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Abstract

Stroke mortality and morbidity is expected to rise. Despite considerable recent advances within acute ischemic stroke

treatment, scope remains for development of widely applicable neuroprotective agents. Glucagon-like peptide-1 recep-

tor agonists (GLP-1RAs), originally licensed for the management of Type 2 Diabetes Mellitus, have demonstrated pre-

clinical neuroprotective efficacy in a range of neurodegenerative conditions. This systematic scoping review reports the

pre-clinical basis of GLP-1RAs as neuroprotective agents in acute ischemic stroke and their translation into clinical trials.

We included 35 pre-clinical studies, 11 retrospective database studies, 7 cardiovascular outcome trials and 4 prospective

clinical studies. Pre-clinical neuroprotection was demonstrated in normoglycemic models when administration was

delayed by up to 24 h following stroke induction. Outcomes included reduced infarct volume, apoptosis, oxidative

stress and inflammation alongside increased neurogenesis, angiogenesis and cerebral blood flow. Improved neurological

function and a trend towards increased survival were also reported. Cardiovascular outcomes trials reported a signif-

icant reduction in stroke incidence with semaglutide and dulaglutide. Retrospective database studies show a trend

towards neuroprotection. Prospective interventional clinical trials are on-going, but initial indicators of safety and

tolerability are favourable. Ultimately, we propose that repurposing GLP-1RAs is potentially advantageous but appro-

priately designed trials are needed to determine clinical efficacy and cost-effectiveness.
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Introduction

Stroke accounts for 6.5 million deaths per year globally

and by 2030 will result in an annual loss of over 200

million disability-adjusted life years.1,2 With an increas-

ing number of strokes occurring in younger patients,

alongside an increased number of stroke survivors, the

cost of post-stroke care is rising. There is, therefore,

significant scope to improve upon the current position.
Considerable advances have been made in acute

ischemic stroke (AIS) treatment, notably reperfusion

therapies, but these are limited to 10–20% of total

stroke patients following careful clinical and radiolog-

ical selection.3 Even when intravenous thrombolysis

and/or endovascular thrombectomy are administered,
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reduction in disability is highly time dependent.4,5

Scope remains for further improvement, especially for
patients who are unsuitable for reperfusion therapies or
those within remote environments.

Using simpler clinical selection processes, neuropro-
tective therapies could bring benefits to a wider patient
group. Neuroprotectants could also enhance the bene-
fits of reperfusion therapies by preservation of the
ischemic penumbra and reduction in ischemic reperfu-
sion injury. Despite many demonstrating pre-clinical
potential, a suitable agent has not yet been identified
by translational studies.6 There remains a multitude of
factors affecting the translation from bench-to-bedside.
Namely, animal models are not perfect in their repre-
sentation of the heterogeneity of clinical stroke.7 Stroke
in humans occurs in the context of ageing,
co-morbidity (hypertension, diabetes mellitus, atrial
fibrillation, pre-existing cerebrovascular disease) and
concomitant medication use.8 Furthermore, factors
such as gender, cerebral blood flow, body temperature
and glycemic status may influence stroke mechanism
and outcomes associated with therapy.6,9–11

Glucagon-Like Peptide-1 (GLP-1) receptor agonists
are gaining increasing momentum as possible neuro-
protective agents in AIS. GLP-1 is an incretin hor-
mone. Alongside its role in insulin secretion from the
pancreas and glucagon suppression, it also crosses the
blood-brain barrier (BBB) and promotes synaptic func-
tion, enhances neurogenesis, reduces apoptosis and
protects neurons from oxidative stress.12 GLP-1 is pro-
duced in the brain and receptors are distributed
throughout the central nervous system.13 GLP-1
Receptor Agonists (GLP-1RAs), licensed for Type 2
Diabetes Mellitus (T2DM) have already demonstrated
pre-clinical neuroprotective efficacy in Alzheimer’s
Disease and clinical trials in neurodegenerative condi-
tions are ongoing.12,14

The aim of this systematic scoping review is to
report the pre-clinical basis of GLP-1RAs as neuropro-
tective agents in AIS and their translation into clinical
trials. In addition to describing the characteristics and
quality of studies, the objectives are to specifically con-
sider timing of administration, association with glyce-
mic status, neuroprotective outcomes and application
to clinical care.

