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Abstract

Patients with liver diseases are at high risk for the development of acute respiratory
distress syndrome (ARDS). The liver is an important organ that regulates a complex
network of mediators and modulates organ interactions during inflammatory
disorders. Liver function is increasingly recognized as a critical determinant of the
pathogenesis and resolution of ARDS, significantly influencing the prognosis of these
patients. The liver plays a central role in the synthesis of proteins, metabolism of
toxins and drugs, and in the modulation of immunity and host defense. However,
the tools for assessing liver function are limited in the clinical setting, and patients
with liver diseases are frequently excluded from clinical studies of ARDS. Therefore,
the mechanisms by which the liver participates in the pathogenesis of acute lung
injury are not totally understood. Several functions of the liver, including endotoxin
and bacterial clearance, release and clearance of pro-inflammatory cytokines and
eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the
setting of sepsis and other severe inflammatory diseases. In this review, we
summarized clinical and experimental support for the notion that the liver critically
regulates systemic and pulmonary responses following inflammatory insults.
Although promoting inflammation can be detrimental in the context of acute lung
injury, the liver response to an inflammatory insult is also pro-defense and pro-
survival. A better understanding of the liver–lung axis will provide valuable insights
into new diagnostic targets and therapeutic strategies for clinical intervention in
patients with or at risk for ARDS.

Keywords: Liver–lung interaction, Acute respiratory distress syndrome, Liver
dysfunction, Mechanisms, Immunomodulation, Acute-phase response, Critical illness

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Intensive Care Medicine
Experimental

Herrero et al. Intensive Care Medicine Experimental 2020, 8(Suppl 1):48
https://doi.org/10.1186/s40635-020-00337-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-020-00337-9&domain=pdf
http://orcid.org/0000-0001-8789-0904
mailto:raquelher@hotmail.com
mailto:raquelher@hotmail.com
http://creativecommons.org/licenses/by/4.0/


Background
Acute respiratory distress syndrome (ARDS) is a severe respiratory failure, due to non-

cardiogenic pulmonary edema [1, 2], associated with a hospital mortality between 35%

and 46% [1, 3, 4]. The pathology of ARDS involves diffuse alveolar damage (DAD),

which comprises severe alveolar epithelial cell damage, neutrophil infiltration, activa-

tion of alveolar macrophages, production of cytokines and chemokines, plasma extrava-

sation, procoagulant activity with fibrin deposition, hyaline membrane formation,

myofibroblast proliferation, and fibrosis in the intra-alveolar spaces [2, 4]. Formation of

protein-rich edema in the airspaces due to the disruption of the alveolar–capillary

membrane is one of the main factors that contributes to the severe impairment of

blood and tissue oxygenation early in the evolution of DAD [2, 4]. The DAD occurs

not only in response to a direct injury to the lung (e.g., pneumonia), but it may also

represent a pulmonary manifestation of diverse systemic immunoregulatory disorders,

such as sepsis [4]. The pathogenesis of ARDS, therefore, is linked to changes in local

and systemic host defense and immune responses [5], in which the liver plays an

important role (Fig. 1).

The liver has unique anatomic, cellular, and physiological characteristics that enable

the clearance of circulating microbial products, tissue debris, altered platelets, products

of intravascular coagulation, and different bioactive molecules (Fig. 1) [6–10]. Also, the

liver has a key role in the synthesis of proteins, metabolism of toxins and drugs, and in

the modulation of systemic inflammatory responses and host defense (Fig. 1). It is

becoming more evident that normal liver function exerts lung protection and is

necessary for recovery from lung damage [11, 12]. In this line, it has been observed that

established ARDS during acute liver allograft rejection is resolved within hours of

Fig. 1 Role of the gut–liver–lung axis in acute respiratory distress syndrome. There are several physiological
mechanisms promoted by the liver that contribute to the development, progression, and resolution of the
acute respiratory distress syndrome. ARDS acute respiratory distress syndrome, DAD diffuse alveolar damage,
APPs acute-phase proteins, AA arachidonic acid, GF growth factor
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hepatic re-transplantation [13]. On the other hand, experimental studies suggest that

the presence of the liver is also absolutely necessary for inducing lung injury in rats

[14]. These apparently paradoxical observations highlight the relevant crosstalk

between lung and liver in ARDS.

