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Abstract

Humans and animals use mental representations of the spatial structure of the world to navigate. 

The classical view is that these representations take the form of Euclidean cognitive maps, but 

alternative theories suggest they are cognitive graphs consisting of locations connected by paths. 

Here we review evidence suggesting that both map-like and graph-like representations exist in the 

mind/brain, relying on partially overlapping neural systems. Maps and graphs can operate 

simultaneously or separately, and they may be applied to both spatial and nonspatial knowledge. 

By providing structural frameworks for complex information, cognitive maps and cognitive graphs 

may provide fundamental organizing schemata that allow us to navigate in physical, social, and 

conceptual spaces.
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Spatial navigation and spatial knowledge

To navigate efficiently from place to place, we rely on internal representations of the spatial 

structure of the world [1]. These are sometimes referred to as “cognitive maps” because they 

play a functional role that is similar to physical maps. The study of cognitive maps has been 

a central concern of psychology and neuroscience, stretching back to the dawn of the 

cognitive revolution [2] (Box 1). The importance of these representational structures is 

emphasized by the fact that they are believed to be used not just for spatial navigation, but 

also for reasoning, inference, and memory in a wide variety of knowledge domains [3-6].

But, what is the nature of the cognitive map? Under the classical conception, a cognitive 

map encodes environmental elements (places, landmarks, goals) in a Euclidean spatial 
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coordinate system [7]. However, an alternative conception is that spatial knowledge takes a 

graph-like form, with locations (nodes) connected by paths (links/edges), but with no 

information about their orientation relative to a global reference frame [8]. These two ideas 

are often considered to be in opposition to each other [8,9]. Here we review evidence that 

suggests that both map-like and graph-like knowledge structures are encoded by the human 

brain (Figure 1). We explore the neural basis of both kinds of representations, and consider 

how they might be applied to both spatial and nonspatial information.

What form does spatial knowledge take?

Cognitive maps are typically conceptualized as encoding environmental elements in terms of 

their positions in Euclidean space (see Glossary) [1,7,10]. A representation of this kind 

enables a navigator to orient toward unseen locations, identify novel shortcuts, and detour 

around obstacles--tasks that require the flexible use of spatial knowledge. This formulation 

received major support from the discovery of grid cells, which may provide a neural 

substrate for representing locations on a 2D Euclidean coordinate system [11,12].

However, a challenge to this idea comes from evidence that people seem to form mental 

representations that violate Euclidean rules. There are many examples in the literature. 

People tend to distort route angles in memory toward 90 degrees, in a way that can create 

impossible configurations [13-16]. Distance and direction estimates between locations are 

warped by the number of turns in the routes connecting them [15,17-21], and can differ 

between forward and backward route directions [19,21-25]. Moreover, people often maintain 

only a very schematic and distorted representation of their environment [14,16,26,27], and 

may be unable to point in the direction of unseen landmarks even after years of experience 

[28]. Nevertheless, people are often able to confidently and accurately navigate and take 

novel shortcuts even when they do not possess a full metric mapping of the environment 

[26,29]. People can even navigate in virtual environments that have an impossible, non-

Euclidean structure, while remaining seemingly unaware of those inconsistencies [30-34] 

(see Box 2, Figure 2).

Results such as these suggest that people might use a non-Euclidean kind of spatial 

knowledge to represent their environment, created by the combination of familiar routes 
into a network of path segments. Memory of how to follow a specific route is often thought 

to be procedural - an ordered sequence of stimuli and responses (“when seeing X, turn 

right”), not necessarily incorporating any explicit spatial knowledge [35]. However, learning 

how routes connect at intersections might allow a navigator to encode a flexible 

representation of the route network, thus enabling the recombination of path segments in 

novel ways during navigation [8,19,26,36-39]. Such a flexible representation of path 

segments is referred to as a cognitive graph.

In a graph, only a limited number of spatial locations are represented as nodes. These may 

be locations of navigational importance (e.g. turns in the road, intersections between routes, 

prominent landmarks, or locations of prolonged stay), or places with special personal 

meaning to the navigator [10,36,39]. Spatial relationships between nodes are represented as 

links that include only the information needed to travel between the nodes - specific action 
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sequences to take, relevant metric information (e.g. lengths of path segments), or route 

characteristics such as slope and general direction [36,39]. Cognitive graphs can be thought 

of as a set of state transitions, where specific action sequences lead from one state to another 

- similar to the mechanisms underlying performance of non-spatial tasks [36,40].

An important aspect of a cognitive graph--distinguishing it in our conception from a 

cognitive map--is that locations are not referenced to a global coordinate system. Opinions 

differ, however, as to whether cognitive graphs incorporate local metric information. Some 

investigators argue for topological graphs that do not use any spatial coordinate system 

[26,39,41-45]. Supporting this view is the fact that people usually know the correct 

topological structure among landmarks (order, containment, and connectivity), even when 

they have very distorted Euclidean environmental representations [14]. Others have argued 

for labeled graphs that encode the angles and lengths of the paths extending from each node 

[8,9,30,37,46]. This kind of graph might enable finding novel shortcuts by the sequential 

summing of local spatial information, explaining how people can make complex 

navigational maneuvers without possessing a global Euclidean cognitive map [8,30,47].

The evidence we review below suggests that cognitive graphs and cognitive maps do not 

have to be mutually exclusive. Instead, maps and graphs can be learned in parallel in the 

same environment (Box 3) [48], and may complement each other.

Neural systems supporting cognitive maps and cognitive graphs

In this section, we review the neural systems that support cognitive maps and cognitive 

graphs. Figure 3A summarizes our conclusions in graphical format.

