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Introduction

Malaria led to approximately 228 million cases and 405,000 deaths worldwide in 2018 [1]. 

Caused by the transmission of Plasmodium parasites by the female anopheles mosquito, 

malaria poses a risk for almost half of the world’s population, with higher risk of severe 

disease and mortality in children under the age of five and pregnant women [1]. In addition 

to the health risk posed by malaria, the disease has a large global economic burden, 

including the cost of research, distribution of mosquito nets and antimalarials, government 

spending for in and out patient care, malaria clinics, and lost work due to illness [2–4]. 

Worldwide efforts to eradicate malaria have led to a decrease in the numbers of mortalities 

since the early 2000s [5]. However, due to growing resistance to available antimalarials and 

the lack of an effective, long-lasting vaccine, these numbers have begun to plateau, 

highlighting the continued need for new, innovative, and affordable methods of treatment [1, 

6–9]. Understanding the role of gut microbiota in human health and disease has expanded 

widely over the last decade, with improved understanding of the ability of gut microbes to 

alter the immune response to chronic inflammatory and infectious diseases both locally and 

systemically [10]. Together, the need for novel malaria treatments and the growing 

knowledge of the role of the gut microbiota in health and disease point to the potential for 

gut microbiota modulation as a treatment for severe malaria.
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Role of gut microbiota in Plasmodium infection

While there is still much to understand before gut microbiota modulation becomes a viable 

and optimal treatment to prevent severe malaria, recent evidence in both rodent models and 

human studies have pointed to gut microbiota composition as a factor in disease progression 

[11, 12]. Villarino et. al. has shown that, when C57BL/6 mice ordered from different 

vendors are infected with Plasmodium yoelii 17XNL—a nonlethal, rodent-specific strain of 

Plasmodium—mice exhibited profound differences in infection severity, morbidity, and 

mortality based on vendor, and that these differences in susceptibility are gut microbiota 

dependent [13**]. The role of the gut microbiota in Plasmodium severity was further 

illustrated in research by Morffy Smith et. al. that showed disruption of the gut microbiota in 

outbred Swiss Webster mice through antibiotic treatment and fecal microbiota transplant 

resulted in differing susceptibly to and pregnancy outcomes during infection with 

Plasmodium chabaudi chabaudi—a rodent model for chronic malaria [14].

Additionally, research using mouse models have shown that Plasmodium infections can lead 

to changes in gut microbiota and gastrointestinal health. Taniguchi et. al. showed that, when 

C57BL/6 mice were infected with Plasmodium berghei ANKA—a lethal, rodent-specific 

Plasmodium strain that, in C57BL/6 mice, leads to experimental cerebral malaria (ECM)—

changes in intestinal pathology and gut microbiota composition were seen, and these 

changes correlated with the development of ECM [15]. It has also been shown by Denny et. 
al. that, in C57BL/6 mice with differing susceptibility to Plasmodium yoelii 17XNL, there is 

an increase of proinflammatory cells in the lamina propria, prolonged liver damage, and 

changes in cecal metabolites in mice that exhibit severe malaria upon infection [16]. This 

report demonstrated shifts in gut bacteria composition in mice regardless of infection 

severity, yet those changes in gut bacteria composition did not alter susceptibility to future 

Plasmodium infections. P. yoelii nigeriensis infection also induced changes in gut 

microbiota, which increased susceptibility to non-typhoid Salmonella infections [17]. 

Contrary to these rodent models, a paper by Mandal et. al. looking at gut bacteria 

composition in Kenyan infants found minimal shifts in gut bacteria following a malaria 

episode and treatment with artemether+lumefantrine [18], illustrating that gut bacterial 

composition shifts may vary based on host, infection severity, and Plasmodium species.

