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Abstract

We report the first example of enantioselective, intermolecular diarylcarbene insertion into Si–H 

bonds for synthesis of silicon-stereogenic silanes. Dirhodium(II) carboxylates catalyze an Si–H 

insertion using carbenes derived from diazo compounds where selective formation of an 

enantioenriched silicon center is achieved using prochiral silanes. Fourteen prochiral silanes were 

evaluated with symmetrical and prochiral diazo reactants to produce a total of 25 novel silanes. 

Adding an ortho substituent on one phenyl ring of a prochiral diazo enhances enantioselectivity up 

to 95:5 er with yields up to 98 %. Using in situ IR spectroscopy, the impact of the off-cycle azine 

formation is supported based on the structural dependence for relative rates of diazo 

decomposition. A catalytic cycle is proposed where the Si–H insertion step is rate-determining, 

supported by kinetic isotope effect experiments. Transformations of an enantioenriched silane 

derived from this method, including selective synthesis of a novel sila-indane, are demonstrated.

The potential utility of chiral-at-silicon compounds incorporated into more complex 

structures has not been fully understood due to a shortage of synthetic methods. Silicon-

stereogenic molecules are rare in number and diversity of structures as compared to carbon. 

Selected examples to generate silicon-stereogenic silanes include dehydrocouplings,1–3 

arylation,4,5 hydrosilylation,6–9 Si–C activation,10,11 and reactions controlled by chiral 

auxillaries.12–14 Brief explorations of the effect of silicon chirality on reaction outcome to 

produce more complex molecules have occurred,15–17 yet remain limited.

The catalytic insertion of carbenes into Si–H bonds to generate organosilicon compounds 

has been intermittently explored since Doyle’s original work in 1988.18,19 Methods to date 

have focused on generation of stereogenic carbon centers using donor/acceptor carbenes 

(Figure 1A).20–23 Si–H insertion to generate stereogenic silicon centers has been 

demonstrated by Katsuki24 and Iwasa25 using donor/acceptor carbenes (Figure 1A). Donor/

donor carbenes (also referred to as diarylcarbenes) are less reactive, with few reports of 

intermolecular Si–H insertion, and one report of an enantioselective variant using 

functionalized alkynes as precursors (Figure 1B).26–29
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Donor/donor carbenes have recently emerged as useful substrates for highly selective C–H 

insertion reactions.30–34 Rhodium carbene complexes demonstrate sufficient reactivity at the 

insertion carbon despite the presence of two aryl rings for potential stablization.35,36 The 

Franz group has a long-standing interest in organosilicon chemistry and expertise 

synthesizing prochiral dihydridosilanes with variation of steric and electronic factors.37–39 

We envisioned that the additional aryl ring could accomplish an enantioselective 

intermolecular Si-H insertion process with prochiral silanes (Figure 1C). Herein, we 

communicate the first enantioselective diarylcarbene Si–H insertion to produce silicon-

stereogenic organosilanes.

We began our studies screening metal catalysts [Ru(II), Ir(I), Fe(II), Rh(II) and Cu(II)] with 

diphenyldiazomethane (2a) and prochiral methylphenylsilane (1a). For all experiments, 

inverse addition of 2a using a syringe pump over 1 hour increased yield of 3a by preventing 

azine formation, as seen in previous studies with Si–H insertion methodologies.21,40,41 

Insertion product 4a was only observed using dirhodium tetraacetate (Table 1, entry 1).42 

Based on this lead result, we proceeded to screen chiral dirhodium(II)-based catalysts to 

identify an enantioselective variant.

A screen of well-studied chiral dirhodium compounds highlighted the reactivity of 

dirhodium tetracarboxylates. Carboxylate ligands afforded higher yields compared to amido-

containing ligands due to the increased electrophilicity of the metal center and resulting 

carbene (entry 2 vs. entries 4–9).43 Of the catalysts studied, Rh2(S-TCPTTL)4 provided the 

highest levels of enantioselectivity when compared to others (entries 5–8 vs 9), which 

improved further using toluene (entry 10). When an insertion was tested using prochiral 

diazo compound 3a, the enantioselectivity of silane product 5a increased from 82:18 to 93:7 
er, with a notable increase in yield (76% to 91% yield, entry 10 vs. 14). Manual slow 

addition of 3a is to seen to form 5a in comparable yield and selectivity to use of a syringe 

pump (81%, entry 14 vs. 15), but the use of a syringe pump was continued for further 

studies. Reducing the reaction temperature below 23 °C did not increase selectivity and no 

insertion was observed below −30 °C. With optimized conditions in hand, we investigated 

the effect of substituents with both symmetrical and prochiral diazo compounds.