Evidence for Euclidean spatial representations

The discovery of place cells in the rodent hippocampus provided the first evidence for a 

spatial code in the brain [49]. O’Keefe and Nadel [7] hypothesized that these neurons, whose 

firing depends on the position of the animal, support a Euclidean map. Consistent with this 

idea, neuroimaging studies have found that the hippocampus exhibits a key feature of a map: 

encoding of distances between locations [3,50-54]. Because Euclidean and path-based 

distances tend to be correlated in most realistic environments, it has not always been clear 

whether these distance effects are evidence for map-like or graph-like representations. 

However, one study that attempted to dissociate these factors found that activity in the 

anterior hippocampus and entorhinal cortex was related to Euclidean distance, whereas 

activity in posterior hippocampus was related to path distance [54] (Figure 3B).

The spatial metric underlying these distance codes is believed to be implemented not in the 

hippocampus itself, but upstream in entorhinal cortex (ERC). This region contains grid 

cells, whose multi-peaked firing fields provide a regular grid for representing space [11]. 

Evidence for grid-cell-like representations has also been reported in human fMRI [55], 

single neuron activity [56], and intracranial theta oscillations [57], suggesting a cross-

species Euclidean representational mechanism. The integrity of these grid-cell-like patterns 

relates to navigational ability and is reduced in individuals at genetic risk of developing 

Alzheimer’s disease and older adults [55,58,59]. Interestingly, grid-cell-like patterns in 
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humans have also been observed outside of ERC, notably in the medial prefrontal cortex 

[55,56,60], suggesting that frontal lobe mechanisms also support the encoding of continuous 

dimensions. Within ERC, grid cells are organized into discrete modules along the dorsal-

ventral axis, with more ventral modules exhibiting larger grid fields [61]; a similar 

organization by scale is observed in hippocampal place cells in rodents [62] and 

hippocampal fMRI signals in humans [63-65]. The use of multiple scales may allow the 

hippocampal-entorhinal system to support maps of different sizes, and also to code locations 

with greater robustness by combining information across scales [66].

Recording and modelling studies suggest that the grid system is intrinsically wired to 

support a representation of a continuous 2-D manifold, with its own, self-organizing, internal 

dynamics [67]. Activity in this manifold might be updated based on inputs from head 
direction cells [68] and speed cells [69], thus providing a mechanism for path integration 
[12]. However, it is worth noting that grid patterns often exhibit distortions from regularity, 

which are tied in a predictable manner to the geometry of the environment as defined by its 

boundaries [70-72]. Behavioral studies in humans have shown that spatial memories exhibit 

biases that are consistent with the geometry-based distortions observed in rodent grid cells 

[73-75]. According to one theory, grid cells may provide accurate measures of distance to 

the most-recently encountered boundary, but only an approximate reference system for the 

environment as a whole [76]. Interactions with environmental boundaries or with distal cues 

can reduce navigational errors by correcting the drift in spatial codes that is inevitable when 

grid and place fields are updated solely from internal self-motion cues [77-80]. These 

findings suggest that path integration may rely primarily on a Euclidean grid signal, but 

goal-directed navigation ultimately relies on representations that are a compromise between 

this Euclidean signal and information obtained from local spatial features such as boundaries 

and landmarks.

Besides encoding distances, another key aspect of a Euclidean map is that it allows the 

calculation of the direction to the navigational goal. Theoretical work suggests that grid cells 

can perform such computations [81-83]. Neuroimaging studies have found evidence for 

coding of direction to a navigational goal in the ERC and presubiculum. In two studies 

multivoxel patterns in these regions distinguished uniquely between directions in a manner 

reminiscent of rodent head direction cells [84,85], while in another study these patterns 

exhibited a 6-fold symmetry that is characteristic of grid cells [86]. Notably, the latter study 

used a complex virtual city where the straight-line vectors between various locations did not 

correspond to the navigational paths (Figure 3C). When taken together with the evidence for 

distance coding, these findings point to a Euclidean representational system in the brain, 

centered on ERC and hippocampus.

Evidence for graph-based spatial representations

In contrast to the flexible navigation afforded by a cognitive map, route-based navigation is 

often conceptualized as a rigid, procedure-bound strategy. Consistent with this view, 

numerous studies report a distinction between map-based navigation supported by the 

hippocampus and route following supported by the caudate nucleus [87-90]. However, 

graph-based navigation can also be conceptualized as not merely following an overlearned 
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trajectory, but as a navigational system that enables flexible recombination of path segments 

in planning. This kind of navigation is unlikely to involve the caudate, but rather may recruit 

brain networks that partially overlap with the cognitive map system [91].

Proposals that the hippocampal formation represents graph-like spatial codes, instead of (or 

in addition to) cognitive maps, have existed in parallel with cognitive map theory for some 

time [38,92]. Although they did not use the term, Eichenbaum and Cohen [93] characterized 

the hippocampus as encoding relational elements (e.g. A is east of B) that could form the 

elements of a spatial graph. Recent evidence from rodent neurophysiology suggests that 

hippocampal place fields in constrained mazes are determined by position relative to the 

topological structure of the maze, rather than distance along the path or position in 

Euclidean space [94] (Figure 3D). More broadly, hippocampal place cells have been shown 

to divide space and time into segments [95,96], encode the hierarchical structure of 

experience [97], and represent schematic relationships between environmental elements 

[98], all of which can be conceptualized in terms of graph coding.

During navigational planning, hippocampal place cells are believed to support a path-based 

mechanism that respects environmental topology [92,99-101], and the firing rates of place 

cells are modulated by past and future paths [102-104]. Evidence for such a path-based 

planning mechanism has been observed in both rodents [105] and humans [54,106]. 

Hippocampal replay (i.e. sequential reactivation of place cells when the rodent is stationary) 

also appears to be sensitive to maze topology, with reversal of replay direction observed at 

intersections [107]. Related results have been reported in human neuroimaging: as 

participants entered a new street in a virtual environment, their posterior hippocampal signal 

reflected the number of network connections possible for future travel, while anterior 

hippocampal signal reflected the global network topology of the environment [108]. These 

data are consistent with the idea that the hippocampus supports a graph-like representation 

of locations in the environment and the links connecting them.