Materials and methods

Eligibility criteria

Pre-clinical: We included pre-clinical in vivo studies
which administered naturally occurring GLP-1, a
mimetic or analogue, before, during or after stroke
induction. Normoglycemic, hyperglycemic and induced
T2DM models were included.

Studies were excluded if their only focus was hem-

orrhagic stroke as this does not reflect the proposed

mechanism for how GLP-1 is involved in ischemic

tissue injury. Those studies which reported incidence

of hemorrhagic transformation as a complication of

AIS were included as these reflect post-stroke

complications.
Clinical: We included all prospective clinical trials

which administered GLP-1RAs before, during or

after stroke onset with outcome measures defined to

identify neuroprotective efficacy by way of stroke

volume reduction or improvement in post-stroke func-

tion or mortality. We also included any potential fea-

sibility or safety-based studies in this area.
Our scoping searches identified that very few pro-

spective clinical trials measuring stroke outcomes were

available. Pragmatically, we therefore also included all

retrospective database analyses of stroke incidence or

composite cardiovascular outcomes in patients treated

with GLP-1RAs. Furthermore, we included cardiovas-

cular outcome trials (CVOTs) of GLP-1RAs to evalu-

ate the incidence of stroke in this relatively higher risk

cohort.
Studies were excluded if their full-text was not avail-

able or not published in English. Efforts were made to

contact authors directly to obtain any missing articles

or data.

Database search strategy

After several initial scoping searches,15 we accessed

Web of Science on 19 March 2020 to search

MEDLINE, Web of Science core collection, BIOSIS

and SciELO from 1 January 2000. Keywords were

EITHER ‘GLP(-)1, glucagon like peptide(-)1, exena-

tide, liraglutide, lixisenatide, albiglutide, dulaglutide,

semaglutide’ AND EITHER ‘stroke, CVA, cerebrovas-

cular, h(a)emorrhage, small vessel disease’. Articles

were cross-referenced and references were searched to

identify further studies of interest.
All articles/studies were screened independently in

an unblinded, standardised manner by MM and HE

by way of title and abstract to identify those suitable

for full-text review. Queries and disagreements were

resolved by discussion. Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

guidelines were applied. Pre-clinical studies were

appraised according to Animal Research: Reporting

of In Vivo Experiments (ARRIVE) guidelines,16 and

the updated Stroke Therapy Academic Industry

Roundtable Preclinical Recommendations (STAIR)

guidelines.7 Data supporting the findings of this

review are available from the corresponding author

upon reasonable request.
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Results

Study selection

The literature search identified 797 results (see Figure 1)

alongside 10 from other sources. After removal of dupli-

cates, this left 794 for screening. We excluded 593

articles based upon title and review of abstract leaving

201 full text articles to review. In total, 35 preclinical

studies, 11 retrospective database studies, 7 cardiovascu-

lar outcome trials and 4 prospective clinical studies met

the inclusion criteria.

Pre-clinical studies

Characteristics of included studies. As shown in

Table 1, 35 pre-clinical studies were included within

this review. Studies were completed between 2009 and

2020. Studies were predominantly based upon mouse

and rat models of stroke; however, one study utilised a

gerbil model.17 Stroke induction was either via tran-

sient (range 30–120 min) or permanent common carot-

id (CCAO) or middle cerebral artery occlusion

(MCAO). Most studies induced unilateral occlusion

in keeping with spontaneously occurring stroke onset

in humans, but six studies utilised a bilateral occlusion

model. Cerebral ischemia was induced by either liga-

tion, filament occlusion or ablation of the relevant

artery.

Twelve studies administered exendin-4,17–28 nine
used liraglutide,29–37 three used rhGLP-1 (recombinant
human GLP-1),38–40 three used lixisenatide41–43 and
one study each reported the utility of semaglutide,43

PEx-4 (exendin-4 loaded poly-microspheres),44

proGLP-1 (long acting GLP-1RA),45 DMB (GLP-1R
agonist/modulator),46 dual GLP-1/Glucose-dependent
Insulinotropic Peptide (GIP) agonist (GLP-1/GIP
DA),47 oxyntomodulin (co-activates GLP-1R and glu-
cagon receptor),48 P7C3 (aminopropyl carbazole com-
pound)49 and one study directly compared exendin-4
with liraglutide.50 In eight studies, GLP-1R antago-
nists, such as Ex-9-39, were administered to study the
role of the GLP-1R in neuroprotective mecha-
nisms.19,21–23,41,45,46,49