Despite the well-recognized liver–lung interaction in the pathogenesis of ARDS, its

underlying mechanisms and its effects on the outcome of these patients have been

barely studied due to several reasons. First, patients with liver diseases are frequently

excluded from studies of ARDS. In addition, liver function is not precisely reflected by

the standard liver function tests in the clinical setting, and the liver is not as accessible

as other organs such as the lung, making liver dysfunction not as evident as dysfunc-

tions of other organs. Finally, its clinical consequences are also heterogeneous in critic-

ally ill patients [15]. The present work reviews the important role of the liver on the

development and resolution of ARDS and aims to provide an integrated view of the

underlying mechanisms that support the liver–lung interaction in critically ill patients.

The reciprocal impacts of lung and liver dysfunctions
Following hepatocellular damage, the liver may reduce its clearance function, increase

the synthesis of deleterious substances, and dysregulate immune responses, leading to

systemic complications such as coagulopathy, elevated risk of infection, hypoglycaemia,

exacerbated inflammatory responses, encephalopathy, and damage of other extrahepatic

organs, including lung injury [16–22]. In critically ill patients, hepatic dysfunction is

recognized as a relevant clinical condition that influences the development, severity,

and progression of ARDS [5, 11, 19, 23–27]. In ARDS patients, liver dysfunction is a

major determinant of mortality [24–26]. It is well known that cirrhosis and other

chronic liver diseases make the patients more susceptible for developing ARDS, which

adversely affects patient outcomes [24–26, 28]. A growing body of evidence suggests

that liver damage activates and enhances inflammation in the pulmonary intravascular

compartment and lower respiratory tract, leading to important changes in the structure

and/or functions of the lung [29, 30]. Although all these observations indicate that liver

function is an important factor for the development and resolution of ARDS, there is

also evidence that such interorgan communication is bidirectional. Thus, acute lung

injury is known to impair hepatic function and to aggravate liver diseases by

mechanisms involving hypoxemia, activation of systemic inflammatory responses, and

cardiovascular changes [24, 31, 32].

Liver dysfunction is common in critical care patients
The frequency of liver damage in critical illness has considerably increased over

the last decades [23, 33–35], reaching up to 20% of ICU patients in some series

and elevating their morbi-mortality [33, 34, 36]. In critically ill patients, liver

dysfunction usually occurs after inflammatory insults such as sepsis and trauma

[15, 23, 33, 37], and the underlying interactive mechanisms are complex. The

mechanisms of liver dysfunction in critically ill patients implicate microbial

products, the paracrine action of cytokines and other inflammatory mediators,

hypoxemia, oxidative stress, toxic compounds, hypoperfusion, passive congestion,

and effect of nutrition support, among others [34, 38–40].
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Liver dysfunction can be manifested by plasma elevation of liver enzymes (aspartate

aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP),

γ-glutamyl transpeptidase) and bilirubin, decreased plasma levels of albumin and

coagulation factors, and/or increased international normalized ratio (INR) [33, 36]. The

clearance rate of indocyanine green has been used as a dynamic test to assess the

functional capacity of the liver. Although the indocyanine green test has shown to

reflect better the excretory and/or microvascular dysfunction of the liver, its clinical

use has certain limitations [41]. Increased plasma levels of bilirubin are associated with

high mortality in critically ill patients [39, 42]. Furthermore, hyperbilirubinemia has

been proposed as a biomarker of ARDS and found to be an independent factor of

mortality in patients with ARDS [26, 35, 39, 43]. Unfortunately, neither bilirubinemia

nor other hepatic parameters routinely measured in the clinical setting have the

sensitivity and specificity required for an early identification of hepatic injury in

critically ill patients [23, 33, 36, 40].