The role of scene regions

As discussed previously, behavioral studies suggest that people might not just encode 

topological graphs of which nodes are connected to each other; they might also encode 

labeled graphs that contain local spatial information about the distance and direction of the 

links or the angles that the links form at each node. What are the neural mechanisms that 

would give graphs this kind of local spatial structure?

To our knowledge, there have been no studies directly investigating this question. That said, 

a relevant observation is the fact that there is an intimate relationship between these local 

spatial features of a graph node and the spatial features of the local visual scene. This fact is 

well known to roboticists, who have exploited it when building artificial navigation systems 

[109]. Thus, we hypothesize that global topological representations, supported by the 

hippocampus, are given local spatial structure by the network of cortical regions known to 

represent the local scene. These scene-selective regions include the parahippocampal place 

area (PPA), occipital place area (OPA), and retrosplenial complex (RSComp) [110]. In 

previous reviews, we have discussed a possible role for these regions in anchoring cognitive 

maps by providing geometric and contextual inputs to the hippocampal-entorhinal system 
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[3,111]. Here we argue that they may also play a central role in representing elements of 

cognitive graphs.

Both OPA and PPA respond strongly during the viewing of spatial scenes such as 

landscapes, cityscapes, and rooms [110]. Several lines of recent work suggest that OPA may 

be particularly important for processing information about the spatial layout of the local 

scene [111,112]. For example, OPA has been shown to represent scene geometry as defined 

by environmental boundaries [113,114] and the navigational affordances of the scene as 

defined by the locations of egress points and pathways through the scene [115] (Figure 3E). 

The latter result is particularly relevant because it is the egress points that define the local 

environment’s structure within a labelled graph (e.g. a room with two exits on opposite walls 

has a different graph structure than a room with two exits on adjoining walls or a room with 

3 exits). PPA, on the other hand, appears to process the visual features, geometric features, 

and objects that define a scene as a specific place or context [116,117]. In map-based 

navigation, these representations of the geometric structure (OPA) and identifying features 

(PPA) of the local scene provide the perceptual inputs that allow a navigator to determine 

their orientation and location within the reference frame of the cognitive map. In graph-

based navigation, these same representations would allow a navigator to understand the 

angles between the links converging on a node (using the OPA) and the discriminating 

features that give a node its unique identity (using the PPA).

These local representations might be integrated into the larger graph by RSComp, a region 

that encompasses retrosplenial cortex proper (BA 29/30), and adjoining territory in the 

parieto-occipital sulcus. Like OPA and PPA, RSComp responds strongly when people view 

scenes, and recent work suggests that its posterior portion may contain a retinotopic map, 

similar to those found in OPA and PPA [118]. However, RSComp is also implicated in 

global spatial processes that may be crucial for understanding the relationship between the 

local scene and the wider world [119].

In real-world or realistic virtual environments, RSComp represents spatial quantities such as 

location and heading [120-122] defined relative to stable environmental features such as 

environmental boundaries and landmarks [123-125]. In linear mazes, neurons in rodent 

retrosplenial cortex represent path elements that could potentially be used to construct a 

graph, such as turns, position along the path, and path identity [126-128] (see also [129] for 

related results in monkeys). These cells also represent relationships between path elements 

[130] and the allocentric location of the path within the broader environment [126] (Figure 

3F). These integrative functions of RSComp contrast with the egocentric and route-centered 

coding observed in lateral parietal cortex neurons, which fire in response to specific route 

actions (e.g. turning left or right) and route positions, but do not incorporate information 

about the allocentric location of the route within the larger spatial context [131]. In an fMRI 

study, we observed that RSComp was sensitive to the order that buildings were encountered 

along a newly learned route through an urban neighborhood, responding more when 

buildings were presented in the correct order than when they were presented in the reverse 

order [132]. Notably, this effect was only found for buildings at intersections, suggesting 

that RSComp might be encoding routes in a graph-like manner with the intersections as 

nodes.
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Taken together, this evidence suggests that graph-based navigation is supported in part by a 

network of cortical regions typically thought of as scene-selective, with OPA and PPA 

primarily involved in representing the nodes, and RSComp primarily involved in 

representing the links. The functions of these regions in graph-based navigation are related 

to their functions in map-based navigation, but they are not always directly analogous. The 

role of RSComp is particularly instructive. In map-based navigation, RSComp is believed to 

mediate between scene-based codes in the cortex and map-based codes in the hippocampal-

entorhinal system [133]. This translation function allows a navigator to anchor their 

cognitive map to the local scene and understand directional relationships to unseen 

locations. Indeed, an inability to understand the relationship between the local scene and 

distal locations is an oft-reported consequence of the “heading disorientation” observed after 

RSComp damage [134]. Graph-based navigation, on the other hand, might utilize vectors 

that are stored directly in RSComp rather than being recalculated through hippocampal-

ERC-RSComp interactions each time they are required (Box 3). In this way, a brain region 

that is used for active computation during map-based navigation might also come to support 

graph knowledge.

Factors that may affect the encoding and use of maps and graphs

Although cognitive maps and cognitive graphs can develop in parallel, different factors may 

influence the genesis and use of each. Consideration of these factors may help to clarify 

previous findings that appeared to support one kind of representation over the other.

Environmental constraints

To keep track of their location in a Euclidean coordinate system while moving about the 

world, navigators must maintain a sense of direction within a consistent reference frame. 

