor has 
been reported.[11,12] 

Although RANKL is the primary factor responsible for os-
teoclast differentiation, many studies have validated the 
involvement of other pathways in osteoclastogenesis. Among 
them, the presence of Toll-like receptors (TLRs) on osteo-
clasts and osteoclast precursors has attracted attention 
due to their regulatory roles in osteolytic diseases. In this 
review, we will briefly summarize the functions of TLRs, 
and their roles in osteoclast differentiation.

TLRS AND THEIR LIGANDS

TLRs are members of the pattern recognition receptor 
family. All TLRs have common structures consisting of an 
amino (N)-terminal extracellular domain with leucine-rich 
repeats, a single transmembrane spanning region, and a 
carboxyl (C)-terminal cytoplasmic Toll/interleukin (IL)-1 re-
ceptor (TIR) signaling domain.[13,14] To date, 10 human 
TLRs (TLR1-10) and 12 mouse TLRs (TLR1-9 and 11-13) have 
been identified.[15] TLRs are generally divided into 2 sub-
groups, depending on their cellular locations: TLR1, TLR2, 
TLR4, TLR5, and TLR6 are mainly present on the surface of 
plasma membranes, while TLR3, TLR7, TLR8, and TLR9 re-
side on the intracellular membranes of endosomes, lyso-
somes, and endolysosomes.[16]

The ligands recognized by TLRs are known as pathogen-
associated molecular patterns, and include different types 
of molecules. For example, the ligands for TLR1, TLR2, TLR6, 
and TLR10 are bacterial lipoproteins and peptidoglycans. 
The ligands for TLR4 or TLR5 are bacterial lipopolysaccha-
rides or flagellin. TLR3 is a sensor for viral double-stranded 
RNA , while TLR7 and TLR8 bind viral single-stranded RNA, 
TLR9 binds to CpG DNA, and TLR11 and TLR12 recognize 
profilin from Toxoplasma gondii.[17] 

Danger-associated molecular patterns are endogenous 
nucleic acids and proteins released by stressed cells, and 
they can act as ligands for TLRs—TLR3 detects cellular RNA; 
TLR7, TLR8, and TLR9 recognize cellular RNA or DNA; while 
TLR4 senses secreted cellular proteins, such as high-mobil-
ity group box1, heat-shock proteins, and S100 family of 

proteins.[18-20]

TLR SIGNALING

The first step in TLR activation is the formation of hetero- 
or homo-dimers. TLR2 heterodimerizes with TLR1 and TLR6, 
[21] and possibly TLR10.[22] In contrast, TLR4 typically forms 
homodimers.[23,24] After these conformational changes, 
TLRs recruit cytoplasmic TIR-domain containing adaptor 
proteins, such as myeloid differentiation factor 88 (MyD88), 
TIR domain-containing adaptor protein (TIRAP or MyD88 
like [Mal]), TIR-domain-containing adapter-inducing inter-
feron (IFN)-β (TRIF), IFN-β-related adaptor molecule (TRAM), 
and sterile-α and armadillo motif-containing protein.[25] 
Among them, TLRs mainly use the MyD88 and TRIF path-
ways. All TLRs, except TLR3, use the MyD88-dependent 
pathway, whereas TLR3 and TLR4 use the TRIF-dependent 
pathway.[26] The recruitment of these adaptor proteins 
leads to the activation of downstream transcription factors 
via serial association with various ubiquitin ligases and ki-
nases (Fig. 1).

1. The MyD88-dependent pathway
All TLRs, except TLR3, use the MyD88-dependent path-

way to activate downstream signaling. TLR2 and TLR4 re-
quire an additional adaptor protein, TIRAP (or Mal) for this 
pathway.[27] MyD88 has 3 structural domains: a death do-
main, an intermediate domain, and a C-terminal TIR do-
main.[28] MyD88 associates with TLRs through its TIR do-
main.[29] 

Upon association with TLRs, MyD88 recruits IL-1 recep-
tor-associated kinase (IRAK) 4 and, subsequently, IRAK1 
and IRAK2. Activated IRAK1 binds to tumor necrosis factor 
(TNF) receptor-associated factor (TRAF) 6, an E3 ubiquitin 
ligase. This IRAK1/TRAF6 complex recruits the protein ki-
nase transforming growth factor-β-activated kinase 1 (TAK1), 
which phosphorylates IκB kinase β, which, in turn, phos-
phorylates IκBα. The phosphorylation of IκBα releases NF-
κB (p65/p50), allowing its nuclear translocation, binding to 
response elements, and transcription of target genes.[30,31] 
On the other hand, TAK1 also activates the mitogen-acti-
vated protein kinase (MAPK) signaling pathway.[32] The 
MyD88-dependent activation of NF-κB and MAPKs induces 
the expression of various inflammatory cytokines such as 
IL-1β and TNF-α.[30-32] 
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2. The TRIF-dependent pathway
The endosomal TLRs (TLR3 and TLR4) mediate the TRIF-

