Skip to main content
. Author manuscript; available in PMC: 2021 Dec 17.
Published in final edited form as: J Phys Chem B. 2020 Dec 3;124(50):11357–11370. doi: 10.1021/acs.jpcb.0c08201

Table 1.

Hyperfine Coupling Constants (HFCC) and g-values of radicals reported in this work

Compound/Type/ Radical Hyperfine couplings (G) g-value (exp)
Site(nucleus) Exp Theory
π/T(5′-CH2)-NH• a (5′-AZT) β-protons, (H5′, H5″) Sum 91a g = 2.0020a, g=2.0043a
N5′-H (α-proton) (-, -, −30)a (−39.8, 0.4, −26.7)a
N5′-coupling (0, 0, 43)a (0, 0, 41.8) G a
π /U-5-CH2-NH• b (AmdU)

5/π/dU-5′-CH2-NH•
 β-protons, (H5, H5)b

 β-protons, (H5′, H5″) (for 5)
Sum 93.5b

Sum 90.5
---------------------- g = 2.0020, g=2.0043
N5-H (α-proton) b
N5′-H (α-proton)
(-, -, −30)a
 N5/N5′-coupling (0, 0, 42.5)
α-azidoalkyl radical5/π/dU-5′-CH•-N3  1αH
 1αH
 1N
------------- (−10.97, −15.03,−5.09)
(−14.46,−20.64,−6.67)
(10.5, −0.5, −1.32)c
2.0038 yy
2.0021 zz
2.0043 xx
σ U-5-CH=N• b β-proton, (H5) b
N5-coupling b
82 b
(0, 0, 36.5) b
(71.8, 78.0,72.8)
(−4.2, 0, 37.7)b
g = 2.0016, g=2.0040
5 σ dR-5′-CH=N• β-proton, (H5′) 5
N5′-coupling
82
(0, 0, 36.5)
(72.9, 78.7, 73.0)d
(−4.44, −0.9, 36.6)d
1 π dC(C2′)-ND• (π C(C2′)-ND•)
2 π dU(C2′)-ND• (π U(C2′)-ND•)
N2′-coupling (0, 0, 40.5) -------------------------- g=2.0020, g=2.0043
C2′-H (β-proton) 51.5
N2′-H (α-proton) (*,*,−28) e
3 π 2′,3′-ddU(C3′)-ND•  N3′-coupling (0, 0, 37.5) e ------------------------- g=2.0020, g=2.0043
C3′-H (β-proton) 41 e
N3′-H (α-proton) (*,*,−28) e
4 π C(C4′)-ND•  N4′-coupling (0, 0, 37.5) e -------- g=2.0020, g=2.0043
N4′-H (α-proton) (*,*,−28) e
a

Taken from reference 8.

b

Taken from reference 7.

c

Employing B3LYP/6-31G** method, structure of 5′-CH•-N3 was optimized and HFCCs of the fully optimized structure of 5′-CH•-N3 was calculated (see SI). Linewidth = 3.5 G, and a mixed line shape (Lorentzian/Gaussian =1) was employed to simulate the experimental spectrum.

d

Employing B3LYP/6-31G** method, structures of 5′-CH=N• of U-5-CH=N• were fully optimized and HFCCs of these optimized structures were calculated (see SI). Linewidths as (7, 5, 5) G and line shape with a mixed Lorentzian/Gaussian = 1 were employed to simulate the experimental spectrum.

e

Taken from reference 8. For simulation, we used linewidth as 10 G, and line shape with a mixed Lorentzian/Gaussian = 1.