A series of sterically and electronically varied silanes and symmetrical diazo compounds 

were evaluated to study the effects on enantioselectivity (Scheme 1, 4a-o). Electron-rich 

diazo 2b was less reactive than 2a and provides lower yield for 4b (45%, 81:19 er). Yield 

improved using diazo 2c (91%) and lower enantioselectivity was observed for silane 4c 
(76:24 er). Electronwithdrawing groups do not strongly affect selectivity (4d, 80:20 er), 

while electron-donating groups on the silane proved deleterious to enantioselectivity (4e and 

4f, 50:50 er and 74:26 er respectively). Additional steric bulk on the aryl ring of the silane 

generally eroded enantioselectivity (4g-j) but maintained fair to good yields (55–69%). 

Selectivity similar to 4a (82:18) was also observed using 2-naphthyl silane 1g, with the yield 

also higher compared to 4h (69 vs 60%). A slight recovery of enantioselectivity was also 

observed with 4k (52%, 82:18 er) compared to 4h (79:21 er), and comparable to 4a. Studies 

with varied alkyl substitution on the silicon center were conducted with diazo 2a.
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Isobutyl-containing 4l provided the highest enantioselectivity observed using 2a (86:14 er). 

However, neopentyl substitution led to loss of enantioselectivity (4m, 50:50 er), and 

cyclohexyl substitution reduced enantioselectivity as well (4n, 70:30 er). Lastly, switching to 

a siloxane also deleteriously affected enantioselectivity while maintaining fair yield (40, 0 

60%, 61:39 er). We next turned our focus to insertion of prochiral diazo reactants.

The ability of the ortho substituent on one phenyl ring of the diazo compounds to control 

enantioselectivity was explored (Scheme 2). Electron-donating substituents lower 

diastereoselectivity (5b, 90:10 dr vs 93:7 dr), but slightly improve enantioselectivity (95:5 vs 

93:7 er). With an electron-withdrawing group (5c), excellent yield and enantioselectivity is 

observed (93%, 93:7 er) and diastereoselectivity increased (98:2 vs 93:7 dr). Recent work 

has noted potential synergistic effects of electronics and ortho substitution on the selectivity 

of donor/donor carbene chemistry.44 Substitution on both phenyl rings was able to achieve 

excellent yield and good selectivity in 5d (98% yield, 90:10 dr. 89:11 er), although slightly 

lower compared to other substitution patterns. The steric and push-pull electronic effects 

combined improve enantioselectivity compared to symmetrical diazo compounds. These 

substrates demonstrate that the presence of any ortho-substitution may promote 

enantioselectivity. Replacing phenyl with a 1-naphthyl group led to decreased 

diastereoselectivity (5e, 85:15 dr) and low enantioselectivity (61:39 er), suggesting other 

competitive steric effects are present. We sought to explore varied substitution of silanes 

with prochiral diazo 3a, given the increase in yield and enantioselectivity compared to using 

2a. Prochiral silanes were tested with diazo 3a and all demonstrated above 90:10 er for the 
major diastereomer (Scheme 2, 5f-5j). Additionally, the reaction performed with 1 gram of 

3a using <1 mol% catalyst affords excellent yield, diastereoselectivity and enantioselectivity 

(Scheme 2, 5a). Overall, the data shows that diastereoselectivity is substrate controlled, 

while enantioselectivity is controlled by the rhodium catalyst. Notably, using a 

diastereoselective reaction with silane 1c promotes enantioselectivity with 5f (94:6 er) 

compared to 4e (50:50 er). This result highlights the benefit of using prochiral 3a to improve 

enantioselectivity.

A catalytic cycle for the enantioselective Si–H insertion of donor/donor carbenes is proposed 

(Figure 2A).36 The Rh(II) carboxylate catalyst (I) reacts with the diazo compound (2a or 3a) 

to form complex II, which is approached by prochiral silane 1a to produce the silicon-

stereogenic silane and regenerate catalyst. Kinetic isotope effect experiments support the 

rate-determining insertion step (kH/kD = 1.6), fitting closely with previous experiments of 

Si–H insertion with donoracceptor20,41,45 and donor/donor carbenes.29. Off-cycle formation 

of azine (6 or 7) can occur when metal carbene II reacts with another diazo reactant. Using 

in situ IR spectroscopy, we determined that the ortho-substituted prochiral diazo 3a has a 

significantly reduced rate of azine formation (vs 2a), which accounts for higher yields of the 

Si–H insertion products. Relative rates of azine formation (krel > 120) was observed for 

decomposition of diazo 2a vs 3a with Rh2(S-TCPTTL)4 (in toluene) in the absence of silane 

(Figure 2A).46 Increased yields of Si–H insertion products with ortho-substitution (5a-i) are 

attributed to steric interactions blocking the approach of diazo 3a to II, which reduces off-

cycle azine formation. The addition of 4Å mol sieves reduces off-cycle processes leading to 

formation of siloxane 8.42 The increase in enantioselectivity observed with prochiral donor/
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donor diazo 3 is attributed to a twisting of the ortho substituted aryl ring, which blocks one 

face of the carbene in II to promote selective approach of the silane (Figure 2B).44,47,48 

There has been a recent report proposing the twisting effect to have electronic contributions 

similar to that of a donoracceptor carbene.44 However, we hypothesize that the steric effect 

of an out-of-plane phenyl twist is more significant than the electronic effects, although the 

analogy is noted.