Two studies investigated multiple doses of GLP-
1RAs to compare neuroprotective efficacy and con-
cluded that neuroprotection was dose-dependent.20,51

Most studies administered GLP-1RAs via intraper-
itoneal, subcutaneous or transvenous routes. However,
Zhang et al. reported neuroprotection with both oral
DMB46 and intranasal exendin-4.22

Some 14 studies administered GLP-1RAs chroni-
cally prior to the onset of stroke. Clinically, this
would represent those patients who receive GLP-
1RAs as part of routine T2DM management
and then go on to experience AIS.18,19,22,23,29,31,38,
39,42,44–46,48,51 Chronic pre-treatment occurred

Figure 1. PRISMA flow chart demonstrating the selection of studies.
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between 14 days prior and 15minutes prior to stroke
onset, for one to three times daily.

A further four studies administered GLP-1RAs
prior to and following stroke onset for between 0 and
fourweeks – with dosing schedules of up to twice
daily.17,20,21,30

Most closely aligned with the proposed clinical
application of administering treatment to GLP-1RA
naı̈ve patients in the hyper-acute AIS setting, 17 studies
only administered the medication following stroke
onset.24–28,32–37,40,41,43,47,49,50 First dose was delayed
between 0min and 24 h post-onset and continued for
up to fourweeks.

Alterations in physiological parameters such as
body temperature have the potential to impact the out-
come of stroke. Li et al. reported no significant change
in body temperature when measured before and after
treatment with exendin-4.18 We did not identify any
GLP-1RA study of AIS which varied temperature
between groups. Most studies regulated body temper-
ature within normal physiological parameters during
MCAO surgery and animals were housed within a
temperature-controlled environment.

Quality of included studies. Pre-clinical study meth-
odology was appraised according to the STAIR 2009
criteria, with a maximum available score of 7. Median
score was 3 (range 2–7). Inclusion/exclusion criteria
and reporting of potential conflicts of interest/funding
were consistently reported in 100% and 94% of studies,
respectively. Fewer studies commented on randomisa-
tion (54%), allocation concealment (17%) and blinded
assessment of outcome (43%). Only four studies (11%)
reported performing a sample size calculation.

Reporting of pre-clinical studies was also assessed
using the ARRIVE guidelines, with a maximum score
of 36. Median score was 22 (range 14–29). Methods,
statistical analysis, outcomes and confidence intervals
were well reported, as were ethical and funding state-
ments, but the justification for animal models, transla-
tion to human biology, limitations and adverse events
were frequently not reported.

Impact of hyperglycemia in stroke models. Twelve
studies were based on hyperglycemic rodents, with or
without a normoglycemic control group.

Kuroki et al. demonstrated that hyperglycemia was
associated with an increase in infarct volume, cerebral
edema and hemorrhagic transformation in a mouse
model that underwent transient, unilateral occlusion
of the MCAO for 60min.27 They reported that intra-
peritoneal administration of exendin-4 60min after
stroke onset was associated with a reduction in these
parameters which was not replicated by insulin
monotherapy.

Briyal et al. reported that liraglutide reduced infarct
volume by a similar amount in both diabetic and nor-
moglyemic models, but this neuroprotection was again
not reproduced in the insulin treatment arm despite
resolution of hyperglycemia.29 Deng et al. further con-
firmed neuroprotection was independent of glycemic
status prior to stroke onset.30 Jiang et al. reported
that stroke infarct volume in the rhGLP-1 group was
significantly reduced when compared to insulin treat-
ment.38 Metformin was also shown to ameliorate
hyperglycemia but did not confer the additional neuro-
protective outcomes associated with liraglutide.31

One study demonstrated similar neuroprotective
outcomes between 2-month-old healthy mice and 14-
month-old overweight, diabetic mice treated with exen-
din-4.25

Whilst GLP-1RAs were associated with a reduction
in blood glucose in hyperglycemic models,40 no study
reported hypoglycemia when GLP-1RAs were admin-
istered to normoglycemic models. This is to be expected
as GLP-1RA-associated insulin secretion from the pan-
creas is glucose dependent.35 Indeed, Zhang et al. con-
cluded that neuroprotection was not glucose
dependent.45

Yang et al. monitored blood glucose in rats which
underwent intraperitoneal administration of semaglu-
tide starting 2 h following unilateral permanent MCAO
occlusion, further demonstrating neuroprotection in
the absence of hypoglycemic episodes.43