This task is easier in environments that contain clear global directional cues, such as 

prominent distal landmarks or slopes, and clear organizing axes, such as prominent straight 

routes (Figure 4). Thus, map-like codes are more likely to be used in open arenas or in cities 

with a grid-like street structure, especially when prominent landmarks such as large 

buildings or mountains are visible. In contrast, graph-based navigation is aided by distinct 

local landmarks that help identify nodes or trigger route action sequences [24,135], and may 

be more efficient than map-based navigation in environments where movement is 

constrained to a small number of routes [19,21,26,31,32,36]. Prototypical environments that 

would facilitate graph-like navigation include complex buildings, cities with limited 

visibility and curving streets, natural cave systems, and dense forests; in such environments, 

people may learn to navigate by following and combining path segments, without being 

aware of their global orientation or metric location [28,29].

Spatial scale

Navigable spaces vary in scale, from small rooms to large cities. These different scales may 

require different navigational strategies [136,137] that rely on partially separable neural 

systems [64,65]. Smaller environments (such as single rooms) might be easily coded as a 

Euclidean reference frame, especially if they are entirely co-visible. In contrast, larger 

spaces containing several subcompartments or subregions have an inherent hierarchical 
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structure that lends itself to representation as a graph, and boundaries between these 

subcompartments may limit visibility and movements, making it difficult to create a global 

Euclidean map [18,138,139]. Indeed, several theories of spatial cognition emphasize the 

coding of a Euclidean reference frame for small environments, and a graph of connecting 

routes for larger environments [8,37,39,42,43]. The scale of space, by itself, need not be the 

only determinant of the form of representation; a large open park with clear axes and 

boundaries might be represented using a Euclidean coordinate frame, while a small building 

with several corridors might be represented as a cognitive graph. However, all other things 

being equal, smaller spaces may tend to be represented as Euclidean maps, while larger 

spaces may tend to be represented as cognitive graphs.

Individual and cultural variability

People appear to vary in their ability (and tendency) to form Euclidean and route-based 

representations. Most individuals can learn to follow specific routes, but many perform 

poorly when they are asked to point in the direction of unseen landmarks (i.e., create a 

Euclidean representation), or integrate intersecting routes (i.e., create a cognitive graph). 

These capacities depend on factors such as mental rotation ability and associative memory 

[140,141]. In addition, people have consistent individual tendencies to follow familiar routes 

vs. attempting to go straight in the general direction of their goal [29,89,142]. Social and 

cultural factors may also have an effect: for example, Americans rely more on global 

(cardinal) directions and less on local landmarks than Europeans when giving route 

descriptions [143,144], and men use cardinal directions and global directional cues (such as 

slopes) more than women when navigating and giving directions (and this ratio also varies 

by country) [145-150].

Despite the above-mentioned factors, in many environments people can maintain both map 

and graph representations, and use them interchangeably. The differential use of each may 

depend on the type of problem encountered [29,142]. For example, in a city built as a grid 

but with one-way streets, a route-based representation may be used when driving, but 

Euclidean navigation may be more useful when walking. Different types of problems will 

require different types of representations - and this parallels the different types of knowledge 

organization used in other kinds of problems, outside the spatial domain.

Beyond space: Maps and graphs in abstract domains

To what extent does the map-graph distinction extend to domains that are not inherently 

spatial, such as social or semantic knowledge? An increasing number of researchers have 

argued that spatial cognitive maps can be generalized to form maps of nonspatial 

information (for reviews, see [3-6]). In contrast, parallels between spatial and nonspatial 

graphs have been less discussed.

In our everyday lives, we are likely to use a wide variety of map-like and graph-like 

knowledge structures [4,151]. For example, we may represent the people we know in terms 

of continuous variables such as various abilities that are naturally encoded as a map-like 

attribute space (Figure 5A), or we may represent them in terms of discrete relationships 

between individuals that are naturally encoded in graph-like formats (e.g. social networks or 
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family trees; Figure 5B). Similarly, we might represent living creatures in terms of 

continuous variables such as size and ferociousness, or in terms of a semantic network of 

discrete associations [152]. In experimental settings, the details of the paradigm may 

determine whether participants form map-like or graph-like representations: some tasks 

require participants to organize information along continuous dimensions, while others 

involve ordered transitions between discrete states. To date, most experiments have used 

only one task at a time, leading to an intriguing discrepancy between the spatial and 

nonspatial literatures: whereas spatial results can often be explained equally well by 

Euclidean or graph-based representations, nonspatial results usually come from paradigms 

that constrain the participant to use one representation or the other. Yet despite this 

difference, the observed neural substrates from spatial and nonspatial experiments are 

similar.

Several studies have examined the coding of continuous representational dimensions in 

nonspatial domains. These studies have revealed a remarkable correspondence between the 

neural systems involved in the coding of spatial and nonspatial maps. Hippocampal cells in 

rodents have been shown to code several linear dimensions, including time [153-155] and 

auditory pitch [156]. In fMRI studies, hippocampal activity has been shown to track 

Euclidean vectors along experimentally-defined dimensions, including the angle of a power 

vs. affiliation vector derived from social interactions [157], distance within a 2-dimensional 

social attribute space defined by popularity and competence [158], and distance in a 2-

dimensional stimulus space defined by visual size and opacity [159]. Entorhinal activity has 

also been shown to track Euclidean distance [158], and grid-like signals (in the form of 

hexadirectional modulation) have been found in ERC for several abstract spaces, including 

a continuous shape space defined by bird beak and leg length [160] (Figure 5A), an olfactory 

space defined by the blending of two odors [161], and a semantic space in which symbolic 

labels were used to parse two continuous stimulus dimensions into categorical regions [162]. 

Grid cells in monkey ERC have been shown to encode the visual space on a display screen 

[163] and a similar effect has been observed in human ERC [164,165]. As previously 

observed for physical spaces, neuroimaging studies have observed grid-like signals in medial 

prefrontal cortex [160-162]. Taken together, these results provide strong evidence for a 

common neural system for representing Euclidean spaces across a wide variety of physical 

and abstract domains.

