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The seminal discovery and classification by Mosmann and Coffman of distinct T helper cell 

subsets set the stage to begin unraveling the diversity of CD4+ T cells and understanding 

their critical contributions in homeostasis and host defense [1]. It is now appreciated that 

different CD4+ T helper cell subsets play important roles in clearing intracellular pathogens, 

parasites and fungal infections, but that a dysregulated CD4+ T helper cell response can lead 

to allergy, asthma and autoimmunity [2].

In this review, we will highlight recent advances in understanding how distinct T helper (Th) 

cell subsets develop, which transcription factors regulate their transcriptional signatures and 

which cytokines contribute to their effector functions. Over the past few years, major themes 

were metabolism, the microbiome and tissue cues that govern the differentiation of T helper 

cells and their effector functions, hence these themes find particular emphasis within this 

review. Although a number of T helper cell subsets have been defined, we will focus on Th1, 

Th17, Treg and Tr1 cells as they pertain to tissue-specific autoimmunity (Fig. 1). Th1 and 

Th17 cells are considered the main drivers of T cell-mediated autoimmunity whereas Treg 

and Tr1 cells are critical for regulation in that they either inhibit induction or mediate 

resolution of tissue inflammation.

Th1 cells and Th17 cells in Autoimmune Disease

Th1 cells have been shown to play a critical role in a number of human autoimmune diseases 

including type 1 diabetes, arthritis, multiple sclerosis (MS) and inflammatory bowel disease 

Electronic address: vkuchroo@evergrande.hms.harvard.edu. 

Declaration of interest
V.K.K. is cofounder of Celsius Therapeutics, Tizona Therapeutics and Bicara Therapeutics. His interests are reviewed and managed by 
the Brigham and Women’s Hospital and Partners Healthcare in accordance with their conflict of interest policies.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Immunol. Author manuscript; available in PMC 2021 December 01.

Published in final edited form as:
Curr Opin Immunol. 2020 December ; 67: 57–67. doi:10.1016/j.coi.2020.09.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(IBD) [3]. The signature transcription factor of Th1 cells is T-bet (encoded by the gene 

Tbx21) and IFN-γ mediates important effector functions of Th1 cells, especially in the 

setting of host defense against viruses and intracellular pathogens and the promotion of anti-

tumor immunity [3,4]. Upon binding of IL-12 to its receptor (IL-12Rβ1/IL-12Rβ2), the 

JAK/STAT pathway (including STAT1 and STAT4) is activated to induce Tbx21 expression 

and IFN-γ production [5]. TCR stimulation is critical for induction of Tbx21, which is 

supported by autocrine signaling via IFN-γ-STAT1 activation. The transcription factors T-

bet, STAT4, STAT1 and Runx3 interact, establishing the Th1 cell transcriptional program 

and at the same time silencing the expression of genes such as Il4 or Gata3 that are 

important for the development and differentiation of Th2 cells (Fig. 1) [6].

Adoptive transfer of Th1 cells with specificity for self-antigen has been shown to induce 

tissue inflammation and autoimmunity in multiple experimental autoimmune disease models 

[7]. However, loss of the signature cytokine IFN-γ, renders mice still susceptible to 

autoimmunity [8,9]. This observation raised the question of whether Th1 cells are the 

pathogenic T helper cell subset that induces autoimmunity and provided impetus for the 

identification of another highly pathogenic T cell subset called Th17 cells.

A hallmark study in 2003 showed that IL-23 is critical for the induction of autoimmunity in 

the central nervous system (CNS) [10]. Soon thereafter, it was suggested that IL-23 is 

important for expansion or differentiation of IL-17-producing T cells [11]. We proposed that 

Th-IL-17 cells (later named Th17 cells) may be a distinct T cell subset, and that IL-23 per se 
is not the differentiation factor for their generation [12]. This led to the identification of 

differentiation factors that induce Th17 cells. Three seminal papers defined the conditions 

that direct the development of Th17 cells from naïve T cell precursors and we proposed that 

there may be a reciprocal relationship between FoxP3+ Tregs and IL-17-producing Th17 

cells [13–15]. It is now realized that there are multiple differentiation pathways by which 

IL-17-producing cells can be generated [16,17], resulting in development of Th17 cells with 

different effector phenotypes and functions. Different cytokine combinations, in particular 

TGF-β + IL-6 + IL-23 or IL-1β + IL-6 + IL-23, lead to the transcriptional program that 

confers pathogenicity to Th17 cells [18]. The JAK/STAT pathway member STAT3 plays a 

fundamental role in Th17 cell differentiation programs in that it both transactivates the Rorc 
gene locus and cooperates with its product, the master transcription factor of the Th17 cell 

lineage RORγt, to further upregulate signature cytokines and lineage markers of Th17 cells 

such as Il17a, Il17f and Ccr6 [19,20].