Infarct volume and neuronal survival. Administration
of GLP-1RAs prior to, at the point of, or delayed fol-
lowing stroke onset were associated with reduction in
infarct volume. In total, nine studies demonstrated a
reduction in infarct volume with exendin-4,18–24,26,27

eight with liraglutide,29–33,35–37 three with rhGLP-1,
three with lixisenatide and one with each of PEx-4,
proGLP-1, DMB, OXM, GLP-1/GIP DA and sema-
glutide. Liraglutide was associated with a reduction in
infarct volume when the first dose was delayed by up to
1 day.35 Kim et al. reported a reduction in infarct
volume by up to 75% in a rat model of transient
MCAO. Darsalia et al. reported that exendin-4 admin-
istration was associated with a reduction in stroke
volume when administered for fourweeks prior to,
and two to fourweeks following stroke onset.20

However, in a later study, whereby they only adminis-
tered exendin-4 following stroke onset, it did not sig-
nificantly reduce infarct volume but did reduce overall
neuronal loss.25 Reduction in neuronal loss was also
reported with semaglutide,43 rhGLP-140 and
lixisenatide.51

Cellular function. Apoptosis represents a chain of
enzymatic events resulting in programmed cell
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death.52 Whilst controlled apoptosis is essential for the
maintenance of homeostasis, dysregulated apoptosis,
for example in within the ischemic penumbra, can
result in increased cell death.53 Bcl-2 is an anti-
apoptotic protein which functions at least in part by
reducing cytochrome C release from the mitochondria.
Conversely, Bax is a pro-apoptotic protein and
increases cytochrome C levels.52 Increased Bcl-2 and
reduced Bax levels, contributing to an increased
Bcl-2:Bax ratio and representing reduced levels of apo-
ptosis, have been reported in three studies of liraglu-
tide29,33,37 and one study for each pro-GLP-1,45

rhGLP-1,39 DMB,22 exendin-4,50 lixisenatide,51 GLP-
1/GIP DA47 and semaglutide.43 Critically, this reduc-
tion of apoptosis was reproduced in normoglycemic
models when administered after stroke onset.33,37,43,47

Caspase proteins are also pro-apoptotic and
increased levels are associated with higher rates of
cell death.54 Liraglutide, exendin-4, lixisenatide,
rhGLP-1 and semaglutide have been shown to reduce
levels of caspase-3 in pre-clinical models of
stroke.33,37,39,41–43,46,50,51 Zhu et al. have also demon-
strated reduced levels of caspase 8 and 9 in models
administered liraglutide.33

Cleavage of PARP by caspases is a signal of apo-
ptosis and has been implicated in cerebral ischemia.53

Reduction in PARP has been demonstrated with both
liraglutide and exendin-4 treatment.33,50

TUNEL assays detect DNA degradation during the
later stages of apoptosis and have demonstrated
reduced apoptotic activity with liraglutide and exen-
din-4.37,50,55

GLP-1RA administration following stroke induc-
tion has been associated with an anti-inflammatory
effect.26 Tumor necrosis factor alpha (TNF-a) is a cyto-
kine synthesised by many cell lines, but particularly by
macrophages and microglia.56 TNF-a is involved with
the inflammatory response following stroke onset.56

Five studies reported a reduction in TNF-a when com-
pared to controls, three with lixisenatide41,42,51 and one
with each of liraglutide37 and exendin-4.27 Indeed, two
studies reported reduced microglial activation17,24

whilst a further study by Darsalia et al. reported
reduced microglial infiltration, but a marginal effect
on activation.20 Reduced levels of other markers of
inflammation, such as myeloperoxidase and interleu-
kin, have also been reported.30,37,51

One study reported a non-statistically significant
reduction in pro-inflammatory markers.25

There is also deterioration in markers of oxidative
stress following AIS. Twelve studies reported an
improvement in oxidative stress parameters following
GLP-1RA administration in AIS – five studies of exen-
din-4,19,24,26,27,50 four studies of liraglutide,29,30,32,36

two of lixisenatide41,42 and one of rhGLP.40

Predominantly, studies reported reduced levels of
malondialdehyde and increased concentrations of glu-
tathione and superoxide dismutase.