dependent pathway to activate NF-κB (TLR4) or to produce 
IFN-β (TLR3 and TLR4).[33] TLR3 directly, and TLR4 indi-
rectly, recruit TRIF via the association of a TRAM, an adap-
tor protein. TRIF, in turn, recruits receptor-interacting pro-
tein (RIP) 1, TRAF3, and TRAF6, and the polyubiquitination 
of these proteins activates TAK1.[34] TAK1 induces delayed 
activation of NF-κB in a manner similar to the MyD88-de-
pendent pathway, leading to the activation of IFN regula-
tory factor 3 (IRF3).[25,35] Activated IRF3s dimerize, trans-
locate to the nucleus, and bind to IFN-sensitive responsive 
element to induce transcription of the IFN-β gene and the 
IFN-stimulated genes.[36,37] In addition, TRIF appears to 
regulate TLR-induced cell death via RIP3 and caspase-8.
[38] This mechanism explains how immune cells cause cell 

death in response to intracellular bacterial infection.[39,40]

THE ROLE OF TLRS IN OSTEOCLAST 
DIFFERENTIATION

1. Direct effect of TLRs on osteoclastogenesis
Osteoclasts express TLRs, and the expression pattern of 

TLRs varies depending on the stage of osteoclastogenesis. 
Osteoclast precursors express TLR1-TLR9; however, during 
their differentiation into mature osteoclasts, only TLR2 and 
TLR4 are predominantly expressed,[41] suggesting that 
these 2 TLRs play a major role during osteoclastogenesis.

The role of TLRs in osteoclast differentiation has been in-
vestigated using both in vitro and in vivo model systems.
[42-47] Both positive and negative effects of TLRs on os-
teoclast differentiation have been reported in vitro. These 

Fig. 1. Toll-like receptor (TLR) signaling pathways. TLRs are located on the surface of cell membranes or endosomal compartments. The activation 
of different TLRs recruit specific sets of adaptors. All TLRs, except TLR3, use the myeloid differentiation factor 88 (MyD88)-dependent pathway, 
whereas TLR3 and TLR4 use the TLR domain-containing adapter-inducing interferon-β (TRIF)-dependent pathway. Recruitment of the various sig-
naling adaptors activate downstream signaling pathways to provoke the induction of pro-inflammatory cytokines or the production of type I inter-
ferons (IFNs). TIRAP, toll-like receptor domain-containing adaptor protein; IRAK, interleukin-1 receptor-associated kinase; TRF, T-cell replacing fac-
tor; TAK, transforming growth factor-β-activated kinase; IKK, IκB kinase; NF-κB, nuclear factor-κB; MAPK, mitogen-activated protein kinase; RIP, 
receptor-interacting protein; TRAF, tumor necrosis factor receptor-associated factor; IRF, interferon regulatory factor.
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contradictory effects of TLRs appear to be dependent on 
the stage of cell differentiation

 In mouse bone marrow-derived macrophage and hu-
man peripheral blood monocyte cultures, the simultane-
ous addition of TLR ligands with RANKL inhibits osteoclast 
formation.[41,48] Therefore, it is possible that TLR signal-
ing sequesters the downstream molecules from the RANKL 
signaling pathway, resulting in inhibition of osteoclasto-
genesis.

Despite their negative effects during the early stages of 
osteoclastogenesis, TLRs play a positive role at the later 
stages of osteoclast differentiation, once osteoclast precur-
sors are committed to the osteoclast lineage.[49,50] For 
example, if osteoclast precursors are pre-treated with RANKL 
for at least 24 hr, the activation of TLRs promoted osteo-
clastogenesis in the presence of RANKL. Furthermore, once 
osteoclast precursors are primed with RANKL, simulation 
of TLRs is sufficient to induce osteoclast formation even in 
the absence of RANKL. Since RANKL priming alone does 
not induce osteoclast formation, it is thought to permit dif-
ferentiation toward osteoclasts, and this commitment in 
osteoclast lineage is required for the positive role of TLRs 
in osteoclastogenesis. 

NFATc1 is a master transcription factor of osteoclasto-
genesis, and appears to serve as a gatekeeper for the dual 
role of TLRs.[9,10] The activation of TLRs in uncommitted 
osteoclast precursors abolished RANKL-induced NFATc1 
expression; however, it enhanced NFATc1 expression in 
RANKL-primed cells.[41,50,51] 

The inhibitory function of TLRs in uncommitted cells is 
partly mediated by IFN-β production.[52] TLR3 and TLR4 
induce IFN-β through a TRIF-dependent signaling mecha-
nism.[26,53] The TRIF-dependent signaling pathway pro-
motes the formation of a homodimer of IRF3,[54] resulting 
in activation of the IFN-β promoter. Binding of IFN-β to its 
receptor (IFNAR) triggers the activation of Janus kinase 
and signal transducer and activator of transcription signal-
ing, resulting in the inhibition of c-Fos expression, further 
abolishing NFATc1 activation.[55] The IFN-β/c-Fos axis is an 
important negative feedback mechanism in osteoclast dif-
ferentiation. Moreover, the deletion of IFN-β or IFNAR in-
creases the number of osteoclasts in vivo, further demon-
strating the importance of this pathway.[55-57]

On the other hand, the activation of TLRs in committed 
cells triggers a number of downstream signaling molecules.