The role of IL-17A and IL-17F, the signature cytokines of Th17 cells, in the induction of 

experimental autoimmune encephalomyelitis (EAE) has been somewhat controversial in that 

it was shown that neutralization of IL-17A in Il17f-deficient mice does not have a significant 

impact on the development of EAE, raising the possibility that IL-17 is not critical for tissue 

inflammation and that there may be another cytokine critical for the induction of tissue 

inflammation [21]. This led to the hypothesis that GM-CSF is the cytokine responsible for 

the induction of tissue inflammation in the absence of canonical Th1 or Th17 cell cytokines 

[22]. Indeed, GM-CSF, which is part of the pathogenic signature of Th17 cells, has been 

shown to be important in EAE as early as 2001 and shown to be critical in its expression by 

myelin-specific, autoreactive T cells [23,24]. GM-CSF received renewed attention more 
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recently [25,26] and two new studies may suggest that a novel pathogenic T cell subset may 

exist whose signature cytokine is GM-CSF and that this lineage may not depend on IL-6 

signaling [27,28]. Furthermore, the authors report that at least in the setting of T cell 

populations profiled from MS patients, GM-CSF+ cells largely overlap with IFN-γ-secreting 

cells, hence leaving the possibility that these cells could be in fact Th1 cells [27]. However, 

the issue remains unresolved whether IL-23 is critical for inducing pathogenicity in bona 
fide Th1 and Th17 cells by inducing GM-CSF, since IL-23- and IL-23R-deficient mice are 

completely resistant to the development of EAE [10].

It should be noted that pathogenic Th17 cells, besides expressing GM-CSF, also express 

IFN-γ and this phenotype is further strengthened when the encephalitogenic T cells enter 

the CNS and this has also been observed at the single-cell level [29].

However, a recent study showed that IL-17A is critical for driving the development of 

pathogenic Th17 cells in EAE via the recruitment of myeloid cells that produce IL-1β and 

IL-23 [30]. Furthermore, loss of both IL-17A and IL-17F results in complete resistance to 

the development of EAE, even when GM-CSF is actively produced by T cells and when the 

mice are co-housed to equalize the microbiome differences in the experimental groups (Ho 

and Kuchroo, unpublished data). This is consistent with the data from Joan Goverman’s 

group suggesting that indeed GM-CSF is dispensable for induction of EAE and that IL-17 

activity compensates for the induction of spinal cord targeted disease [31]. On the other 

hand, IL-17 and GM-CSF both are required to fully overcome the inhibitory effects of IFN-

γ for the induction of inflammation in the brain during EAE [31]. These results suggest that 

the precise phenotype of pathogenic Th1 or Th17 cells drives distinct patterns of tissue 

pathology and that heterogeneity within an autoimmune disease phenotype may reflect 

mechanistic and cellular differences in the T cells inducing the disease phenotype. Indeed, it 

has been shown in the EAE model that the ratio of infiltrating Th17 to Th1 cells contributes 

to the location of CNS inflammation and that this ratio is influenced by the myelin antigen-

specificity of these T cells [32]. Interestingly, T cells isolated from peripheral blood of MS 

patients showed also distinct cytokine profiles depending on their antigen-specificity and 

whether these patients exhibited lesions mostly in the brain or spinal cord [33]. Although 

clinical trials with anti-GM-CSF have not been conducted in MS yet, a double-blind clinical 

trial with anti-IL-17A showed a significant decrease in the lesion load and improvement in 

clinical disease [34], underscoring the role of IL-17 in inducing the human disease. This is 

further supported by the observation that anti-IL-17 antibody is now approved for treatment 

of multiple human autoimmune diseases [35].