Several studies have also begun to identify the role of gut microbiota in Plasmodium 
infection risk and immune response in humans. In a paper by Yooseph et. al., it was shown 

that there is an association between the composition of stool bacteria composition at the 

onset of the ensuing malaria transmission season and susceptibility to Plasmodium 
falciparum infection [19**]. While the gut microbiota was not a good predictor of who 

would develop a febrile (or symptomatic) infection, it was a good predictor of the likelihood 

of a P. falciparum infection being established as measured by PCR [19**]. Likewise, Mandal 

et. al. found variation in the gut microbiota of Kenyan children who had an increased 

number of malaria episodes rather than a single episode throughout a malaria season [18]. 

Furthermore, Yilmaz et. al. illustrated that colonization of α-gal producing human gut 

bacteria E. coli O86:B7 leads to α-gal specific antibodies, and these antibodies are cross-

protective against Plasmodium sporozoite infection of hepatocytes in both a mouse model 

and human populations [20**]. Together, though these human and mouse studies evaluate 
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the role of gut microbiota on the host response to Plasmodium from different viewpoints, 

they each illustrate the complex relationship between gut microbiota composition and 

Plasmodium infection.

Immune responses leading to Plasmodium clearance and acquired 

immunity

Though the immune response necessary to clear Plasmodium and eventually develop 

acquired immunity is complex due to factors such as large antigenic variation and a complex 

life cycle [21, 22], it is well established that the production of Plasmodium-specific 

antibodies are necessary in order to provide at least partial protection from Plasmodium 
infection [23] (Figure 1). However, protection of Plasmodium-specific antibodies through 

immune memory only reaches a protective threshold to clinical malaria after years of 

Plasmodium exposure and can be lost if an individual leaves a malaria endemic region only 

to return several years later [24, 25]. Studies have shown that it is both a combination of the 

antibody levels in circulation as well as the number of antigens these antibodies target that 

can predict protection from clinical malaria [26, 27]. The underlying factors dictating the 

speed at which an individual gains a protective antibody threshold and develops clinically 

asymptomatic malaria following Plasmodium infection remain unknown.

In the context of Plasmodium infections, a range of cell types including T follicular helper 

(Tfh) and germinal center (GC) B cells have been shown to be critical in developing high-

affinity, long-lived antibodies in both rodent and human Plasmodium species [28, 29]. It has 

been shown that disruption of IL-21 signaling produced by Tfh cells leads to sustained high 

parasitemia in mice infected with P. yoelii and lack of immunity to subsequent infections, 

and the disruption of Tfh cells in particular leads to an inability of mice to clear the typically 

self-resolving chronic P. chabaudi infection [29, 30]. Furthermore, impaired Tfh 

differentiation and thus inefficient GC responses has been shown in severe malaria infection, 

and these GC responses were restored upon the blockade of inflammatory cytokines [31]. 

Additional cytokines affecting the humoral immune response to Plasmodium include the 

presence of IFNγ, which can lead to atypical memory B cells that have reduced effector 

functions—and B cell intrinsic IL-10—which has been shown to be necessary for GC B cell 

reaction, efficient antibody responses, and ultimate parasite control and host survival in a 

murine model [32, 33].

Gut microbiota influence on adaptive immune response

The gut microbiota has a well-established role in the development of a range of immune 

responses [34]. While a specific mechanism between gut microbiota composition and 

Plasmodium susceptibility was not identified by Villarino et. al., it was shown that mice 

resistant to hyperparasitemia following P. yoelii 17XNL infection showed increased numbers 

of splenic humoral immune cells such as Tfh cells and GC B cells, as well as an increase in 

Plasmodium-specific antibody titers compared to hyperparasitemia susceptible mice [13**]. 

Additionally, Yooseph et. al. noted gut microbiota shifts in the age range that children 

typically develop acquired immunity to Plasmodium [19**], suggesting that age-associated 

gut microbiota changes may play a previously unidentified role in the ability of an individual 
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to reach a P. falciparium-specific antibody threshold that prevents the development of severe 

disease. This data leads to the exciting prospect that gut microbiota composition is 

contributing to the adaptive immune response, thus leading to increased resistance to severe 

disease and the development of a protective antibody threshold to severe malaria.