Dong et al. performed 18-FDG PET imaging in a
rat model of unilateral transient MCAO. In the ani-
mals treated with subcutaneous liraglutide, there was
radiological evidence of increased glucose metabolism
within the ischemic penumbra.34

Neurovascular function. The neurovascular unit
incorporates both cellular and extracellular compo-
nents involved in the regulation of cerebral blood
flow and blood-brain barrier function – it is involved
with the maintenance of cerebral homeostasis and con-
trol of cerebral blood flow.57

GLP-1RAs have been shown to increase cerebral
blood flow following AIS when compared with con-
trols.44 Li et al. reported that cerebral microcirculation
is reduced following AIS, but improved to a similar
degree within 4–12 h after MCAO in diabetic mice
treated with either liraglutide or exendin-4 after stroke
induction.50 Blood–brain barrier integrity has also been
shown to improve with GLP-1RA treatment.26

Vascular endothelial growth factor (VEGF) is
known to promote angiogenesis and protect ischemic
neurons from injury, demonstrating a crucial role in the
neurovascular remodelling post-AIS.58 Chen et al.
demonstrated that intraperitoneal liraglutide therapy,
administered 24 h following stroke induction and
once daily for 14 days, was associated with increased
VEGF expression when compared with normal saline
treatment at days 7 and 14 post-AIS in a normoglyce-
mic model.35 Similarly, Sato et al. demonstrated
upregulation of VEGF in the cerebral cortex of
liraglutide-treated, normoglycemic rats; however, this
was not seen within the striatum.32

Markers of neuronal, glial and endothelial function
(NeuN, GFAP and vWF respectively) were used by
Dong et al. to investigate for evidence of neurovascular
remodelling following AIS. They reported that liraglu-
tide, administered to normoglycemic mice at 1 and 24 h
following bilateral, transient CCAO, was associated
with significantly higher levels of each marker – indi-
cating increased remodelling associated with GLP-
1RAs following AIS.34

Jiang et al. reported that levels of brain injury
markers (S100B, NSE and MBP) were reduced with
both rhGLP-1 and nimodipine treatments.38

Wang et al. investigated for evidence of increased
neurogenesis associated with GLP-1R activation.
They reported that doublecortin (marker of newborn
neuroblasts) and b-tubulin III (marker of neurogenesis
and neural progenitor activity) levels were significantly
upregulated with P7C3 treatment when compared to
controls. They also reported increased levels of cell
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proliferation markers (ki67, BrdU) and neurodevelop-

mental markers (adam11, adamts20) alongside markers

of increased neurogenesis (GSK-3 inhibition).49

Darsalia et al. also counted ki67 expressing cells to

evaluate stem cell proliferation and reported a two-fold

greater number of proliferating cells in the exendin-4

treatment group compared with controls at twoweeks

following stroke induction; however, there was no

detectable difference at fourweeks. Doublecortin

levels were also increased at twoweeks in the

exendin-4 treatment group, with no difference from

controls at fourweeks. When using Neun and BrdU

expressing neurons to identify new, mature neurons

generated after stroke onset, there was no difference

between the treatment and control groups.
Doublecortin levels were also shown to be increased