Fine tuning of Th17 cell responses: transcriptional control and subset 

diversity

After the discovery of Th17 cells, it became very clear that not all IL-17-producing cells are 

pathogenic and indeed a vast majority of IL-17-producing cells populate the intestine at 

homeostasis and do not induce any tissue inflammation [36]. This led to the concept that 

there might be two different types of IL-17-producing T cells, one that is present at steady-

state to promote barrier function and to limit invasion of the microbiome and a second, 
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pathogenic Th17 cell subset, that promotes tissue inflammation and autoimmunity [36–39]. 

We identified a transcriptional signature that distinguishes pathogenic from non-pathogenic 

Th17 cells, showing that pathogenic Th17 cells co-express T-bet/IFN-γ and GM-CSF, 

whereas non-pathogenic Th17 cells express IL-10 and IL-1RN [18,29,40].

An intriguing recent study linked febrile temperatures to an increase in the pathogenicity of 

Th17 cells through sumoylation of SMAD4 and its nuclear translocation, where it 

cooperates with RORγt and STAT3 in transactivation of Il17a (Fig. 1) [41]. Hence, CD4+ T 

cell deficiency for Smad4 protects animals from EAE. Interestingly, expression of Rorc/Rora 
is not affected by temperature suggesting that the influence of temperature may represent a 

very fast acting mechanism on the pathogenicity of Th17 cells in vivo through acute 

upregulation of effector cytokines such as Il17a, Il17f and Il22 and not necessarily through 

de novo generation of Th17 cells driven by RORγt [41].

IL-21 is an amplification factor that has been known to trigger Th17 differentiation in the 

absence of IL-6 signaling [17]. Recently, placental growth factor (PlGF) has been shown to 

induce Th17 cells through the activation of STAT3 signaling (Fig. 1) [42]. Indeed, PlGF is 

produced by Th17 cells and signals in an autocrine/paracrine manner to strongly upregulate 

Rorc. The important contribution of PlGF to the pathogenicity of Th17 cells was 

demonstrated by the observations that mice deficient for Plgf show reduced EAE severity 

and that Plgf-Tg mice show more severe collagen-induced arthritis (CIA). The authors 

suggested that PlGF may be able to substitute for the requirement of IL-6 signaling in Th17 

cell differentiation in vitro [42]. However, as Il6 deficiency fully protects mice from EAE 

and Plgf deficiency does not, this suggests that PlGF cannot completely substitute for IL-6 

in inducing Th17 cell-dependent CNS disease in vivo [43,44].

IL-23/IL-23R signaling is critical to Th17 cell pathogenicity

IL-23 was found to be a key cytokine in converting non-pathogenic Th17 cells into a 

pathogenic phenotype. This requirement for IL-23 may be reflected in the genetic linkage to 

the IL-23:IL-23R pathway in the development of multiple autoimmune diseases [45]. 

Therefore, transcriptional regulators that control the expression of Il23r have particular 

relevance for the pathogenicity of Th17 cells and IL23R has been identified as a critical risk 

gene for multiple human autoimmune diseases including IBD, psoriasis and ankylosing 

spondylitis [45,46]. IL-23R has been suggested to be important for both the stabilization and 

the terminal differentiation of Th17 cells [13,47], but the actual signaling pathway and 

molecular mechanisms by which IL-23 acts on Th17 cells have not been elucidated.

Recently, it was shown that the transcriptional regulator RBPJ can further upregulate the 

expression of Il23r and at the same time reduces expression of Il10 to control the 

pathogenicity of Th17 cells. Consequently, genetic deletion of Rbpj protects animals from 

severe EAE [48]. Furthermore, Blimp-1/PRDM1 co-localizes with RORγt and STAT3 at 

enhancer regions to control the expression of Il23r, Il17a and Csf2 (encoding the cytokine 

GM-CSF) in Th17 cells. Similar to deletion of Rbpj, deficiency of Blimp-1/Prdm1 in 

peripheral T cells ameliorates EAE [49].
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A deeper understanding of the mechanism by which IL-23/IL-23R signaling evokes the 

pathogenicity of Th17 cells and possibly other pathogenic T helper cell subsets will have 

important therapeutic implications.