Though the specific role of gut microbiota on the systemic immune response to Plasmodium 
is still being explored, previous data has shown a role of gut microbiota in the development 

of adaptive immune-mediated protection from extra-GI infections such as influenza and 

LCMV (Figure 2) [35, 36]. Of note, these studies demonstrated that mice largely devoid of 

gut microbiota, as a consequence of broad-spectrum antibiotic treatment, have impaired 

adaptive immune responses. Therefore, it remains less clear how unique compositions of gut 

microbiota impact adaptive immune responses. To this end, Teng et. al. provided evidence 

that specific bacteria among the consortium of other gut microbiota can have an effect on the 

gut-distal immune system [37*]. In the context of an autoimmune arthritis model, they 

illustrated that gut commensal segmented filamentous bacteria (SFB) led to differentiation of 

Tfh cells in Peyer’s patches, which then egress and traveled to gut-distal lymphoid tissues 

where they contributed to GC B cell responses and the production of auto-antibodies (Figure 

2) [37*]. In addition to a direct role of gut microbiota on the development of T cells and 

antibody production, gut microbial products have been shown to have an effect on cytokines 

such as IL-21 [38, 39], which, as noted above, is essential to the systemic adaptive immune 

response to Plasmodium.

Yilmaz et. al. illustrated that bacteria present in the gut microbiota can have an influence on 

antibody production through cross reactivity, and it is known that a larger breadth of 

Plasmodium antigens to which an individual produces antibodies leads to fewer cases of 

clinical malaria [20**, 26, 27]. Together, this data suggests that altering gut microbiota 

composition could benefit the development of a more efficient adaptive immune response to 

Plasmodium and lead to increases in Plasmodium antigens that are targeted by the immune 

response. Though additional research needs to be performed to identify the mechanism by 

which gut microbiota may be shaping adaptive immunity to Plasmodium, altering gut 

microbiota composition to modulate adaptive immunity and thus decrease severe or 

symptomatic malaria remains a potential novel treatment for Plasmodium.

Problems and potential of treating malaria through modulating gut 

microbiota

Gut microbiota modulation as treatment for diseases, including malaria, has a number of 

benefits including its low cost. Mathematical modeling used to evaluate the cost-

effectiveness of probiotic distribution in sub-Saharan Africa found that probiotic 

intervention leading to a 2- to 14-fold decrease in incidence of severe malaria would be 

extremely cost effective for the majority of the region [40]. In addition to being a very low 

cost therapeutic, probiotic bacteria can be freeze-dried and delivered orally, removing the 

need for refrigeration or trained medical professionals to provide hands on delivery. 

Furthermore, gut microbiota supplementation has the potential to prime the host immune 

system to respond better to Plasmodium rather than targeting the parasite, thus removing the 
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possibility of loss of effectiveness due to Plasmodium resistance. The potential to target gut 

microbiota as a preventative treatment was illustrated in a study that showed oral symbiotic 

treatment to target gut microbiota in rural Indian infants provided significant reduction in 

sepsis-related deaths and unexpectedly a reduction in lower respiratory tract infections 

[41*].

Though a better understanding of gut microbiota and utilizing the knowledge as a treatment 

for a range of diseases is an area of research that is important to a variety of fields, there 

remain important challenges that must be considered as this field moves forward. One of 

these challenges is identifying the optimal window of treatment for gut microbiota 

modulation. Villarino et. al. showed that, while there was a significant decrease in malaria 

susceptibility in mice following Lactobacillus and Bifidobacterium treatment, this only 

occurred after several weeks of treatment with a broad-spectrum antibiotic cocktail [13**]. 

