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Abstract

Purpose of review: This review summarizes mechanisms by which Porphyromonas gingivalis 
interacts with community members and the host so that it can persist in the periodontium under 

inflammatory conditions that drive periodontal disease.

Recent findings: Recent advances indicate that, in great part, the pathogenicity of P. gingivalis 
is dependent upon its ability to establish residence in the subgingival environment and to subvert 

innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) 

inflammatory response from antimicrobial pathways. While the initial establishment of P. 
gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion 

strategies of P. gingivalis in turn benefit co-habiting species.

Summary: Specific interspecies interactions and subversion of the host response contribute to the 

emergence and persistence of dysbiotic communities and are thus targets of therapeutic 

approaches for the treatment of periodontitis.
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Introduction

Perhaps the best-studied oral microorganism, Porphyromonas gingivalis, is a Gram-negative 

anaerobic and asaccharolytic bacterium that is implicated as a contributor in human 

periodontitis and is also suspected to play a role in systemic disorders, such as 

atherosclerosis, aspiration pneumonia, rheumatoid arthritis and Alzheimer’s disease [1–9]. P. 
gingivalis expresses an array of virulence factors, such as cysteine proteinases (gingipains), 

lipopolysaccharide (LPS), hemagglutinins, and adhesive hair-like appendages known as 

fimbriae [10–14]. These molecules are thought to contribute to the ability of P. gingivalis to 

colonize, secure nutrients, and persist within the inflammatory environment of the 

periodontal pocket while evading host immunity [15, 16, 12, 17–21]. However, the potential 

pathogenicity of P. gingivalis is better appreciated through interactions with certain partner 

species and in the context of the greater microbial community. In this regard, recent 

advances from microbiome and mechanistic studies suggest a new model of periodontal 

disease pathogenesis, in which disease arises not from individual pathogens but from 

polymicrobial synergy and dysbiosis, which perturbs the ecologically balanced microbiota 

associated with periodontal health [22–31]. Here we review how P. gingivalis, as a 

community member, interacts with the host and other microbes leading to dysbiotic 

inflammation that contributes to periodontal disease development. This work is dedicated to 

Dr. Robert (Bob) J. Genco, a former mentor of one of the co-authors (GH), who is 

commemorated in this issue for his pivotal role in periodontal research and his inspiring 

influence on countless scientists in the field. Much of the progress achieved on the biology 

of P. gingivalis and its fimA-encoded fimbriae is based on pioneering studies by Bob and his 

group [32–41, 10].

P. gingivalis in heterotypic bacterial communities

The predominant habitat of P. gingivalis is in the subgingival crevice which develops into a 

periodontal pocket in periodontitis. Although P. gingivalis is indigenous to the oral cavity of 

humans, it can only be detected in a small fraction of periodontally healthy subjects. At a 

given time, P. gingivalis can be detected via a sensitive and specific PCR assay in 25% of 

subjects presenting with periodontal health or mild periodontitis (with pocket probing depths 

5 mm or less). In contrast, it is detected in 79% of subjects with deep pockets [42]. The 

interactions with other microbial species in subgingival biofilms and the inflammatory 

products released by the host are likely to determine whether P. gingivalis can successfully 

establish in the subgingival environment.

The development of subgingival microbial communities is a complex process dependent 

upon stable attachment to the substratum, interspecies adhesive interactions, metabolic 

compatibility, and capacity of the community to resist host immunity while maintaining an 

inflammatory environment [31, 2, 43]. P. gingivalis depends on early colonizers, such as oral 

streptococci, to support its initial attachment and biofilm formation [44]. For instance, P. 
gingivalis engages in multivalent co-adherence interactions with Streptococcus gordonii, in 

which the major (FimA) and the minor (Mfa1) fimbrial subunit proteins of the former 

interact, respectively, with the surface proteins glyceraldehyde-3-phosphate dehydrogenase 