Metabolic and microbial regulation of Th1 and Th17 cell responses

Metabolic processes have emerged over the past few years as a critical component of T 

helper cell function [50–54]. For example, Peng et al. showed that Th1 cells boost aerobic 

glycolysis through lactase dehydrogenase A and that Ifng expression is driven by acetyl-

coenzyme A-augmented histone acetylation (Fig. 2A) [54]. Recent work by the Flavell lab 

has uncovered an important novel function of mitochondrial metabolism with particular 

relevance to Th1 cell differentiation [55]. In particular, the authors showed that the 

tricarboxylic acid (TCA) cycle is important for the terminal effector function of Th1 cells 

through succinate dehydrogenase. For example, Sdhc-deficient cells, which lack the 

important subunit C of the succinate dehydrogenase complex, show a defect in upregulation 

of Tbx21 and Ifng. On the one hand, succinate dehydrogenase activity suppresses Th1 cell 

proliferation, whereas the malate-aspartate shuttle and mitochondrial citrate export were 

shown to drive proliferation, including through the production of aspartate [55]. The 

seemingly opposite functions of components of mitochondrial metabolism may allow tuning 

of the biological response to allow either terminal effector function or proliferation in 

response to energy status and nutrient supply. By genetic targeting of key components of the 

shuttle and mitochondrial citrate export, such as Slc25a11 and Slc25a1, through CRISPR/

Cas9 technology, the authors linked these activities to epigenetic histone acetylation. This 

epigenetic mechanism then fosters the expression of key Th1 cell lineage genes such as 

Tbx21 (Fig. 2A) [55]. How exactly these metabolic processes are translated mechanistically 

into locus-specific epigenetic changes of the Th1 cell chromatin landscape remains mostly 

unknown. Taken together, this work offers a glimpse into how the metabolic state may be 

tailored to the specific needs of the Th1 cell response and how it can be linked through 

epigenetic mechanisms to transcriptional control of key Th1 cell genes associated with 

proliferation or terminal effector functions. We are beginning to understand how metabolic 

processes intersect with transcriptional control of Th1 or other T helper cell subsets and 

these metabolic controls will offer new avenues for therapeutic intervention in autoimmunity 

[56].

The microbiome has been shown to be a critical driver of autoimmunity in pre-clinical 

models of both MS and arthritis [57,58]. Some microbial species such as segmented 

filamentous bacteria (SFB) are particularly equipped to trigger Th17 cell differentiation [59]. 

Metabolism and the microbiome are intricately interconnected and a recent study has 

implicated bile acids in the differentiation of T helper cell subsets and to influence the Th17/

Treg cell balance (Fig. 2B). In particular, Hang et al. demonstrated that the bile acid 

metabolite 3-oxoLCA interferes with Il17a expression through direct binding of RORγt, the 

critical transcription factor for Th17 cells, and that isoalloLCA leads to an increase in 

reactive oxygen species (ROS) promoting Treg cell differentiation [60]. Strikingly, bile acid 

metabolism has been shown to be altered in MS patients and may be amenable to 

manipulation to curtail neuroinflammation [61].
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Even though various studies have identified microbiota and metabolites that can both trigger 

and expand Th17 cells, the picture is far less clear in regard to the differentiation of Th1 

cells. However, germ-free mice orally colonized with microbiota from a Crohn’s disease 

patient developed a very strong Th1 cell driven intestinal inflammation. In particular, 

Klebsiella strains were identified to be responsible for triggering this Th1 cell-driven 

immune response [62]. This pioneering study illustrates that very clear instructive signals are 

generated by certain microbiota to drive Th1 cell differentiation in the gut and it appears 

likely that much remains to be learned.

The metabolite tetrahydrobiopterin (BH4) is an important co-factor for enzymatic activity, in 

particular for the hydroxylation of aromatic amino acids and therefore important for the 

synthesis of neurotransmitters such as serotonin, dopamine and melatonin as well as for the 

production of nitric oxide [63]. Interestingly, Cronin et al. discovered a function of BH4 in 

the proliferation of T cells and their ability to mediate autoimmune tissue inflammation [64]. 

For example, conditional genetic deletion of the upstream enzyme in BH4 synthesis, GCH1, 

specifically in T cells, protects animals from severe EAE and adoptive transfer colitis [64].