Treating otherwise healthy individuals with antibiotics prior to probiotic administration 

would not only be expensive and encourage the emergence of antibiotic-resistant bacterial 

strains, but has been shown to negatively affect gut microbiota recovery following probiotic 

treatment, potentially leading to negative health effects [42]. Still, because gut microbiota of 

young children—the age most at risk for severe malaria infection and mortality—is very 

dynamic [43], there likely exists a period where gut microbiota modulation would be most 

effective.

Finally, even if altering gut microbiota is not sufficient on its own to prevent severe malaria, 

better understanding how gut microbiota influences the host antibody response 

toPlasmodium could open the door for gut microbiota modulation in combination with 

vaccination to improve the efficacy and longevity of a malaria vaccine. Evidence shows that 

gut microbiota influences antibody responses to a range of vaccinations including the 

influenza vaccine, meningococcal vaccine, and Infanrix®-hexa combination vaccine [44–

46]. Future research targeting gut microbiota modulation in combination with Plasmodium 
vaccination holds the potential to not only aid in the host immune response to vaccination, 

but also to expand the breadth of the immune response to vaccinated antigens and provide 

longer lasting host memory.

Conclusion

Recent research has shown that gut microbiota plays an important role in the severity and 

outcome of Plasmodium infections in both humans and mice. The specific bacteria driving 

these differences, the interplay between bacteria and host response, and the mechanism by 

which severe malaria is being prevented, however, remain to be fully understood. Though 

more research would need to be done before clinical trials can be pursued, treating young 

children—the population most at risk of severe malaria and malaria-associate mortality—

with probiotics to modulate their microbiome remains an encouraging prospect, and better 

understanding the interplay between gut microbiota and the host response to Plasmodium 
will open the door to a range of novel treatment options for malaria.
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Highlights

• Gut microbiota is associated with malaria in rodents and humans.

• Gut microbiota influences systemic adaptive immune responses.

• Probiotic treatment in infants can decrease infection-related mortality.
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Figure 1. Adaptive immune response to Plasmodium.
Schematic illustrating the role of the adaptive immune system in controlling a Plasmodium 
infection from initial parasite inoculation (1) through the liver (2) and control of blood stage 

of infection (3,4). When a mosquito feeds on a human host, sporozoites are injected into the 

skin where neutralizing antibodies have been found to immobilize invading sporozoites and 

delay infection [47, 48]. During the “clinically silent” liver stage of the infection, CD8+ T 

cells have been observed migrating to the liver to play a role in liver-stage immunity [49], 

while immune cell expansion and pro-inflammatory immune responses during liver stage 

play a role in the development of cerebral malaria [50]. Finally, during the blood stage of 

infection, parasites undergo replication in red blood cells that allows the immune system to 

recognize Plasmodium antigen and mount an adaptive immune system response, leading to 
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B cell responses that produce high affinity antibodies that enter into circulation, and lead to 

the elimination of infected red blood cells [51]. Repeated exposures to Plasmodium lead to 

the development of naturally acquired immunity to clinical malaria over time [25].
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Figure 2. The known effects of the gut microbiota on the systemic immune system.
(A) The presence of gut microbes have been found to lead to increased numbers of viral 

specific CD8+ T cells in the spleen and lungs as well as a decrease in surface inhibitory 

molecules on these cells during a viral infection [35, 36]. (B) CD8+ T cells also have 

increased inflammatory cytokine production when the gut microbiota is present, as well as 

(C) increased numbers of circulating T cells and viral specific antibodies in the blood [35, 

36]. (D) Tfh cells primed by SFB in the Peyer’s Patches have been shown to migrate 

systemically, leading to GC B cell activation and autoantibody production in an autoimmune 

arthritis model [37*]. (E) While dendritic cells in the lamina propria are known to produce 

cytokines in response to the gut microbiota and (F) a range of microbial products such as 

short-chain fatty acids and other metabolites such as PAMPs are known to enter circulation, 

the exact role these play on the systemic adaptive immune response remain unclear.
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