and SspA/B of the latter [45, 46]. Dual-species communities of P. gingivalis and S. gordonii 
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display mutualistic growth in in vitro models [47, 48]. Numerous interactions between co-

adhered S. gordonii and P. gingivalis have been characterized including the elucidation that 

an S. gordonii gene, cbe, is essential for P. gingivalis accumulation on the streptococcal 

surface [49]. Later work revealed that the product of cbe, the folate precursor 4-

aminobenzoate/para-amino benzoic acid (pABA) is responsible for enhancing P. gingivalis 
biofilm accumulation [50]. Exogenously added pABA was shown to alter the transcriptome 

and metabolome of P. gingivalis, increasing the expression of the adhesive fimbrial 

components FimA and Mfa1, among other effects. Consistent with this finding, pABA was 

seen to facilitate colonization of P. gingivalis in the mouse oral cavity. However, despite 

increased numbers, pABA-treated P. gingivalis induced significantly less bone loss than 

vehicle-treated cells. These findings show that the interaction of P. gingivalis and early-

colonizing partners could modulate in a different manner colonization and pathogenicity.

P. gingivalis interactions with viridans-group streptococci may also be antagonistic. For 

instance, Streptococcus cristatus-derived arginine deiminase inhibits the expression of the 

FimA fimbrial protein in P. gingivalis leading to impaired periodontal colonization and 

pathogenicity of P. gingivalis in mice, consistent with observations that the distribution of P. 
gingivalis and S. cristatus is negatively correlated in the human subgingival biofilm [51–53]. 

Thus, distinct streptococcal species can potentially promote or suppress P. gingivalis 
colonization. Conversely, P. gingivalis has been shown to induce cell death and DNA 

fragmentation of the health-associated commensal Streptococcus mitis, although the 

mechanism behind this interaction is still unknown [54].

Other early colonizers and ubiquitous components of health-associated biofilms, such as 

Veillonella and Fusobacterium species, have been shown to interact synergistically with P. 
gingivalis. Veillonella atypica coaggregates with P. gingivalis via the Veillonella 
hemagglutinin protein Hag1 [55]. Veillonella species are also proposed to be important for 

the colonization of P. gingivalis as they possess the gene repertoire for de novo biosynthesis 

of heme, which is the iron form required by P. gingivalis for growth. Indeed, V. atypica 
supports the in vitro growth of P. gingivalis when heme is excluded from the growth medium 

and deletion of hemE in V. atypica, which abolishes heme synthesis, results in an abrogation 

of the growth-supporting effect [56]. Since P. gingivalis is an anaerobe, its colonization 

requires interactions with other community members able to reduce the environment to 

oxygen levels it can tolerate. Fusobacterium nucleatum, a ubiquitous oxygen-tolerant species 

has been shown to be important for the survival of other anaerobes, including P. gingivalis, 

in continuous culture chemostat models under aerated conditions [57, 58]. Although F. 
nucleatum is also an anaerobe, it possesses enzymatic activities such as that of NADH 

oxidase, which contribute to the rapid metabolism of oxygen and the reduction of the 

environment [57, 59]. In addition, F. nucleatum supports the growth of P. gingivalis by 

supplying it with carbon dioxide [57].

P. gingivalis engages in synergistic interactions with other pathogenic organisms in 

subgingival microbial communities. For example, isobutyric acid production by P. gingivalis 
stimulates the growth of Treponema denticola, and reciprocally T. denticola produces 

succinic acid that promotes P. gingivalis growth [60]. Moreover, upon contact with T. 
denticola, P. gingivalis upregulates the expression of adhesins and proteases [61]. Consistent 
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with these in vitro findings, P. gingivalis and T. denticola are synergistically pathogenic in 

vivo [62, 63]. With regard to cross-kingdom interactions, the internalin family surface 

protein InlJ of P. gingivalis binds to the candidal hyphal protein Als3 of Candida albicans 
leading to the upregulation of genes encoding components of the Type IX section system 

(T9SS) of P. gingivalis [64]. Given that important virulence factors of P. gingivalis, including 

its gingipains, are secreted through the T9SS, communities of P. gingivalis and C. albicans 
may exhibit increased pathogenicity. In this regard, C. albicans colonizes the periodontal 

pockets of approximately 15–20% of chronic periodontitis patients and its presence in 

periodontal pockets is associated with the severity of chronic periodontitis [65–68].