Serum amyloid A proteins (SAA) have recently been shown to trigger a pathogenic Th17 

cell differentiation program independent of TGF-β and the tissue-specific availability of 

SAA proteins controls the pathogenicity of Th17 cells and the extent of Th17 cell-driven 

inflammation [65]. In particular, when in vitro differentiated MOG-specific TCR transgenic 

T cells (2D2) are cultured under pathogenic conditions and adoptively transferred into Saa3-

deficient hosts, a marked decrease in EAE severity is observed highlighting the tissue-

specific cues that SAA proteins provide to either promote a non-pathogenic/homeostatic 

response or to foster neuroinflammation [65]. Which factors and signaling pathways may 

cooperate with SAA proteins to mediate either a homeostatic or pathogenic phenotype in 

Th17 cells remains incompletely understood but the observation of the highly context-

dependent function of SAA proteins suggests they could emerge as strong targets to treat 

autoimmune disease.

Thus, both host and microbiome metabolic pathways influence the balance between 

pathogenic Th1 and Th17 responses and non-pathogenic responses that are important for 

homeostasis and tissue repair.

Lineage Plasticity of Th17 cells

T helper cells, in particular Th17 cells, exhibit a remarkable extent of lineage plasticity. For 

example, in the course of EAE, Th17 cells have been shown to give rise to IFN-γ+/IL-17A+ 

double positive Th17 cells and IFN-γ+/IL-17A− ex-Th17 cells [66]. Furthermore, Th17 cells 

transdifferentiate in the intestine to IL-10+ Tr1-like cells which maintain homeostasis and 

promote resolution of inflammation in the gut [67]. A recent study connected the plasticity 

of Th17 cells to their metabolic state in EAE and identified two distinct populations of Th17 

cells that are discriminated by TCF-1 and T-bet expression and expression of CD27 [68]. 

The TCF-1+ Th17 cell population exhibits features of a precursor or stem cell-like state and 

the authors demonstrated that mTOR signaling enables the progression of these precursor 

cells to become Th1-like ex-Th17 cells, which is critical for their ability to elicit 
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neuroinflammation [68]. How the plasticity of Th17 cells is regulated on a molecular level 

and which transcription factors are critical remains under intensive investigation. A recent 

study from our laboratory demonstrated that the salt-sensing kinase Sgk1, which is induced 

by IL-23R signaling, regulates the balance between Th17 cells and Tregs [69]. It remains 

unclear if other pathogenic Th cell subsets such as pathogenic Th1 cells possess a similar 

plasticity during the course of an inflammatory response. To this end, single-cell studies 

have been instrumental in elucidating the transcriptional signatures and drivers of Th17 cell 

differentiation and plasticity including in the settings of autoimmunity and are expected to 

be similarly insightful in regard to other pathogenic T cell subsets, in particular Th1 cells 

[29,40].

Tregs and Tr1 cells limit Th1/Th17 cell-driven autoimmunity

Tregs

T regulatory (Treg) cells play a fundamental role in maintaining tolerance and homeostasis 

which is highlighted by the observation that germline mutations of their master transcription 

factor FoxP3 lead to multi-organ autoimmunity [70]. The function of FoxP3 is not limited to 

the activation of the Treg cell transcriptional program but it also silences genes that would 

destabilize Treg cell function similar to the master transcription factors of other Th cell 

subsets (Fig. 1) [71]. TGF-β is the critical cytokine inducing peripheral FoxP3+ Tregs in 
vitro from naïve T cells [13,72]. Tregs have been shown to inhibit effector T cell responses 

through a host of mechanisms, including regulation of bio-available IL-2 through expression 

of IL-2Rα (CD25), direct modulation of APC function, secretion of the immunosuppressive 

cytokine IL-10 and induction of apoptosis of effector T cells [70]. Tregs, in particular, seed 

to various tissues early during development where they acquire highly specialized 

transcriptional programs and functions that are tailored to the tissue in which they reside 

[73].