Mechanisms of liver–lung interactions in ARDS
The mechanisms by which the liver modulates lung injury involve interrelated elements

of systemic and pulmonary host defense, inflammatory responses, and metabolism and

include the following (see Fig. 1).

Clearance by the hepatic mononuclear phagocyte system of systemic endotoxemia,

bacteremia, vasoactive by-products, and procoagulant factors

The mononuclear phagocyte system located in the liver, spleen, lung, and bone marrow

constitutes the major mechanism to uptake and detoxify bacteria, fungi, viruses, and

dying cells, limiting the magnitude and duration of infections [10, 44, 45]. Although

these mononuclear phagocytic cells can exert this function in all these locations, their

major mass is in the hepatic sinusoids [10, 46]. The hepatic sinusoid is a unique

vascular structure with highly specialized endothelial cells (liver sinusoidal endothelial

cells) and liver macrophages (Kupffer cells) that reside within the lumen. The cells of

the hepatic sinusoid are constantly exposed to gut-derived bacteria, microbial debris,

and bacterial endotoxins. Kupffer cells, which line the extensive sinusoidal network,

constitute nearly 80–90% of the tissue macrophages present in the body and exert an

important role in host defense through phagocytosis and a multitude of secretory

functions [46]. The hepatic mononuclear phagocyte system acts as a first line of defense

in clearing bacteria and their products. Besides uptake of microbial pathogens and

products, Kupffer cells also protect the lung and other extrahepatic organs by removing

altered platelets and intravascular coagulation products (Fig. 1) [8–10, 46].

Dysfunction of the reticuloendothelial system of the liver allows bacterial and micro-

bial products, including the so-called pathogen-associated molecular patterns (PAMs)

[47], to reach the lung and the systemic circulation, where they activate pulmonary and

systemic inflammatory responses (Fig. 1) [29, 47–49]. Indeed, increased plasma levels of

endotoxin, probably of intestinal origin, along with increased levels of some cytokines

have been found in the blood of patients with acute and chronic liver diseases [50–54].

Pulmonary deposition of intravascular bacteria, and their products alter the structure

and function of the lung by different mechanisms including (i) direct cytotoxic effect
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on alveolar epithelial and endothelial cells, (ii) modulation of local innate immune re-

sponses in the lung via activation of toll-like receptors (TLRs), resulting in activation of

resident alveolar macrophages and neutrophil influx and in the production of reactive

oxygen species, (iii) activation of the coagulation cascades and platelet aggregation,

leading to pulmonary microvascular thrombosis [29, 48, 49, 55–59], and (iv) a sustain-

able increase in pulmonary vascular resistance [22, 30] (Fig. 2). All these mechanisms

alter the alveolar endothelial and epithelial cell functions and enhance barrier perme-

ability leading to the formation pulmonary alveolar edema and respiratory failure [14,

60], the two main characteristics of ARDS (Fig. 2).

Metabolic inactivation and detoxification of endogenous inflammatory mediators

The hepatobiliary system has an important capacity to inactivate and detoxicate pro-

inflammatory cytokines, vasoactive mediators, and eicosanoids from the systemic circu-

lation. Removal of all these mediators constitutes a critical element of systemic and

pulmonary host defense, protecting the lung and other extrahepatic organs from injury

(Fig. 1) [8–10, 46]. Like endotoxin, increased levels of cytokines (such as IL-8, IL-1β,

ENA-78, TNF-α, MCP-1, MIP-1α,…) and arachidonic acid-derived eicosanoids

(thromboxane, leukotrienes) not cleared by the liver have been shown to exert a direct

cytotoxic effect on alveolar epithelial and endothelial cells, to activate local innate