Fewer studies have directly investigated graph coding in nonspatial domains, but evidence 

for graph-based coding comes from studies that present participants with sequences of items 

corresponding to transition matrices with an underlying graph structure (Figure 5B). 

Behaviorally, the learning of such graphs can be demonstrated by evaluating participants’ 

response times in terms of distances within the graph [166-168], or by testing their ability to 

parse items into “communities” of closely linked stimuli [169,170]. These studies have 

found evidence for graph coding and hierarchical organization using both explicit [168,170] 

and implicit [166,167,169] measures. Neuroimaging studies suggest that the hippocampus, 

prefrontal cortex, and RSComp support the ability to extract graph structure [166,168,169], 

but the pattern of results differs depending on specific task requirements. In a virtual subway 

network where participants made navigational decisions, but in the absence of first-person 
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navigation experience, the hippocampus and ventromedial prefrontal cortex jointly tracked 

proximity to goal as the number of stops along the route, while dorsomedial prefrontal 

cortex tracked distance-to-goal in terms of the number of subway lines [168]. Interestingly, 

though it was not emphasized by the authors, this study also found effects of graph distance 

in RSComp. Similarly, in a network structure that participants learned by observing 

sequences of items corresponding to possible transitions between graph nodes, medial 

prefrontal cortex and hippocampal patterns were more similar for items closer together in 

the underlying structure [169,171]. However, another study found that activation patterns in 

a different frontal region adjacent and connected to the mPFC --orbitofrontal cortex--

distinguished between nodes of a directed graph that represented the hidden states of a 

behavioral task [172]. Interestingly, this ability to represent the contingencies between 

abstract states seems to depend crucially on intact communication between the hippocampus 

and the orbitofrontal cortex [173]. This evidence is broadly consistent with the idea that the 

orbitofrontal cortex represents tasks as an abstracted graph of the goal-directed transitions 

between actions or states [40,174].

Studies using multivoxel pattern analyses have not typically found evidence for graph-like 

coding in ERC (e.g. [171]). However, in one study where participants viewed objects in 

temporal sequences governed by a specific graph structure, ERC exhibited fMRI adaptation 

related to link distance and other graph measures [166]. This finding suggested that objects 

associated with nearby nodes in the graph recruited more overlapping neural populations 

relative to objects associated with nodes further apart. This result is consistent with 

theoretical views that the hippocampus and ERC work together as a system that represents 

both the details and the structural regularities of the environment [175-177]. Under this 

perspective, the hippocampus establishes a set of states that can be linked to perceptual 

inputs while ERC represents general geometric rules that govern transitions from one state 

to another—rules that could potentially take either a map-like or graph-like form. This 

intriguing idea suggests the possibility that maps and graphs may be variants of an 

underlying representational continuum rather than categorically different knowledge 

structures (Box 4).

Concluding remarks and future perspectives

Cognitive maps and cognitive graphs provide two powerful methods for organizing spatial 

and nonspatial knowledge. Whereas cognitive maps have been a topic of extensive 

discussion in the literature, cognitive graphs have garnered comparatively less attention--

there is much still to be learned about how they operate and how they are instantiated by 

neural systems (see Outstanding Questions). Meanwhile, the issue of whether true Euclidean 

maps exist [8,26,36,47] and how they might support nonspatial knowledge remains a topic 

of intense debate.

One crucial unresolved issue is whether cognitive maps and cognitive graphs can truly be 

distinguished. As we have highlighted, most studies in spatial cognition use paradigms that 

can lead participants to develop both graph and map representations of the same 

environments. Participants may then use these representations interchangeably and 

according to their individual preferences, complicating the interpretation of the results. An 
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important avenue for future research would be to develop experimental paradigms that are 

specifically designed to tease apart graph and map representations, both in space and in 

abstract domains. For example, different spatial environments could be constructed that are 

balanced for most features, but have different geometries that encourage formation of either 

graph or map representations. Alternatively, behavioral and fMRI similarity measures could 

be used to identify competing representations of cognitive graphs and Euclidean maps in the 

same environment, for example by contrasting coding of path distances and Euclidean 

distances between locations (e.g. [54]). The same procedures could be used in non-spatial 

domains, for example by investigating representations of items connected as a graph (e.g. 

social network connectivity between people) vs. coding of the same stimuli on a Euclidean 

space (e.g. people’s location on a coordinate system defined by continuous personality 

traits).

Irrespective of whether maps and graphs turn out to be fundamentally different, or two sides 

of the same coin, the distinction between these knowledge structures provides a useful 

framework for thinking about how complex information is represented in the mind-brain. 

Future investigations of these structures will be important not only for understanding how 

neural systems mediate spatial navigation, a core cognitive ability essential to survival and 

human flourishing, but also other fundamental elements of thought, including reasoning, 

memory, and prospection.
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GLOSSARY

Cognitive graph
a representation of space in terms of nodes (locations) connected by links (path segments). A 

cognitive graph can be topological (representing only whether locations are connected to 

each other or not), or labeled (representing local metric information such as distances and 

directions of each link, or the angles that links form at a node).

Entorhinal cortex (ERC)
A brain region found in both rodents and humans that serves as a major input/output 

structure for the hippocampus. ERC contains both grid cells and head direction cells.

Euclidean space
a continuous space defined by reference axes (usually two or three). Locations in a 

Euclidean space can be specified by coordinates, and relationships can be expressed in terms 

of distances and angles.

Grid cells
neurons that represent space in a distributed manner, by firing in a regular array of locations 

that tile the environment in a hexagonal lattice.

Head direction cells
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neurons that fire as a function of the direction that the animal is facing, independent of its 

location, similar to the behavior of a compass.

Hexadirectional modulation
a phenomenon where brain activity is modulated by the subject’s current direction of 

movement, with a six-fold symmetry - that is, firing is maximal for headings with angular 

spacing of 60 degrees. Believed to be a marker for grid cells, whose fields exhibit a similar 

six-fold organization.