In vivo interactions are bound to be more complex than those elucidated using the 

reductionist model systems utilized by most of the studies described above. Simplified 

models, however, clearly show that the interaction of P. gingivalis with other subgingival 

species is a determinant of its colonization and pathogenic potential. While reductionist 

models do not capture the complex emergent characteristics of in vivo communities, they 

represent a proof of the concept that the community context plays a role in modulating the 

establishment of P. gingivalis.

P. gingivalis subversion of innate immunity

Progress in the past 20 years has increased our understanding of how P. gingivalis resists 

immune elimination and persists in periodontal tissues. It would not be possible to discuss 

all relevant research and the present review will focus primarily on how P. gingivalis 
manipulates Toll-like receptors (TLRs) and co-receptors as well as the complement system 

which intimately interacts with TLRs. Other evasive mechanisms of this oral pathogen, such 

as, to inhibit production of the IL-8 chemokine by gingival epithelial cells [69], to degrade 

secreted cytokines [70] as well as many other tactics have been covered in earlier reviews 

[71, 12, 72, 73].

TLRs, a major family of pattern-recognition receptors (PRRs), are strategically located at the 

host-microbe interface [74, 75]. They recognize conserved microbial structures known as 

microbe-associated molecular patterns (MAMPs) and play a central role in inducing innate 

immune responses for controlling infection [74, 75]. Different TLRs respond to distinct 

MAMPs (e.g., TLR2 responds to lipoteichoic acid and TLR4 to LPS) thus endowing the 

innate immune response with relative specificity [76]. TLRs do not function in isolation but 

cooperate with other PRRs in multireceptor complexes within membrane lipid rafts [76–78]. 

In this regard, TLR4 alone is not sufficient for inducing a vigorous innate response to LPS 

and requires MD-2 and CD14 [79, 80]. TLR2 responds to its ligands in association with 

TLR1 or TLR6 as signaling partners, and with CD14 or CD36 as important coreceptors for 

robust activation of TLR2/1 or TLR2/6 complexes [76]. Moreover, TLRs engage in 

signaling crosstalk with the complement system, apparently to coordinate innate immunity 

and inflammation via either synergistic or antagonistic interactions [81, 82]. However, it 

seems that P. gingivalis has evolved mechanisms whereby it can exploit TLRs or their 

crosstalk interactions in a manner that increases its adaptive fitness as well as the 

pathogenicity (nososymbiocity) of the microbial community where it resides [83]. Indeed, P. 
gingivalis evades leukocyte killing by exploiting signaling crosstalk between TLRs and other 

Hajishengallis and Diaz Page 4

Curr Oral Health Rep. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptors, such as CXC-chemokine receptor 4 (CXCR4) [84–86], complement receptor 3 

(CR3; Mac1) [87, 88], and complement C5a receptor 1 (C5aR1) [89–91]. Although first 

shown for P. gingivalis, some of these evasion mechanisms were later shown to be exploited 

by other pathogens, such as Bacillus anthracis and Francisella tularensis [92, 93] or even 

malignant tumors [94]. Strikingly, the manipulation of the periodontal host response by P. 
gingivalis benefits the entire microbial community, which becomes dysbiotic (altered 

composition and increased total counts) and causes inflammatory periodontal bone loss [26].

The ability of P. gingivalis to orchestrate experimental periodontitis in mice by promoting 

the emergence of a dysbiotic microbial community [91, 26], while being a quantitatively 

minor constituent of the microbiota has prompted its characterization as a keystone pathogen 

(Figure 1), by analogy to the crucial role of a keystone holding an entire arch together [26, 

95, 27].