How these tissue-resident Treg cell subsets are directed transcriptionally remains an area of 

intense study. It is clear, however, that tissue-specific adaptation of Tregs has critical 

functions in the control of inflammation which was recently demonstrated in the gut [74]. In 

the setting of acute brain injury by ischemic stroke, it was shown that brain-specific Tregs 

depend on IL-2, IL-33, serotonin and TCR activation and that their targeting to the brain is 

guided by chemokines CCL1 and CCL20 (Fig. 2C) [75]. Furthermore, in a pre-clinical 

model of acute CNS demyelination, it was shown that these tissue-specific, infiltrating Tregs 

may foster regeneration of afflicted tissue through secretion of oligodendrogenic Ccn3 (Fig. 

2C) [76]. The Teichmann lab used single-cell RNA-sequencing to determine the trajectories 

of tissue adaptation for skin and colonic Tregs and showed that the acquisition of a tissue-

specific transcriptional program proceeds through discrete transitional states with 

characteristic transcriptional profiles [77]. This observation is consistent with previous 

findings from the Benoist/Mathis lab regarding visceral adipose tissue (VAT)-Tregs [77,78]. 

The transcription factors and their timing of action that govern the tissue adaptation of Tregs 

are largely unknown but recent work by Delacher et al. identified BATF as a transcription 

factor that plays a critical role in establishing ST2+ populations of tissue Tregs from two 

distinct precursor stages [79].
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Previously, it was shown that distinct intestinal gut symbionts instigate the development of 

RORγt+FoxP3+ Treg cells [80] and by virtue of co-expression of these two master 

transcription factors these Treg cells acquire specialized functions in the gut. In addition to 

the study cited above, describing the influence of bile acids on the intestinal Th17/Treg cell 

balance [60], Song et al. showed that bile acids play a critical role in regulation of colonic 

RORγt+ Tregs and demonstrated that Treg cell-specific deficiency of the bile acid receptor 

Vdr negatively impacts this intestinal population and leads to more severe disease in a pre-

clinical model of colitis [81]. Furthermore, genetic manipulation of bile acid metabolic 

pathways in certain intestinal bacterial strains influences the colonic RORγt+ Treg cell 

population suggesting that processing of bile acids by the microbiota is important [81].

The Littman lab showed that c-MAF plays an important role in the control of RORγt
+FoxP3+ Treg cells and that the function of these cells is critical in maintaining homeostasis 

and limiting potentially pathogenic microbial species [82]. It was shown that IL-2 produced 

by ILC3s is implicated in the generation of intestinal Tregs and contributes to their ability to 

maintain homeostasis [83]. How the transcriptional program of RORγt+FoxP3+ Tregs is 

influenced by IL-2 made by ILC3s may be informative in the future as a particular relevance 

of this IL-2/ILC3 axis in Crohn’s disease was proposed [83].

Tr1 cells—T regulatory type 1 (Tr1) cells are characterized by high expression of IL-10, do 

not express FoxP3 and have been shown to be protective in colitis [84]. Tr1 cells can be 

differentiated in vitro through IL-27 and Ahr plays a critical role, together with c-MAF, in 

establishing their transcriptional program (Fig. 1) [85–87]. Unlike for Th1, Th17 and 

FoxP3+ Treg cells, the master transcription factor for IL-10-producing Tr1 cells has not been 

identified so far, as no single transcription factor is known to be exclusively directing the 

development of the Tr1 cell lineage. Indeed, IL-10 is produced by multiple T cell subsets 

(Th1, Th2, Th17 and Treg cells), raising the possibility that expression of a single master 

transcription factor for the induction of IL-10 may antagonize differentiation of other T cell 

subsets and interfere with their development. Therefore, multiple transcription factors may 

induce IL-10, and they would cooperate with the master transcription factors of other T cell 

subsets to induce IL-10 together with their respective signature cytokine(s). Recently, the 

transcription factor Eomesodermin was shown to cooperate with Blimp-1 to activate the Il10 
locus [88]. Interestingly, c-MAF possesses important regulatory functions regarding IL-10 

production by its ability to regulate IL-2 production which has direct implications for 

various inflammatory responses ranging from Th1, Th2 to Th17 cell-driven responses [89]. 

Also, the transcription factors IRF1 and BATF were found to transactivate the Il10 locus in 

Tr1 cells and to serve as pioneering factors in setting up the chromatin landscape during Tr1 

cell differentiation (Fig. 1) [90].