Local visual scene (or vista space)
a space that can be perceived from a single point without the need to navigate. Sometimes 

contrasted with environmental spaces, which cannot be perceived from a single point of 

view.

Path integration
a strategy in which a navigator keeps track of the distances and directions they have travelled 

in order to compute a straight-line vector to the starting point. Path integration is believed to 

be crucial for learning Euclidean coordinates for locations in the environment, but it can 

become inefficient in large environments due to accumulated errors.

Place cells
neurons that represent space in a localized manner, by firing when the animal is in a specific 

location.

Route
a distinct path connecting two locations, which may have multiple path segments. Routes 

can be specified either by the lengths and directions of the path segments, and/or by the 

navigational actions (e.g. turns) to be performed along the path.

Scene-selective regions
brain regions that respond more strongly in fMRI when people view spatial scenes (e.g. 

landscapes, cityscapes, rooms) than when they view other visual stimuli. Three scene 

regions have been identified in the posterior portion of the brain, near the apex of the visual 

system: the parahippocampal place area (PPA), retrosplenial complex (RSComp) and 

occipital place area (OPA).
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Box 1 -

Historical conceptions of cognitive maps

The concept of a cognitive map dates back to Tolman [2], who presented it as an 

alternative to behaviorist approaches to psychology. Tolman suggested that animals form 

representations of environments that are more than an interlinked series of associations 

and whose learning does not depend on immediate reward. The idea that humans and 

animals have internal spatial representations is now widely accepted, but there has been 

less consensus about the nature of “cognitive maps” - their degree of accuracy, the inputs 

required to form them, and how they integrate separately experienced environments.

In 1978, O’Keefe and Nadel proposed that a cognitive map is Euclidean, and this has 

become the dominant model for neuroscientists [7]. A precise definition comes from 

Langille and Gallistel [178]: “A map is a set of vectors in a 2- or 3-dimensional vector 

space, on which navigation-relevant vector functions are defined.” Under this definition, 

the key feature of a map is that it establishes coordinates for each point in space, thus 

allowing a navigator to associate non-location information (e.g. terrain characteristics, 

visual snapshots, reward values) with any location, and to set a course between different 

locations [1]. O’Keefe and Nadel contrasted the flexibility of the Euclidean “locale” 

system with the inflexibility of the action-based “taxon” system, which they postulated 

mediated a habit-like following of routes.

However, in parallel to the Euclidean map hypothesis, other suggestions for very different 

types of cognitive maps were put forth, some of which have graph-like aspects. Kuipers 

suggested that in addition to Euclidean cognitive maps, people store representations that 

are based on topological knowledge - connectivity between locations through routes and 

their hierarchical organization into regions [42,43]. Subsequent authors have developed 

other models of graph-like spatial representations [19,26,36,38,41,45,47,179-182], with 

additional elements such as a skeleton of major routes on which the graph is constructed 

[44], labels at nodes and edges indicating directions and distances [8,9,30], and node-

specific reference frames [37,39]. It remains debated whether spatial knowledge is 

Euclidean, graph-based, or a combination of both. In this paper, we use the term 

cognitive map to refer to Euclidean cognitive maps, while referring to graph-like 

structures as cognitive graphs.
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Box 2:

Environments - Real, Virtual and Impossible

When the study of cognitive maps began, investigators used real physical environments. 

In the lab, they constructed wooden mazes or filled tubs with milky water. In natural 

environments, they tracked the countryside over which bees flew or asked students 

questions about the layout of their campuses. The lab environments provided 

experimental control, whereas the natural environments had the advantage of ecological 

validity--but both kinds of environment were three-dimensional layouts that provided a 

full range of sensory input and in which the participant could move. Along with these 

strengths came weaknesses. The constructed environments were rarely large in scale, and 

the natural environments did not allow for standardization across studies.

Advances in technology now permit the use of virtual reality (VR) environments in the 

study of navigation. VR technology comes in a variety of flavors, ranging from desktop 

computer displays to fully immersive head-mounted displays with bodily motion 

tracking, and it has been used to study navigation in both humans and non-human 

animals. Although VR and real navigation differ in some important respects (especially 

the lack of kinesthetic and proprioceptive feedback in desktop situations [183]), VR 

navigation experiments have been found to involve many of the same neural mechanisms 

implicated in real-world navigation [184].

One advantage of virtual environments is that they allow participants to experience 

layouts that are impossible in the real world. For instance, participants can pass through 

wormholes taking them immediately to spots they would normally take time to get to, or 

they can go around “five-sided squares” (Figure 2, [30-34]). Experimenters have often 

reported that participants do not even notice these impossibilities, and have used this fact 

to argue against Euclidean cognitive maps [8,30,31]. However, it is also possible that 

participants expect environments like those they encounter in real life; faced with 

difficulty in making sense of their experience, they do their best, attributing uncertainty to 

their possible lapses of attention or insufficient spatial ability. Indeed, there are 

sometimes indications that participants are aware of oddities, such as in the swirling 

notations on sketch maps in a study by Muryy and Glennerster [34]. As that paper notes, 

future work should directly examine whether people are able to distinguish possible from 

impossible environments when directly instructed to do so. However, irrespective of the 

question of whether subjects are aware of the impossible nature of virtual environments, 

these VR studies suggest the possibility that people can form non-Euclidean spatial 

representations and use them for navigation.
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Box 3 -

How are cognitive maps and graphs acquired and lost?

To understand the interplay between cognitive graphs and maps, it is important to 

consider their order of acquisition. There are two possibilities: graph-first or map-first.