[50,51,58,59] These pathways allow NF-κB to translocate 
into the nucleus, stimulate the transcription of NFATc1, and 
release several inflammatory cytokines, such as TNF-α, IL-1, 
and IL-6. This pro-osteoclastogenic effect of TLRs appears 
to be mediated via the MyD88-dependent pathway,[51] 
since the deletion of MyD88 reduced the number of osteo-
clasts in vivo. In addition, TLRs are believed to have pro-sur-
vival effects on mature osteoclasts via the Akt, NF-κB, and 
extracellular signal-regulated kinase pathways.[50] 

Although TLRs have biphasic effects on osteoclast differ-
entiation in vitro, they demonstrate a positive effect on os-
teoclastogenesis and bone destruction in vivo. Systemic in-
jection of TLR4 ligand significantly increases the number of 
osteoclasts, resulting in femoral bone loss in vivo.[60,61] In 
periodontitis models, the injection of TLR2 or TLR4 ligand 
into the gingiva of the lower mandible also causes alveolar 
bone loss.[62,63] In rheumatoid arthritis (RA) preclinical 
models, the positive effects of TLR2, 4, 5, and 7 have been 
demonstrated. Intraarticular injection of TLR2 or TLR4 li-
gand induces joint inflammation and chronic destructive 
arthritis.[64,65] Local injection of TLR5 ligand potentiates 
joint inflammation and arthritic bone destruction in colla-
gen-induced arthritis (CIA) models.[66] Furthermore, the 
deletion of TLR7 decreases joint inflammation and the ar-
thritis-induced bone loss in CIA and K/BxN serum transfer 
arthritis models.[67,68]

In contrast, the functions of TLR3 and TLR9 vary in vivo, 
depending on the experimental conditions. It has been re-
ported that TLR3 is involved in pristane‐induced arthritis.
[69] Furthermore, activation of TLR3 promotes joint inflam-
mation, while deletion of TLR3 reduces K/BxN serum trans-
fer arthritis.[68,70] However, systemic injection of TLR3 li-
gand attenuates collagen antibody-induced arthritis via 
anti-inflammatory type I IFNs.[71] The dual function of TLR9 
has also been demonstrated in vivo. The activation of TLR9 
induces arthritis via the upregulation of pro-inflammatory 
cytokines [72]; however, it reduces disease manifestation 
in K/BxN serum transfer arthritic models.[73] 

2. Indirect effect of TLRs on osteoclastogenesis
Osteoblasts are derived from mesenchymal stem cells 

and can modulate osteoclast formation via direct contact 
with osteoclast precursors.[74,75] RANKL is essential for 
osteoclast differentiation, and its effect is abrogated by os-
teoprotegerin (OPG), a soluble decoy receptor for RANK. 



TLRs in Osteoclastogenesis

https://doi.org/10.11005/jbm.2020.27.4.227� https://e-jbm.org/    231

Among many factors expressed by osteoblasts, the ratio of 
RANKL to OPG is thought to be critical for the regulation of 
osteoclast formation.[75] 

TLRs are expressed on the surface of osteoblasts and in-
directly modulate osteoclast differentiation.[76] The acti-
vation of TLR2, 4, 5, and 9 in osteoblasts enhances osteo-
clast formation and bone loss by increasing the RANKL/
OPG ratio.[77-81] Myd88-dependent activation of MAPK 
and NF-κB is generally considered to be responsible for the 
stimulatory effect of TLRs on RANKL expression.[78] TLRs in 
osteoblasts also stimulate the production of inflammatory 
cytokines IL-1β, TNF-α, and IL-6, as well as prostaglandins, 
which further contribute to osteoclast differentiation by 
osteoblasts.[49,82] Recently, it has been reported that bac-
terial infection induces periodontal bone loss via increased 
RANKL production by the osteocytes.[83] Therefore, the 
TLR regulation of osteoclastogenesis via osteocytes needs 
further investigation. 

CONCLUDING REMARKS

Osteoclasts are key players in osteolytic diseases, such as 
osteoporosis, RA, and periodontitis. Upon infection, the 
activation of TLRs induces osteoclast differentiation, lead-
ing to bone and joint destruction. Many efforts have been 
made to understand TLR-mediated osteoclastogenesis us-
ing in vitro and in vivo osteolytic disease models. Various 
studies suggest that targeting the mechanism by which 
TLRs mediate osteoclast differentiation could be a promis-
ing therapeutic strategy for the development of novel anti-
osteolytic drugs. Given that there are limited options for 
patients suffering from inflammatory osteolytic diseases, 
targeting TLR-mediated signaling pathways would provide 
additional opportunities for effective treatment of these 
diseases. Currently, several modulators of TLRs are under 
clinical evaluation for various diseases.[84] The elucidation 
of the regulatory mechanism of TLRs specific for osteoclast-
mediated osteolysis would be helpful to develop new drugs 
for precision medicine. 
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