with semaglutide treatment.43

Neurological outcomes. Assessment of neurological

outcomes was heterogeneous amongst studies, with

many utilising a range of different techniques or mod-

ified adaptions. Overall, selected neurological assess-

ments examined both cognitive and locomotive

neurological function.
Eight studies reported a reduction in post-

stroke neurological deficit when treated with liraglu-

tide,29,31–36,50 six with exendin-4,17–19,22,23,26 two with

rhGLP-1,38,39 two with lixisenatide41,42 and one study

for each of PEx-4,44 proGLP-1,45 DMB,46 OXM,50

GLP-1/GIP DA,47 P7C349 and semaglutide.43

Nine studies reported a reduction in neurological

deficit when GLP-1RAs were administered to normo-

glycemic models at least 1 h after induction of AIS.32–

36,41,43,47,49

Notably, Filchenko et al. reported that whilst reduc-

tion in neurological deficit was observed in the non-

diabetic rat model treated with liraglutide, this trend

was not observed in the diabetic groups.31

Potential mechanisms. GLP-1RAs stimulate insulin

secretion from the pancreas in a glucose-dependent

manner. Neuroprotective efficacy has been demonstrated

in both diabetic and normoglycemic models; their neuro-

protection is therefore not glucose-dependent.27,31,45

Whilst it is well documented that GLP-1R levels

increase following AIS, the precise mechanism of neu-

roprotection is not completely understood. These have

been broadly summarised in Figure 2, reflecting the

direct and indirect potential mechanisms. To further

understand the role of the GLP-1R, studies have uti-

lised targeted GLP-1R shRNA and the GLP-1R antag-

onist, Ex-9-39. GLP-1R targeted shRNA has been

reported to block the neuroprotective efficacy of

GLP-1RAs.22,45,46 However, whilst there are some

reports of Ex-3-9 administration blocking neuroprotec-

tion,21 suggestive of GLP-1R dependence, other studies

did not demonstrated this trend, highlighting the pos-

sibility of a GLP-1R independent mechanism.41,46 For

example, GLP-1[28–36] is cleaved from endogenous

GLP-1; research has shown this cell-permeable

Figure 2. Proposed neuroprotective mechanism of action for GLP-1RAs in AIS.1. Direct GLP-1R activation by GLP-1RA. 2. Potential
indirect receptor activation by GLP-1RA. 3. GLP-1 sub-units are cell permeable and may affect mitochondrial function, or act on
extra-cellular receptors. 4. GLP-1RAs reduce excitotoxicity.
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nonapeptide to have antioxidant, anti-apoptotic and

mitochondrial regulatory properties in pancreatic cells

– further research is required to establish its role in

neural tissue.59

The reduction in apoptosis, oxidative stress and

inflammation, alongside increased neurogenesis, angio-

genesis and cerebral blood flow is likely to contribute

to the neuroprotective outcomes. Multiple signalling

cascades have been studied, with P-Akt/p-eNOS,44,50

cAMP/PKA22,45,46,49 and P13k/Akt22,26,33,37,45 path-

ways implicated in neuroprotection.

Clinical studies

Stroke risk in cardiovascular outcome (safety) trials.

All six licensed GLP-1RAs (Table 2) have reported

Cardiovascular Outcome Trials (CVOTs). SUSTAIN-

6 (semaglutide) and REWIND (dulaglutide) demon-

strated a significant reduction in stroke incidence, HR

0.61 (95% CI 0.38–0.99, p¼ 0.04) and HR 0.76 (95%

CI 0.61–0.94, p¼ 0.017), respectively. LEADER (lira-

glutide) reported a non-statistically significant reduc-

tion in non-fatal stroke incidence, HR 0.89 (95% CI

0.72–1.11, p¼ 0.30). This was not reported in ELIXA

(lixisenatide), EXSCEL (exenatide), HARMONY

(albiglutide) and notably not in the oral semaglutide

study, PIONEER-6.
Gerstein et al. have recently further analysed the

REWIND trial. They report that participants who

experienced stroke during follow-up were categorised

as either ischemic, hemorrhagic, or undetermined and a

modified Rankin scale (mRS) was recorded to assess

severity. Whilst dulaglutide reduced the incidence of

ischemic stroke, it did not affect stroke severity.60

Post-hoc analysis of CVOT trial data has identified

sub-groups which may potentially derive greater car-

diovascular protection. Mann et al. identified enhanced

benefits in patients with chronic kidney disease,61

whilst Kang et al. reported increased benefit in Asian

participants.62

Meta-analysis by Barkas et al.63 demonstrated a

13% reduction in the risk of total stroke associated

with GLP-1RA treatment versus placebo (RR 0.87,

95% CI 0.78–0.98, p¼ 0.021).

GLP-1RAs and stroke in real-world datasets. We iden-

tified eleven published retrospective studies analysing

cardiovascular outcomes of T2DM patients who had

been treated with GLP-1RAs (Table 3). These were

conducted using data extracted from insurance/nation-

al databases.
Recently, O’Brien et al. reported a retrospective

cohort study of 132 737 insured adults with T2DM

commenced on a second line diabetes medication

between 2011 and 2015.64 Adjusting for confounding

variables, GLP-1RAs were associated with a reduction

in stroke risk (HR 0.65, 95% CI 0.44-0.97) when com-

pared to treatment with Dipeptidyl Peptidase-4 (DPP-

4) inhibitors. Reduction in stroke risk was reported in a

further two studies65,66; however, both Svantstrom

et al. and Anyanwagu et al. did not report this

trend.67,68

Raparelli et al. reported an increased GLP-1RA

associated reduction in cardiovascular risk in females

compared to males.69

Prospective interventional studies. Daly et al. report

the first pilot, non-randomised interventional study

administering exenatide to eleven patients within 12 h

of stroke onset followed by twice-daily injections until

discharge.70 Glucose levels were monitored, followed

by a three-month modified Rankin score. Although

mild nausea and vomiting were common, they reported

no serious adverse events nor associated hypoglycemic

episodes. They concluded that exenatide was safe and

Table 2. GLP-1RA characteristics and stroke incidence in CVOTs.