In the first scenario, environments are initially encoded in terms of individual locations 

and connecting routes. With prolonged experience, more paths in the environment are 

traversed and more connections are established. This increase of information allows the 

construction of an integrated representation with a global reference frame that 

encompasses the entire space, in a manner that is consistent with the classical view of 

spatial microgenesis [10] (although see [185]). Evidence for this scenario comes from 

reports that grid and HD cell firing fields are initially anchored by the walls of individual 

subspaces [186], but with experience extend across boundaries to encompass a larger 

space [187,188]. In non-spatial domains, this scenario might play out as initial learning of 

one-to-one associations between stimuli, followed by integration as global organizing 

principles are discovered.

In the second scenario, environments are initially encoded using a Euclidean map, which 

might be created through path integration. Graph representations are formed later as part 

of a consolidation process that involves the identification of key locations, and the storing 

of paths between these locations in memory, so that they can be directly retrieved rather 

than being computed anew each time they are required. Consistent with this scenario are 

findings indicating that activity during navigation shifts from the hippocampus to cortical 

regions, especially RSC, as an environment becomes familiar [189-191]. The graph-like 

nature of these cortical representations can be inferred from examination of patients with 

hippocampal damage. When these patients are asked to draw sketch maps of 

neighborhoods they have lived in for decades, the maps tend to be schematic, only 

including the main roads and the few most prominent landmarks [192]. In one 

particularly illuminating case, a former London taxi driver was able to navigate along 

primary roads in virtual London, but tended to get lost when the route involved more side 

streets, suggesting that only a skeleton of primary locations and routes remained [193]. 

Although there is no direct connection to non-spatial domains, these findings are 

reminiscent of observations in semantic dementia patients, who retain a skeleton of core 

concepts with a shrinking network of specific exemplars as the disease progresses [194].
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Box 4:

Are maps and graphs fundamentally different?

Are maps and graphs truly different, or are they just different manifestations of the same 

underlying neuronal code? Some recent proposals suggest that all representations in the 

hippocampal-entorhinal system are fundamentally graph-like. One influential idea draws 

on reinforcement learning to argue that the hippocampus does not primarily code for 

one’s current state (i.e. location), but rather the distribution of possible states that could 

be visited in the future, termed the successor representation (SR) [177]. Knowledge of the 

available state space is acquired via exploration [195], and includes the likelihood of 

visiting each state and the probability of transitioning between specific states [196]. SRs 

therefore correspond to graph structure learning, where each state is a node, and the 

transition probability between any pair of adjacent states determines the weight of the 

connecting link. These transition probabilities can be affected by both spatial factors 

(such as boundaries) and non-spatial factors (such as the current goal). This approach has 

been used to explain hippocampal responses ranging from rodent electrophysiology to 

human conceptual learning [177]. In this scheme, grid fields in the entorhinal cortex are 

argued to represent principal components of hippocampal state representations [177,197], 

which can support planning across multiple spatial scales.

How might the brain build a Euclidean representation out of this inherently graph-like 

structure? A relevant observation is that the SR is agnostic about how states and 

transitions between them are defined. Existing models assume that spatial information is 

inherent in this definition; for example, by defining states in terms of their Euclidean 

locations [177] or transitions in terms of compass directions [175]. One possibility is that 

this information is provided by cell types whose firing is inherently spatial, such as head 

direction cells, or boundary vector cells (BVCs) [198,199]. These neural responses to 

one’s immediate environment (and additional local scene input from scene-selective 

areas) can thus be used to compute SR states. An open question is whether non-spatial 

inputs (perhaps from image spaces in the posterior parietal cortex [200]) might be used in 

a similar way to define states and transitions for abstract spaces.
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OUTSTANDING QUESTIONS

1. Are maps and graphs fundamentally distinct forms of representation, or are 

they two facets of the same underlying code (Box 4)? For example, can 

Euclidean maps be conceptualized as very dense graphs—or, alternatively, 

can cognitive graphs be conceptualized as maps that have higher dimensional 

topologies?

2. How do individual differences in map vs. graph use manifest across the 

population? Are people who are better at Euclidean navigation also better at 

graph-based navigation, or do people tend to favor one representation or the 

other? Do preferences for map-like or graph-like codes when navigating in 

space transfer to non-spatial tasks?

3. Many studies have investigated the neural systems that support cognitive 

maps. In contrast, the neural basis of cognitive graphs is less well established. 

To what extent are the hypotheses presented here about the neural basis of 

cognitive graphs borne out by studies that specifically investigate this 

question?

4. Physical space has three orthogonal dimensions that are continuous and 

equipotential. In contrast, semantic “spaces” typically have many more 

dimensions, which may not be orthogonal and are often more categorical than 

continuous. Do these differences have implications for understanding how 

cognitive maps and graphs are used to represent nonphysical spaces?

5. How extensive is the overlap between the brain systems that encode spatial 

vs. nonspatial knowledge? Do non-spatial representations rely on additional 

systems beyond the ones used in spatial navigation, for example linguistic or 

compositional codes? To what extent does non-spatial thinking employ other 

“spatial” cell types beyond place cells and grid cells--for example, head 

direction cells, or boundary cells?
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HIGHLIGHTS

• Spatial navigation has been suggested to rely either on Euclidean cognitive 

maps, or on graph-like representations of routes between locations.

• Rather than being competing hypotheses, cognitive maps and cognitive 

graphs may coexist in the same individuals, with availability and use 

depending on environmental characteristics and navigational demands.

• Cognitive maps and cognitive graphs are instantiated by partially distinct, 

partially overlapping neural systems in the hippocampal formation, frontal 

lobes, and scene-selective cortical regions.