Fig. 2 Liver damage contributes to the development of acute respiratory distress syndrome. Liver injury
leads to changes in the expression of acute-phase proteins (APPs) and to an increase in plasma levels of
bacteria/bacterial products, pro-inflammatory cytokines, and pro-coagulant and vasoactive factors in the
lung and systemic circulation. These mediators generate deleterious effects on the lung (passage of
bacteria /bacterial products and inflammation) and on the gut (intestinal dysbiosis, impairment of gut
barrier integrity, leakage of bacteria/bacterial products into the portal circulation and into the mesenteric
lymph), resulting in relevant changes in the hepatic and pulmonary microbiota and promoting
inflammation and oxidative stress in liver and lung tissues. In addition, lung-derived cytokines promote the
synthesis of APPs and activation of inflammatory responses in the liver. All these responses mediated by the
gut–liver–lung axis contribute to lung injury and multiple organ dysfunction in critical illness. IL interleukin,
TNF tumor necrosis factor, INF interferon
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immune responses and to promote platelet aggregation in the lung, contributing to the

development of diffuse alveolar damage (DAD) [55–59].

Hepatic synthesis of inflammatory mediators that can activate pulmonary alveolar

macrophages and, consequently, increase inflammation in the lung

Hepatic mononuclear cells include a heterogeneous population of lymphocytes,

Kupffer cells (hepatic resident macrophages), monocytes, and granulocytes that

perform vital functions for the innate and adaptive immune system. In response to

injury, activation of these hepatic mononuclear cells enhances the production and

release of inflammatory mediators, such as IL-1, IL-6, TNF-α, platelet-activating

factor (PAF), and leukotrienes, into the systemic circulation [61], where they play

an important role in the lung–liver interaction [18, 31, 51, 61–64]. These liver-

derived inflammatory mediators alter lung structure function early in acute inflam-

matory diseases (such as sepsis) and contribute to some extent to lung damage

upon activation of pulmonary alveolar macrophages (Fig. 1] [17, 65]. In this line,

elevated levels of TNF-α and IL-1β, two cytokines that are mainly synthetized by

alveolar macrophages, have been found in the lungs of rats with carbon tetrachlor-

ide (CCl4)-induced cirrhosis, along with an increase in lipid peroxidation (TBARS)

and antioxidant enzymes (superoxide dismutase and catalase) in the liver and lung

tissues. These events are also associated with altered gas exchange and changes in

the size of pulmonary vessels in these rats [66, 67]. Besides high levels of endo-

toxin [50, 68], patients with liver disorders also have high circulating levels of

TNF-α, IL-1, and IL-6 [51–54] because of the altered capacity for inactivation and

detoxification and the increased synthesis of pro-inflammatory mediators by the

liver [9, 44, 46, 61]. These specific cytokines have been shown to modulate

systemic inflammatory responses and participate in the development of lung

damage [69–72]. Therefore, it is possible that cytokines of hepatic origin may

control and modulate the local host defense and immune system of the lung,

contributing to lung injury (Figure 2).

The liver is the main organ responsible for the acute-phase response

The organism responds to tissue injury or infection by local changes such as those

associated to inflammation and by a coordinated sequence of systemic and metabolic

process, known as the acute-phase response, aimed to restore homeostasis and recover

from injury [63, 73–76]. One of the mayor characteristics of this acute-phase response

is a change in plasma concentration (either increase or decrease) of the acute-phase

proteins (APPs) expressed in the liver [74]. Cytokine-driving synthesis of acute-phase

proteins in the liver modulates the systemic and pulmonary host inflammatory

responses and intermediary metabolism (Fig. 1) [22, 30, 48]. The hepatic APPs have a

variety of functions that include microbicidal and phagocytic activity (e.g., LPS binding

protein, complement components, C-reactive protein), recruitment of immune cells to

inflammatory sites (e.g., serum amyloid A), hemostasis (e.g., fibrinogen, α1-acid

glycoprotein), antioxidant, and prevention of iron loss (e.g., haptoglobin) and anti-

proteolytic actions to counterbalance protease activity at sites of inflammation (e.g., α2-

macroglobulin, α1-antitrypsin, and α1-antichymotrypsin) (Fig. 1) [63, 74, 75].
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While the local inflammation occurs in the alveolar airspaces of patients with ARDS,

the acute-phase response is induced in the liver [73, 76, 77]. Interestingly, in

pneumonia-induced ARDS, this liver-derived acute-phase response occurs independ-

ently of bacterial dissemination and depends instead on inflammatory signaling mole-

cules derived from the pulmonary immune cells, such as the cytokines IL-1, IL-6, and