ELIXA75 LEADER76 SUSTAIN-677 EXSCEL78 HARMONY79 REWIND80 PIONEER-681

GLP-1RA Lixisenatide Liraglutide Semaglutide Exenatide

(extended

release)

Albiglutide Dulaglutide Semaglutide

Participants 6 068 9 340 3 297 14 752 9 463 9 901 3 183

Median follow-up (years) 2.1 3.8 2.1 3.2 1.6 5.4 1.3

Characteristics

Administration Subcutaneous Subcutaneous Subcutaneous Subcutaneous Subcutaneous Subcutaneous Oral

Dose 10–20 mg 1.8 mg 0.5–1.0mg 2 mg 30–50 mg 1.5 mg 14 mg

Frequency once-daily once-daily once-weekly once-weeklya once-weekly once-weekly Once-daily

Non-fatal stroke incidence

Treatment group – no. (%) 54 (1.8) 159 (3.4) 27 (1.6) 169 (2.3) 76 (1.6) 135 (2.7) 12 (0.8)

Placebo – no. (%) 49 (1.6) 177 (3.8) 44 (2.7) 193 (2.6) 91 (1.9) 175 (3.5) 16 (1.0)

Hazard ratio (95% CI) 1.10

(0.75–1.63)

0.89 (0.72–1.11)

p¼ 0.30

0.61 (0.38–0.99)

p¼ 0.04

0.88 (0.72–1.08) 0.84 (0.62–1.13) 0.76 (0.61–0.94)

p¼ 0.017

0.74 (0.35–1.57)

aExenatide standard release requires twice-daily administration.
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tolerable in AIS patients and did not worsen functional

or neurological outcome. This study was not sufficient-

ly powered to assess for improvement in stroke

outcomes.
Larsson et al. report on PROLOGUES, a rando-

mised controlled trial comparing pre-hospital adminis-

tration of exenatide with standard care for

hyperglycemia in patients with suspected stroke.71

Nineteen patients were randomised, of an intended

forty two, with eight of them receiving exenatide. The

trial was stopped early due to slow inclusion—due to

baseline glucose criteria and obtaining informed con-

sent. No associated adverse events were reported.
Results are awaited for two prospective studies. The

Short-Term EXenatide in Acute ischemic Stroke

(STEXAS) trial72 is a randomised, open-label, paral-

lel-group pilot study to investigate the efficacy of exe-

natide in lowering blood glucose levels in patients with

AIS and hyperglycemia. They plan to recruit 30

patients with AIS to either insulin or exenatide for up

to 72 h. They will assess feasibility of administration,

incidence of hypoglycemia and functional outcomes at

threemonths.
The Treatment with EXenatide in Acute Ischemic

Stroke (TEXAIS) trial73 is a three-year, phase 2,

multi-centre, prospective, randomised, open-label,

blinded end-point trial comparing exenatide to stan-

dard care and aims to be powered to detect a change

in neurological outcome. Primary end-point is defined

as major neurological improvement at seven days (�8

point improvement in NIHSS score, or score 0–1). In

contrast to STEXAS, this study will include patients

independent of their glycemic status.

Discussion

As survival following stroke increases, so does the

impact of post-stroke disability. Alongside the ongoing

development in reperfusion therapies as part of the

gold standard of stroke care, a safe, widely applicable,

well-tolerated and cost-effective neuroprotective agent

becomes increasingly attractive.
We report a systematic review of the pre-clinical

research to support the neuroprotective properties of

GLP-1RAs targeting the ischemic-reperfusion injury in

animal models of AIS. These have been shown to be

safe and effective in normoglycemic models and dem-

onstrate neuroprotective outcomes by way of reduced

infarct volume, apoptosis, oxidative stress, inflamma-

tion and increased neurogenesis, angiogenesis and cere-

bral blood flow. Crucially, they have demonstrated an

improvement in post-stroke functional outcomes,

including within both locomotive and cognitive

domains.