TLR4 antagonism—P. gingivalis expresses heterogeneous and atypical LPS molecules 

that act as potent TLR4 antagonists, weak agonists or are immunologically inert [96]. 

Specifically, P. gingivalis can enzymatically modify the lipid A moiety of its 

lipopolysaccharide and the shifting of lipid A activity from TLR4-agonistic to TLR4-

antagonistic depends on endogenous lipid A phosphatases [96]. These enzymes are 

controlled by growth phase or environmental factors, such as temperature and hemin 

availability [97, 98]. Different lipid A structures produced by P. gingivalis include non-

phosphorylated tetra-acylated lipid A (inert for TLR4 activation), mono-phosphorylated 

penta-acylated lipid A (weak TLR4 agonist), and mono-phosphorylated tetra-acylated lipid 

A (TLR4 antagonist). Genetic inactivation of 4′-phosphatase activity (or bacterial growth at 

≥39°C) results in the synthesis of TLR4 agonist lipid A, while ablation of 1-phosphatase 

activity (or growth in hemin-replete conditions) results in TLR4 antagonist lipid A [96, 99]. 

The ability of this oral pathogen to manipulate the biological activity of its lipid A allows it 

to evade or proactively inhibit a variety of potential TLR4-mediated antimicrobial functions, 

such as inhibition of expression of antimicrobial peptides (β defensins) in human epithelial 

cells [28]. Moreover, the production of inert or antagonistic lipid A enhances the resistance 

of P. gingivalis to cationic antimicrobial peptides, owing to changes in the outer surface 

charge of the bacterial surface that affect the binding of cationic peptides [96, 97, 99, 100]. 

Since P. gingivalis releases LPS-bearing membrane vesicles that can readily diffuse in the 

crevice or even penetrate gingival tissue [13], the TLR4 antagonistic LPS of P. gingivalis 
might inhibit TLR4-dependent antimicrobial responses against other bacteria in the same 

mixed-species biofilm [28].

Exploitation of TLR2 and integrins—In contrast to TLR4, P. gingivalis does not appear 

to antagonize TLR2 at the receptor level. However, this oral bacterium can block TLR2 

antimicrobial responses by inducing subversive signaling crosstalk between TLR2 and other 

receptors, such as, C5aR1, CXCR4 and the β2 integrin CD11b/CD18 (also known as Mac1 

or complement receptor 3). This subsection will focus on CD11b/CD18. A major TLR2 

ligand of P. gingivalis involved in these subversive interactions appears to be its fimA gene-

encoded fimbriae. The fimbriae extend to a significant distance (up to 3 μm) from the 

bacterial cell wall [11], suggesting that they might be the first P. gingivalis molecule to 
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interact with host cells and initiate intracellular signaling. The interaction of P. gingivalis 
fimbriae with TLR2 is promoted by an initial binding event between the fimbriae and CD14, 

which greatly facilitates TLR2-induced NF-κB activation and production of 

proinflammatory cytokines [14, 101, 102] (Figure 2). In addition to this pro-inflammatory 

signaling pathway, the interaction of P. gingivalis and its fimbriae with CD14/TLR2 in 

monocytes/macrophages also stimulates proadhesive signaling that activates the ligand-

binding capacity of the CD11b/CD18 integrin [103, 104] (Figure 2). The regulation of the 

binding affinity of β2 integrin from within the cell through proadhesive signaling is referred 

to as ‘inside-out signaling’ [105]. Inside-out signaling may target cytoplasmic proteins to the 

integrin cytoplasmic tails causing high-affinity conformational changes on the ligand-

binding domains of integrins [105].