To demonstrate the utility of enantioenriched silanes, silane 5a was transformed to silanol, 

dehydrocoupling, and intramolecular C–H silylation products. Silanes are useful 

intermediates in stereoselective synthesis, and have versatile reactivity with the remaining 

Si–H bond.49 It is well know that transition metals are capable of oxidative insertion into Si–

H bonds with retention of configuration.50,51 Pd/C-catalyzed silane hydrolysis affords 

silanol 9 in 90% yield with 90:10 dr and 93:7 er.38,51,52 Under attempted hydrosilylation 

conditions, an unexpected dehydrocoupling product 10 was isolated in good yield (62%) and 

93:7 dr.53–55 Exploiting the presence of the ortho-methyl group, diasteroenriched sila-indane 

11 was accessed in 90% yield with 90:10 dr using Ir-catalyzed C–H silylation methodology 

developed by the Hartwig group.56,57

In conclusion, the first example of enantioselective diarylcarbene insertion into Si–H bonds 

has been accomplished with Rh2(S-TCPTTL)4, yielding silicon-stereogenic benzhydryl 

silanes. While symmetrical diazo compounds demonstrated initial enantioselectivity, using a 

prochiral diazo reactant dramatically improved the reaction, providing yields up to 98% with 

98:2 dr and 95:5 er. A catalytic cycle is proposed and the impact of the off-cycle azine 

formation is supported based on the structural dependence for relative rates of diazo 

decomposition. Transformation of the enantioenriched silane affords access to silicon-

stereogenic silanol, dehydrocoupling and intramolecular C–H silylation products.
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Figure 1. 
Insertion of carbenes into Si–H bonds.
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Figure 2. 
A. Proposed catalytic cycle with kinetic isotope effect; B. Diagram of proposed selectivity 

rationale of donor/donor insertions.
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Scheme 1. 
Scope of enantioselective Si–H insertion with symmetrical diazo compoundsa

a isolated yields; er determined using 1H NMR spectroscopy; er Determined using CSP-

HPLC analysis of silanol obtained from Pd/C hydrolysis. bReaction performed using 1.00 g 

of 3a and 0.05 mol % catalyst, at 0.1 M in toluene. cdr was determined using 19F NMR 

spectroscopy. dRelative configuration assigned by X-ray analysis.
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Scheme 2. 
Scope of enantioselective Si–H insertion with prochiral diazo reagentsa

a Isolated yields; dr determined using 1H NMR spectroscopy; er Determined using CSP-

HPLC analysis of silanol obtained from Pd/C hydrolysis. bReaction performed using 1.00 g 

of 3a and 0.05 mol % catalyst, at 0.1 M in toluene. cdr was determined using 19F NMR 

spectroscopy. dRelative configuration assigned by X-ray analysis.
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Scheme 3. 
Transformations of Si–H insertion productsa

a Isolated yields; dr determined using 1H NMR spectroscopy; er determined using CSP-

HPLC. bIsolated as a 85:15 (major) mixture with the hydrosilylation product. See SI for 

more information. cdr determined using 19F NMR spectroscopy.

Jagannathan et al. Page 13

J Am Chem Soc. Author manuscript; available in PMC 2021 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jagannathan et al. Page 14

Table 1.

Optimization of donor/donor Si–H insertion

entry R Rh2L4 % yield
a

dr
b

er
c

1 H Rh2(OAc)4 34 - 50:50

2 H Rh2(5R-MEPY]4 <5 - ND

3 H Rh2(S-BTPCP)4 <5 - ND

4 H Rh2(S-DOSP)4 65 - 55:45

5 H Rh2(R-PTAD)4 67 - 61:39

6 H Rh2(S-PTTL)4 62 - 64:36

7 H Rh2(S-BPTTL)4 62 - 64:36

8 H Rh2(S-PTV)4 67 - 59:41

9 H Rh2(S-TCPTTL)4 76 - 76:24

10 H Rh2(S-TCPTTL)4
d 78 - 82:18

11 CH3 Rh2(OAc)4 45 55:45 50:50

12 CH3 Rh2(R-PTAD)4 72 60:40 ND

13 CH3 Rh2(S-DOSP)4 75 61:39 ND

14 CH3 Rh2(S-TCPTTL)4
d 91 93:7 93:7
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entry R Rh2L4 % yield
a

dr
b

er
c

15
e CH3 Rh2(S-TCPTTL)4

d 81 93:7 93:7

a
NMR yield using Ph-TMS as an internal standard.

b
Determined using 1H NMR Spectroscopy.

c
Determined using CSP-HPLC analysis of silanol obtained from Pd/C hydrolysis; major diastereomer if relevant.

d
Toluene used as a solvent.

e
Diazo added via syringe over five minutes.

J Am Chem Soc. Author manuscript; available in PMC 2021 July 08.


	Abstract
	References
	Figure 1.
	Figure 2.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Table 1.