In keeping with the real-world potential of GLP-
1RAs as a neuroprotectant in the management of
AIS, pre-clinical trials have now demonstrated repro-
ducible benefits in normoglycemic models with delayed
administration up to 24 h after stroke induction.

Their neuroprotective mechanism is not fully under-
stood, with further research required. However, emerg-
ing trends towards both GLP-1R-dependent, and
independent, pathways have been reported. Following
direct comparison studies with metformin and insulin,
their effects are due to more than restoration of glucose
homeostasis. Additional research is required to fully
understand the role of cleaved GLP-1 subunits, includ-
ing GLP-1[28–36] and could go some way to explain the
difference in stroke reduction between GLP-1RAs in
CVOTs.

The economic benefits of repurposing existing treat-
ments should not be overlooked, especially as the
CVOTs have demonstrated their cardiovascular
safety, alongside a reduced incidence of non-fatal
stroke. Retrospective database studies show a trend
towards a reduction in cardiovascular events, providing
an important perspective from ‘real-world’ usage.

Prospective clinical trials of GLP-1RAs in stroke are
ongoing, with initial outcomes suggestive of safety, tol-
erability and that GLP-1RAs are feasibly administered
in the AIS cohort.

The comparative effectiveness of reduction in
overall cardiovascular risk with newer antidiabetic
treatments, such as GLP-1RAs, sodium-glucose
co-transporter-2 (SGLT-2) inhibitors and DPP-4 inhib-
itors is unclear. However, a recent network meta-
analysis has shown that only GLP-1RAs reduced
non-fatal stroke incidence (OR 0.88, 95% CI 0.77–
0.99).74

We acknowledge the limitations of this study. Pre-
clinical studies were generally conducted on a
homogenous population of young animals without rep-
resenting the co-morbidities often afflicting the human
stroke population. However, one study did demon-
strate comparable neuroprotective outcomes in both
young mice and older, obese, diabetic models.25

Further research into the impact of factors such as
age, hypertension and gender is required. In addition,
studies relied on a uniform etiology of stroke onset,
vascular territory and duration of occlusion – constants
which are not representative of the diverse, heteroge-
nous clinical manifestation of AIS. However, the inter-
study differences in stroke induction protocols (e.g.
unilateral vs. bilateral, duration and vessel occlusion)
do provide some mitigation to this. Furthermore, some
studies utilized simultaneous bilateral occlusion of the
carotid arteries to cause global ischemia which would
not normally occur in human stroke; however, this
does still provide a valuable model of ischemic injury.
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We also acknowledge the effect of publication bias

favouring positive outcome and the limitations pre-

sented by the results of our STAIR and ARRIVE

assessments. The potential for under-powered research

is appreciated.
Overall, pre-clinical studies are restricted by

small numbers, limited standardisation, disparity

between study dose and the licensed clinical dose and

having a limited ability to replicate the numerous con-

founding variables encountered in real-world stroke

practice.
Of course, CVOTs report stroke incidence rather

than stroke outcome. Other limitations include short

trial duration, complex multi-morbid patient character-

istics, and the potential for pharmacological interac-

tions with concomitant medications affecting

outcomes. GLP-1RAs are known to reduce blood pres-

sure, body weight and cholesterol, all potentially miti-

gating stroke risk. Analysis of strokes occurring within

the REWIND trial demonstrated a reduction in stroke

incidence, but no impact on stroke severity as measured

by mRS.
Retrospective studies generally included large num-

bers and are based upon real-world use and adherence.

They reported encouraging results, often demonstrat-

ing a reduction in cardiovascular risk and/or a modest

reduction in stroke risk. Eloquent attempts were

often made to adjust for confounding variables, but

these do remain a significant limitation, as does incom-

plete extraction of events from databases.66 These

studies are also limited by heterogeneity in treatment

duration, dose, and by the grouping together of

GLP-1RAs.
There remains an unfulfilled requirement for neuro-

protective agents in the management of AIS.

Ultimately, many agents have previously failed to

translate from bench to bedside.
However, we propose that further research into the

repurposing GLP-1RAs – already licensed, with estab-

lished side-effect profiles, cardiovascular safety record

and clear indicators from pre-clinical research of

their functional benefit – is both potentially clinically

and economically advantageous. Further research

is required to establish optimal dosing, cost-

effectiveness, interaction with reperfusion therapies,

timing of administration, and to fully understand the

underlying mechanism of action – with consideration

of age, gender and co-morbidity – in order to guide

larger clinical trial development.
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