Following interaction with the CD14/TLR2 recognition complex, P. gingivalis FimA 

fimbriae induce inside-out signaling involving Rac1 phosphatidylinositol-3-kinase (PI3K), 

and cytohesin-1 that activates the ligand-binding capacity of CD11b/CD18 [103, 104, 106] 

(Figure 2). This mechanism was shown to promote CD11b/CD18-dependent monocyte 

adhesion and transendothelial migration [104]. Interestingly, however, P. gingivalis has co-

opted this TLR2/CD11b/CD18 proadhesive pathway for CD11b/CD18 binding and entry 

into macrophages in a relatively safe manner that promotes the fitness of this pathogen [77] 

(Figure 2). Specifically, the interaction of CD11b/CD18 with P. gingivalis leads to 

suppression of bioactive IL-12, increased intracellular survival of the pathogen in 

macrophages, and enhanced in vivo persistence and capacity to cause periodontal bone loss 

[88, 87]. Therefore, CD11b/CD18 may represent an ‘Achilles’ heel’ exploited by P. 
gingivalis to promote its persistence in the mammalian host, probably because CD11b/CD18 

is not linked to vigorous microbicidal mechanisms [107–110].

Subversion of CXCR4-TLR2 crosstalk—The outcome of TLR2 stimulation by 

microbial pathogens may be influenced by differential association of TLR2 with co-

receptors. In this regard, by means of its FimA fimbriae, which can induce co-association of 

CXCR4 with TLR2 in lipid rafts, P. gingivalis induces CXCR4/TLR2 signaling crosstalk in 

human monocytes or mouse macrophages that compromises their killing function [84]. 

Specifically, the P. gingivalis-induced crosstalk between CXCR4 and TLR2 leads to 

enhanced cAMP-dependent protein kinase A (PKA) signaling, which in turn suppresses the 

generation of nitric oxide, a potent antimicrobial molecule for intracellular bacterial killing 

[84] (Figure 2). Consistent with this mechanism, mice subjected to P. gingivalis-induced 

periodontitis and treated with a CXCR4 antagonist are protected against periodontal tissue 

colonization by P. gingivalis and development of periodontal disease [86]. Intriguingly, it 

was subsequently shown that the soluble protein pancreatic adenocarcinoma upregulated 

factor (PAUF) also interacts with the CXCR4-TLR2 complex and elevates intracellular 

cAMP levels for inhibiting cellular activation [94]. The fact that both P. gingivalis fimbriae 

and PAUF induce the formation of the same receptor complex and exploit it to control cell 

signaling [84, 94] suggests that microbes and tumors may share common immune-evasive 

strategies.
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Manipulation of TLR2 and complement—An intriguing question has been how P. 
gingivalis manages to selectively inhibit immune elimination without overall inhibiting 

inflammation. This is a crucial issue: If P. gingivalis would simply cause immune 

suppression (as many other pathogens do in other parts of the body [111]), this would spare 

P. gingivalis from immune clearance but it would starve it to death. This is because the 

survival and growth of this asaccharolytic organism (and other periodontitis-associated 

bacteria) critically depends on inflammatory tissue breakdown products (e.g., degraded 

proteins and hemin, a source of essential iron) [112, 2]. Since neutrophils are heavily 

involved in human periodontitis and comprise ≥95% of total leukocytes in the gingival 

crevice (or periodontal pocket), where they constantly encounter P. gingivalis [113–116], 

this question was addressed in the context of P. gingivalis-neutrophil interactions. The 

gingival crevicular neutrophils form what looks like a “defense wall” against the periodontal 

bacteria; however, in periodontitis, the neutrophils largely fail to control the bacteria despite 

being viable and capable of immune and inflammatory responses [114, 117–122]. At least 

one major mechanism by which P. gingivalis can manipulate neutrophil responses is via 

instigating a subversive complement-TLR cross-talk.