TNF-α [10, 62, 63, 73, 74]. Then, these lung-derived cytokines can travel from the lung

into the systemic circulation and ultimately modify acute-phase gene expression in the

liver [63, 73, 78, 79] upon activation of the transcription factors STAT3 (signal trans-

ducer and activator of transcription 3) by IL-6 and activation of RelA (v-rel avian

reticuloendotheliosis viral oncogene homolog A, also known as NF-kB3) by the early-

response cytokines TNF-α and IL-1 [73, 78, 79]. In response to these cytokines, the

liver changes the expression of many acute-phase proteins such as C-reactive protein,

α-1 antitrypsin, serum amyloid A protein, and others [10, 62, 63, 74, 77], which in turn

can directly travel back to the lung and pass into the airspaces where they cause inflam-

mation, predominantly via activation of alveolar macrophages (Fig. 2) [5, 14]. These

phagocytic cells are targeted by multiple hepatic APPs such as SAA [80, 81], SAP [82],

LBP [83], and C-reactive protein [84, 85]. Once activated by these hepatic APPs, alveo-

lar macrophages release cytokines (IL-6 and CXCL1) that enhance local inflammation,

in part by promoting neutrophil influx to the insterstitium and alveolar airspaces. Ex-

cessive inflammation in the alveoli may result in an increase in oxidative stress and

lung injury [86, 87]. Besides this potentially deleterious effect, hepatic APPs at the site

of plasma extravasation has other potential functions, including opsonization of

bacteria, leukocyte activation, antiprotease, antioxidant activities, and modulation of

the coagulation pathway [63, 75]. These mechanisms help to regulate host defense,

limit excessive inflammation and immune responses, and promote bacterial clear-

ance, preventing infection dissemination and reducing the risk of organ damage in

the setting of pneumonia and sepsis. Also, hepatic APPs exert liver protection by

countering TNF-dependent toxicity in the liver and attenuate systemic inflamma-

tion and mortality in sepsis and pneumonia-induced ARDS (Fig. 1) [79, 86, 88–90].

Altogether, the bidirectional liver–lung axis mediated by APPs is critical for inte-

grating systemic and pulmonary responses, balancing regulation of multiple host

defenses and activation of inflammation to restore homeostasis and recover from

organ injury [48, 61, 86]. Disbalance in this liver–lung communication can be an

important factor in the initiation and progression of ARDS and of the damage to

other organs [73].

Nutrients, bile, and hormone production

The liver plays an important role in regulating metabolic homeostasis and in the syn-

thesis and processing of lipids and carbohydrates that supply energy to other organs

[91]. It is also the major site of synthesis of key proteins and bile acids that are critical

for the normal uptake of vitamins and lipids [92]. Therefore, alterations in the flux of

carbohydrates and lipids through the liver can indirectly impact distal organs due to

alteration of their energy statuses [93]. In addition, hyperbilirubinemia in the context of

liver diseases has been shown to cause some lung-specific deleterious effects, by enter-

ing the lung tissue, reaching the alveolar airspaces, and deteriorating the surface
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tension properties of the alveolar surfactant [94]. Although bilirubin has antioxidant

properties, high bilirubin levels can also activate oxidative stress, apoptosis, and inflam-

matory responses in different cell types and organs [95–98]. Therefore, hyperbilirubine-

mia may actively participate in the development of ARDS, although the underlying

mechanisms have not been fully elucidated. Finally, the liver produces several

hormones that mediate diverse extrahepatic effects, such as insulin-like growth factor,

angiotensinogen, and thrombopoietin, which have been shown to influence the devel-

opment of ARDS (Fig. 1) [55, 99, 100].

The gut–liver–lung axis

The pathogenic mechanisms of ARDS should be considered within a gut–liver–lung

axis. Growing evidence indicates that intestinal microbiota and the mucosal immune

system of the gut have an important impact on the function of the gastrointestinal tract

itself and extra-intestinal organs, such as the lung and the liver [29, 48, 49]. Liver cir-

rhosis and other liver diseases favor the gut-derived bacterial translocation into the liver

and lung by several mechanisms (Fig. 2).