• Both representational systems can likely support abstract thought, with 

Euclidean maps suited for representing content varying along continuous 

dimensions, and cognitive graphs suited for representing state transitions and 

discrete associations between items.
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Figure 1: Map-based vs. graph-based representations.
In the spatial domain (top row), knowledge can be purely map-based with locations coded in 

terms of Euclidean coordinates (e.g. latitude and longitude), or purely graph-based with 

locations as nodes and paths between locations as links. It is also possible for map- and 

graph-based representations to exist simultaneously, allowing us to switch flexibly between 

the two. In non-spatial domains (bottom row), knowledge is map-based when information is 

coded in terms of continuous dimensions and graph-based when it is coded in terms of 

distinct links between items. For example, the individuals in a social group might be 

represented in terms of their personality characteristics (map-based) or in terms of the social 

connections within the group (graph-based). Currently, it is unclear whether a flexible 

combination of graph- and map-like representations exists in non-spatial domains.
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Figure 2: Impossible virtual environments provide evidence for non-Euclidean spatial 
representations.
Layouts for each experiment are depicted from a survey (bird’s-eye) view, although 

participants only experienced the environments from an eye-level perspective. A) Impossible 

looping corridors used in [31]. Letters indicate distinct corners. Each environment formed a 

closed, continuous loop from the participants’ perspective (that is, walking from A to B to C 

to D and continuing leads back to A). In the environment on the left, distances were non-

Euclidean (e.g. the distance between points A and B was larger than between points C and 

D); in the environment on the right, angles were non-Euclidean. B) Maze with wormholes 

used in [30]. Yellow lines indicate the points connected by the wormholes - when 

participants moved into a wormhole they immediately emerged on its other side. However, 

the views at the entrance and exit of each wormhole were seamlessly matched, so that there 

was no cue to participants that they had passed into a different part of the environment. C) 

Teleporters used in [33]. On the left is the layout of the main environment, with two 

teleporters marked by blue and red lines. When participants entered a teleporter, they were 

transported to the environment on the right. After following the route indicated by the 

dashed line, they emerged back into the main environment from the other teleporter. 

Therefore, a long and complex route replaced the short Euclidean distance between the blue 

and red lines. In all three studies (A-C), participants successfully learned to navigate the 

environments, despite their impossible structure. Furthermore, participants were not 

informed that the environments were irregular and many did not report noticing anything 
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amiss (but see Box 2 for discussion). These findings suggest that people can form non-

Euclidean representations of space, possibly taking the form of cognitive graphs.
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Figure 3: Neural systems supporting map-based and graph-based representations.
A) Putative brain systems supporting each type of representation, and their suggested 

functions. B-F) Evidence for cognitive map and cognitive graph representations. B) Results 

from an fMRI study showing Euclidean distance representations in the anterior hippocampus 

and path distance representations in the posterior hippocampus [54]. Participants learned the 

layout of London’s Soho district and navigated toward different goal locations. Activity in 

the anterior hippocampus scaled with Euclidean distance to the current navigational goal, 

while activity in the posterior hippocampus scaled with path distance to the goal. C) Results 

from an fMRI study showing representation of Euclidean direction to goal [86]. Subjects 

learned the layout of a virtual city, and then on each trial they were asked to imagine 

themselves standing in front one building while facing in the direction of another building. 

Activity patterns in ERC exhibited a six-fold symmetry with respect to the imagined vector, 

demonstrating the existence of a direction code related to entorhinal grid cells. D) Example 

of a topological representation in the rat hippocampus [94]. Rats navigated a U-shaped 

route, which could be folded such that the angles between route segments and their positions 

within the surrounding room were changed, without changing the overall route length. 

Hippocampal place cells fired at the same route segments regardless of the manipulation, 

demonstrating that the firing is sensitive to route topology and not to absolute Euclidean 
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location in space. E) Results of an fMRI study showing sensitivity to the navigational 

affordances of scenes [115]. Participants viewed rooms with exits (doors) at different 

locations, as well as naturalistic scenes. Navigational affordances (i.e. pathways for 

movement) in both types of scenes were represented by similarity in multi-voxel patterns in 

the OPA. F) Examples of route information coding in the rat retrosplenial cortex [126]. Rats 

navigated two W-shaped routes located in different parts of a room, in both route directions. 

Some retrosplenial neurons coded route action sequences (e.g. right-left-right turn) while 

distinguishing the direction of route movement, while other retrosplenial neurons 

additionally distinguished between the two routes. PPA - parahippocampal place area, OPA - 

occipital place area, RSComp - retrosplenial complex, HPC - hippocampus, ERC - 

entorhinal cortex, MPFC - medial prefrontal and orbitofrontal cortex, R - right, L - left.
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Figure 4: Environmental features supporting map-based and graph-based representations.
Euclidean representations are supported when the environment contains global directional 

cues (e.g. distal landmarks, slopes) or prominent defining axes. These representations may 

be favored in open environments, small co-visible spaces like single rooms, and in cities 

with a grid-like structure. In contrast, graph-based representations are supported by the 

presence of local landmarks and may be optimal when navigation is constrained to specific 

routes. Therefore, graph-based representations might be favored in dense forests, complex 

buildings, and cities without clear organizing axes.
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Figure 5: Maps and graphs in abstract spaces.
A) Some kinds of nonspatial knowledge might be organized into Euclidean spaces based on 

continuous feature dimensions - for example, the people working together on a project may 

be represented as points in a space based on their abilities or characteristics. Entorhinal 

cortex and medial prefrontal cortex have been shown to represent such non-spatial maps of 

continuous dimensions--for example, the length of bird legs and necks in a shape space 

[160]; figure from [5]. B) Other kinds of nonspatial knowledge might be organized into 

graphs representing connections or transitions between states. The middle column shows an 

example of an undirected graph indicating which people in the group know each other 

socially. The hippocampus and medial prefrontal cortex have been implicated in 

representing such undirected graphs [169,171]. The right column shows an example of a 

directed graph, indicating a set workflow, where task are passed from particular team 

members to other team members. A representative study investigating this type of 

knowledge structure has implicated the orbitofrontal cortex as the locus of ‘task space’ 

graphs, containing the transitions between different nodes in the graph [147]. Note that the 

relationships contained in the graphs in panel B can be independent of the placement of the 

individuals in Euclidean space in panel A.
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