In this regard, the arginine-specific gingipains (HRgpA, RgpB) of P. gingivalis can cleave 

C5 to generate high local concentrations of biologically active C5a [123, 89] independently 

of the immunological activation of the complement system [124]. Thus, given that 

neutrophils can recognize P. gingivalis via TLR2 [125], this oral bacterium can coactivate 

C5aR1 and TLR2 [91]. P. gingivalis-induced C5aR1-TLR2 crosstalk signaling leads to 

ubiquitylation and proteasomal degradation of the TLR2 adapter MyD88, thereby preventing 

a host-protective antimicrobial response [91] (Figure 3). Furthermore, the C5aR1-TLR2 

crosstalk induces the activation of Pl3K, which inhibits RhoA GTPase and actin 

polymerization and consequently the phagocytic uptake of P. gingivalis (as well as bystander 

bacteria) (Figure 3). Importantly, moreover, this TLR2-PI3K signaling pathway induces 

inflammation that is nutritionally beneficial to the bacteria. Therefore, P. gingivalis subverts 

intracellular signaling in human or mouse neutrophils in ways that uncouple inflammation 

from bactericidal activity. Importantly, the local pharmacological inhibition of C5aR1, TLR2 

or PI3K in the gingiva of P. gingivalis-colonized mice leads to immune clearance of P. 
gingivalis, reverses microbial dysbiosis effected by P. gingivalis colonization and suppresses 

periodontal inflammation [91]. These findings not only are consistent with the keystone 

pathogen concept but suggested that complement inhibition may be an effective strategy to 

inhibit periodontal disease, especially since complement is required for a persisting 

periodontal inflammatory response (mice deficient in the central complement component C3 

are protected from inflammatory bone loss) [126]. Indeed, local complement inhibition in 

non-human primates, using the C3 inhibitor Cp40 (AMY-101), protected the animals against 

inducible or naturally-occurring periodontal disease [127, 126, 128]. In 2019, AMY-101 

received Investigational New Drug approval by the U.S. Food and Drug Administration for 

the first clinical trial to assess its efficacy in humans with periodontal inflammation 

(gingivitis) (ClinicalTrials.gov Identifier: NCT03694444).
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Summary and conclusions

P. gingivalis requires interactions with other subgingival species, which are likely to 

represent the first determinants of its successful establishment in the subgingival 

environment. Once P. gingivalis stably colonizes a site, it interacts with the host creating 

favorable conditions for its long-term persistence. In so doing, P. gingivalis can favorably 

promote the greater microbial community. Although P. gingivalis can influence gene and 

protein expression in other community members by direct interbacterial interactions [54, 43, 

72], the major keystone-related function of this oral organism is likely via interference with 

innate immunity (Figs. 1–3). This interference not only compromises the ability of the host 

to control the periodontal microbial community but also leads to a dysregulated 

inflammatory response that contributes to tissue damage and bone resorption. Tissue 

destruction will also release peptides and heme-containing compounds which stimulate the 

growth of P. gingivalis and bystander species in the community. Although based on studies 

in the mouse model, the keystone pathogen concept is also consistent with P. gingivalis often 

being a quantitatively minor constituent of human periodontitis-associated biofilms, despite 

its increased prevalence and association with progressive bone loss in periodontal patients 

[129–133, 22]. However, an intervention study targeting specifically P. gingivalis would be 

required to test whether P. gingivalis exerts keystone function in human periodontitis. In this 

regard, in non-human primates, in which P. gingivalis is a natural member of their 

periodontal microbiota, a gingipain-based vaccine was shown to cause reduction in both the 

counts of P. gingivalis and the total subgingival bacterial burden [134], suggesting that the 

entire microbial community benefits from the presence of P. gingivalis. The discussed 

literature suggests that therapeutic targeting of host immune responses may be an effective 

way to control P. gingivalis and periodontal disease. In this regard, anti-inflammatory 

approaches, such as complement inhibition [127, 126, 135], to block harmful inflammation 

would also have indirect antimicrobial effects (limitation of inflammatory exudate-derived 

nutrients for the bacteria). Moreover, targeting complement pathways in the gingival tissues 

could render the host non-responsive to the subversive action of P. gingivalis, thereby 

neutralizing its promoting effect on periodontitis.
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Figure 1. Keystone pathogen-induced dysbiosis in periodontal disease.
P. gingivalis subverts complement in a manner that compromises antimicrobial defense 

while enhancing inflammation. These effects contribute to dysbiotic changes of the 

periodontal microbiota (altered composition, increased total counts), which causes further 

inflammation, in great part through complement activation. Inflammatory tissue destruction 

fuels further bacterial growth by generating a nutrient-rich gingival inflammatory exudate 