IL-27, which induces Il10 expression, was also shown to regulate the expression of a module 

of “checkpoint” molecules including PD-1, TIM-3, LAG-3 and TIGIT [91,92] and 

coexpression of IL-10 with co-inhibitory receptors can be viewed as an indicator of a 

cellular program to increase regulatory function, both in a cell-intrinsic and cell-extrinsic 

manner. Blimp-1/PRDM1 and c-Maf were found to be the shared regulators of this module 

and both of these transcription factors have also been shown to regulate IL-10 production 

[91]. Expression of both IL-10 and “checkpoint” molecules may be important in the 
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resolution of tissue inflammation and autoimmunity. Indeed, both Tr1 and Treg cells have 

been shown to express checkpoint molecules, suggesting a role in their function. For 

example, the co-inhibitory molecule TIGIT has been implicated in Treg-mediated 

suppression of Th1 and Th17 responses [93]. While undertaking an unbiased expression 

analysis of PBMCs from autoimmune disease patients, McKinney et al. found that relapse 

rates correlate with the expression of a gene module in T cells containing co-inhibitory 

molecules [94]. Based on these studies and studies on the role of IL-10 in regulating tissue 

inflammation, one would predict that IL-10 and the expression of co-inhibitory molecules in 

T cells may go hand-in-hand to resolve inflammation and to inhibit autoimmunity [95,96]. It 

has been shown that Th17 cells transdifferentiate into Tr1-like cells during the resolution of 

inflammation [67]. Therefore, Tr1 cells may be particularly relevant to the resolution of 

autoimmune inflammation and preventing a relapse in a particular autoimmune disease 

whereas Tregs may play a dominant role in the inhibition of auto-reactive T cells.

Control of the balance between pathogenic and regulatory T helper cell 

subsets

The balance between proinflammatory Th1/Th17 cells and regulatory Treg/Tr1 cells is 

critical to maintain tolerance yet allow an appropriate response to invading pathogens. The 

complex balance between proinflammatory and regulatory T helper cell subsets is controlled 

at multiple layers including metabolic and microbial control, tissue-specific cues and 

plasticity (Fig. 2D). As this balance can be shifted through a host of mechanisms, 

autoimmune responses in different tissues such as the CNS, joints, skin and gut may be 

dependent upon distinct mechanisms that result in inflammation. It is important to 

emphasize that the specificity of the TCR for its auto-antigen has critical contribution to the 

expansion of pathogenic Th1/Th17 cells for the development of organ-specific 

autoimmunity.

As we highlighted in this review, our understanding of how the balance between pathogenic 

and regulatory responses can be influenced has been deepened in particular in the setting of 

the gut and the effect of the microbiome. Some microbes and their metabolites can foster the 

development of pathogenic T helper cell subsets whereas other microbes can foster the 

development of regulatory T cells. A healthy microbiome promotes the expansion of 

regulatory T cells which fosters tolerance; for example, a mixture of Clostridia strains has 

been shown to induce Tregs [97]. If the balance is disrupted through dysbiosis, this will lead 

to the emergence of pathogenic T cells. Indeed, it has been shown that the transfer of 

microbiota from MS patients into mice can transfer disease and trigger spontaneous CNS 

autoimmunity [98].

The knowledge of how, on a mechanistic level, the plasticity of Th cell subsets is controlled 

remains rather limited at this moment but importantly, not only Th17 cells have been shown 

to have a significant ability for plasticity but other T cell subsets also have been shown to be 

plastic [99]. Furthermore, the specific cues that imprint tissue-specific transcriptional 

programs and function remain poorly understood and are a field of intensive research.
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Synthesis and New Frontiers

The classification of T helper cells into different subsets has been extremely useful in 

facilitating a comprehensive understanding of their diverse functions in homeostasis, host 

defense and autoimmunity. The application of new technologies has revealed a deeper 

complexity within the initially defined subsets that likely reflect distinct functional states. A 

cardinal conclusion of the advent of single-cell technologies is that cellular heterogeneity is 

far greater than previously appreciated and that this also holds true for T helper cell subsets, 

in particular in inflammatory settings. Interrogation of the classical Th cell subsets with new 

technologies such as single-cell genomic technologies and CRISPR/Cas9 systems will 

further define not only the transcriptional status but also metabolomic and epigenetic states 

in relation to a variety of other cell types within various autoimmune and inflammatory 

settings. Greater heterogeneity and plasticity may be embedded in Th cell responses to 

ensure an appropriate and regulated response to pathogens, the local tissue environment and 

resolution of inflammation. A very important open question is the individual contributions of 

pathogenic Th1 and Th17 cells to particular autoimmune diseases and it appears likely that 

Th1 and Th17 cells contribute differently depending on the organ and/or the type of disease. 