First, patients with liver disorders have intestinal dysbiosis characterized by a sig-

nificant shift of the microbial composition toward pro-inflammatory bacteria. This

gut dysbiosis is accompanied by activation of local intestine immune responses and

impaired gut barrier function. A leaky gut barrier facilities bacterial translocation

of live bacteria or their microbial products from the intestinal lumen to the liver,

via portal circulation, and to systemic circulation and the lung via the mesenteric

lymphatic system [29, 101]. In the lung and the liver, gut microbiota can directly

modulate their local immune cells (mainly alveolar macrophages and Kupffer cells,

respectively) via activation of toll-like receptors (TLRs) and indirectly via different

bacterial metabolites and signaling molecules, such as PAMPs [29, 48, 49, 90]. Ac-

tivated alveolar macrophages in the lung and Kupffer cells in the liver release pro-

inflammatory cytokines, contributing to the initiation and/or progression of lung

and liver damage and activation of systemic inflammation [29, 101], which can also

cause dysfunction in other organs.

Second, liver dysfunction can imply less capacity of the liver to remove bacteria, bac-

terial products, and inflammatory mediators from circulation, leading to increased

levels of these molecules in blood.

Third, this pathological gut-derived bacterial translocation could cause important

changes in the lung microbiome (Fig. 2) [90, 102, 103]. Indeed, pulmonary

microbiome is frequently enriched with gut-related bacteria (Bacteroidetes and

Enterobacteriaceae) in critically ill patients [102, 103]. As a consequence of liver

diseases, this gut-derived bacteria and accumulation of PAMPs, cytokines and other

pro-inflammatory molecules in the systemic circulation can potentially cause or ex-

acerbate lung injury upon TLR-4-mediated activation of intravascular and alveolar

macrophages within the lung and recruitment of neutrophils and direct toxic effects

of bacterial products on pulmonary microvasculature (Fig. 2) [68, 102–108].

Altogether, the gut–liver–lung axis seems to exert a relevant role in the initiation and

modulation of hepatic, pulmonary, and systemic immune responses that contribute to

the damage of the liver, the lung, and other organs.
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Extracellular vesicles

Extracellular vesicles (EVs), a term that includes microvesicles (MVs), exosomes, and

apoptotic bodies, represent an emerging mechanism of interorgan communication in

many diseases, including liver diseases and ARDS [106, 109–111]. Extracellular vesicles

are defined as membrane-bound vesicles, ranging 0.1–1.0 μm in diameter, which are

released from cells by the budding of the cellular plasma membrane and carrying a

diverse cargo, including lipids, proteins, RNAs, and miRNAs. The EVs are recognized

as important mediators of interaction between different organs, and they are considered

attractive therapeutic targets in different diseases [112, 113]. Notably, the levels of

circulating EVs have been reported to be increased both in patients with cirrhosis and

ARDS. However, the potential role of circulating EVs in mediating liver–lung commu-

nication in the context of ARDS is not currently understood, representing an interest-

ing topic for further investigation.

Conclusions
Liver injury and hepatotoxicity occur frequently in critically ill patients, and signifi-

cantly influence their prognosis. Patients with severe hepatic dysfunction are at high

risk for irreversible ARDS because of multiple defects in host defense and dysregulation

of inflammatory responses. Interrelations between hepatic and pulmonary functions

influence the development and progression of ARDS and play a central role in the

resolution of lung damage by several mechanisms. First, the liver regulates host defense

and modulates systemic inflammation. Also, the liver activates acute inflammatory

responses in the lung early in the development of ARDS. Although promoting inflam-

mation can be detrimental in the context of acute lung injury, the liver response to an

inflammatory insult is also pro-defense and pro-survival. The understanding of the

complex relation between the liver and the lung requires further research in order to

improve the clinical management and to identify new diagnostic and therapeutic

options for patients with or at risk for ARDS.
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