(containing degraded host proteins and hemin, sources of amino acids and iron, 

respectively). These environmental changes favor proteolytic and asaccharolytic bacteria, 

thus explaining, at least in part, why inflammation causes compositional changes in the 

bacterial community. Moreover, inflammatory bone loss provides new niches for 

colonization by the dysbiotic microbiota. Overall, these changes create a self-sustained 

‘vicious cycle’, where inflammation and dysbiosis are reciprocally reinforced. It should be 

noted, however, that whereas P. gingivalis can initiate dysbiosis, it is not an obligatory 

condition for dysbiosis. From reference [27]. Used by permission.
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Figure 2. P. gingivalis instigates TLR2-CXCR4 and TLR2-CD11b/CD18 crosstalk interactions to 
subvert macrophages.
Through its FimA fimbriae, P. gingivalis can bind TLR2 (specifically the TLR2/TLR1 

heterodimer; TLR2/1). Through a different structural component of the same molecule, P. 
gingivalis interacts with CXCR4 which cross-talks with and inhibits the TLR2/1-induced 

TIRAP/MyD88-mediated antimicrobial pathway. The underlying mechanism involves 

CXCR4-mediated stimulation of cAMP-dependent protein kinase A (PKA) signaling which 

limits NF-κB activation and induction of the inducible nitric oxide synthase (iNOS) that 

generates nitric oxide. The inhibitory effect on the production of nitric oxide, a potent 

antimicrobial mechanism for intracellular killing, promotes P. gingivalis survival in vitro and 

in vivo. By activating TLR2/1, P. gingivalis initiates inside-out signaling, which proceeds via 

phosphatidylinositol 3-kinase (PI3K) and cytohesin-1 to induce the high-affinity 

conformation of CD11b/CD18 (a β2 integrin also known as complement receptor 3). P. 
gingivalis binds activated CD11b/CD18 and is thereby internalized in a relatively safe 

manner as CD11b/CD18 is not linked to potent microbicidal mechanisms. Moreover, the P. 
gingivalis-CD11b/CD18 interaction activates extracellular signal-related kinase 1/2 

(ERK1/2) signaling which downregulates IL-12 p35 and p40 mRNA expression. From 

reference [16]. Used by permission.
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Figure 3. P. gingivalis dissociates immune clearance from inflammatory responses in neutrophils.
P. gingivalis activates the TLR1-TLR2 heterodimer and C5aR1, the latter through the 

generation of C5a by its gingipains. Specifically, these enzymes (HRgpA and RgpB) can 

cleave C5 to release biologically active C5a. The co-activation of TLR2 and C5aR1 by P. 
gingivalis and the resulting signaling crosstalk leads to the ubiquitylation (via SMURF, an 

E3 ubiquitin-protein ligase) and proteasomal degradation of the TLR2 adaptor MYD88, 

thereby blocking a host-protective antimicrobial mechanism. Moreover, the TLR2/C5aR1 

crosstalk activates PI3K, which limits phagocytosis through the inhibition of the GTPase 

RHOA and hence actin polymerization. On the other hand, PI3K stimulates the production 

of inflammatory cytokines. Contrary to MYD88, another TLR2 adaptor, MYD88-like 

adaptor protein (MAL), participates in immune subversion by acting upstream of PI3K. 

These functionally integrated pathways offer ‘bystander’ protection to otherwise susceptible 
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periodontal organisms and enhance polymicrobial dysbiotic inflammation in vivo. From 

reference [6]. Used by permission.
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