A deeper understanding of this complexity will allow new approaches to the prevention and 

treatment of autoimmune disease.
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Figure 1. 
Overview of Th1, Th17, Treg and Tr1 cell subsets. Cytokines that are critical to their 

differentiation are highlighted in bold. For Th17 cells, three alternative differentiation 

conditions are shown. Additional important cytokines contributing to the four subsets are 

listed in parentheses. Critical genes for each lineage that are actively expressed are 

highlighted as small promoter symbols with an arrow within the nucleus. In certain 

instances, protein complexes are highlighted specifically bound to such promoters. Effector 

cytokines are indicated in bold: IFN-γ and GM-CSF for Th1 cells; IL-17, IL-22 and GM-

CSF for Th17 cells; IL-10 for both Tregs and Tr1 cells. IL-2 has been shown to support the 

Th1 cell lineage whereas it inhibits Th17 cell differentiation. An important aspect of Treg 

cell function is limiting bio-available IL-2 by expression of IL-2Rα (CD25). The critical 

importance of IL-23 signaling to the function of Th17 cells is emphasized by depiction of 

the functional receptor for IL-23 consisting of IL-12Rβ1 and IL-23R. In many instances, 

master transcription factors suppress the expression of genes important for other T helper 

cell subsets. This notion is exemplified for Tregs through collaborative repression of genes 

by Eos and FoxP3 but is an important mechanism of master transcription factors of all 

lineages so far with the exception of Tr1 cells for which no master transcription factor has 

been identified yet. The genes encoding the master transcription factors of Th1, Th17 and 

Treg cells are shown in red, respectively (Tbx21, Rorc and Foxp3). JAK/STAT signaling 

pathways have particular relevance to T helper cell differentiation as they mediate the 

instructive signals of the lineage inducing cytokines: STAT1/4 relevant for Th1 cells and 

STAT3 for Th17 cells, respectively. The critical contribution of TCR signaling for 

differentiation of T helper cell subsets has been omitted for clarity.
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Figure 2. 
(A) Mitochondrial metabolism is critical to Th1 cell differentiation and terminal effector 

function. The malate-aspartate shuttle and mitochondrial citrate export drive proliferation 

and their activity is translated mechanistically through epigenetic changes influencing the 

transcription of key Th1 cell genes. The TCA (tricarboxylic acid) cycle is critical to terminal 

effector function of Th1 cells. (B) Metabolites such as bile acids and their derivatives which 

are generated through processing by the microbiome are important regulators of Th17 cell 

differentiation, e.g. 3-oxoLCA can directly bind to the Th17 cell master transcription factor 

RORγt and inhibit transcription of Il17. In contrast, the bile acid metabolite isoalloLCA can 

lead to the expansion of Tregs thereby contributing to tolerance. (C) Tregs have been shown 

to possess very important tissue-resident functions such as the repair of damaged tissue. 

Indeed, Tregs can secrete oligodendrogenic Ccn3 to enhance oligodendrogenesis in the 

setting of CNS demyelination. (D) Model showing the interconnected relationship among 

the pro-inflammatory Th1/Th17 cell subsets and the regulatory Treg/Tr1 cell subsets. The 

biological outcome of either inflammation/autoimmunity or tolerance/resolution of 

inflammation is dictated by the expansion and dominance of either pro-inflammatory or 

regulatory Th cell subsets. T helper cell differentiation and expansion occurs under the 

influence of a complex network of mechanisms. These mechanisms can dynamically shift 

the balance between pro-inflammatory and regulatory subsets suggested as cogwheels 
tipping the balance in a particular direction. For example, metabolites generated or 

processed by the microbiome can foster Treg cell differentiation. The inherent plasticity of 

Th17 cells can lead to their transdifferentiation to either Tregs or Tr1 cells. T helper cell 
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differentiation and effector function is critically influenced by the tissue immunological 

milieu and the interplay with other immune cells.
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