
Operations Research Methods for Estimating the Population 
Size of Neuron Types

Sarojini M. Attili†, Sean T. Mackesey†, Giorgio A. Ascoli*

Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, 
Bioengineering Department and Neuroscience Program, George Mason University, Fairfax, VA, 
USA

Abstract

Understanding brain computation requires assembling a complete catalog of its architectural 

components. Although the brain is organized into several anatomical and functional regions, it is 

ultimately the neurons in every region that are responsible for cognition and behavior. Thus, 

classifying neuron types throughout the brain and quantifying the population sizes of distinct 

classes in different regions is a key subject of research in the neuroscience community. The total 

number of neurons in the brain has been estimated for multiple species, but the definition and 

population size of each neuron type are still open questions even in common model organisms: the 

so called “cell census” problem. We propose a methodology that uses operations research 

principles to estimate the number of neurons in each type based on available information on their 

distinguishing properties. Thus, assuming a set of neuron type definitions, we provide a solution to 

the issue of assessing their relative proportions. Specifically, we present a three-step approach that 

includes literature search, equation generation, and numerical optimization. Solving 

computationally the set of equations generated by literature mining yields best estimates or most 

likely ranges for the number of neurons in each type. While this strategy can be applied towards 

any neural system, we illustrate its usage on the rodent hippocampus.
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1 Introduction

A quantitative description of the brain’s machinery is essential to understand the 

mechanisms of nervous system functions. The brain encompasses an extraordinary quantity 

and diversity of cells. The human brain contains nearly 100 billion neurons (Herculano-

Houzel 2009) and the rodent brain contains around 100 million neurons (Herculano-Houzel 

et al. 2011). Neurons can be grouped into many distinct types based on their structural, 

physiological and molecular features (Bota and Swanson 2007; Shepherd et al. 2019). The 

composition of balanced proportions of neuron types into elaborate networks enables the 
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brain’s many specific computations. Estimated counts of neuronal types, i.e. a “neuronal 

census”, would enable more accurate and complete models of brain circuits. Towards this 

goal, the National Institutes of Health launched the BRAIN Initiative Cell Census Network 

(BICCN), a consortium of research projects tasked with generating a comprehensive 

molecular and anatomical cellular “parts list” within a three-dimensional reference mouse 

whole-brain atlas (Ecker et al. 2017).

Counting the neurons of each type in a region requires establishing the identity of millions 

of individual neurons. Rapid progress in genetic phenotyping is on the verge of enabling a 

comprehensive cell-level classification of neurons throughout the mouse cortex (Tasic et al. 

2018). However, linking these growing molecular data to anatomical connectivity requires 

the analysis of the neuronal input and output elements, namely dendritic and axonal arbors. 

Full morphological characterization of axons and dendrites involves physical or optical 

tissue sectioning to follow the complex branching structures in the dense three-dimensional 

space. This is a labor-intensive and error-prone procedure for a human to perform manually, 

underscoring the need for increasingly automated machine-learning approaches (Peng et al. 

2015; Januszewski et al. 2018). Experimentally, the problem is exacerbated by the large 

disproportion between the total length of an individual axon (hundreds of millimeters) and 

its branch thickness (tens of nanometers), resulting in a very small ratio (~10−7) between the 

volume of a neuronal projection and the territory it spans. This major obstacle will likely 

keep the acquisition of comprehensive structural data at single-neuron resolution below full-

brain scale for many years. Therefore, indirect estimation of neuron type population counts 

is an important and useful endeavor.

The neuroscience literature contains a great deal of data relevant to the census problem. 

These include stereological sampling of neuronal densities in specific anatomical areas, 

morphological characterizations of collections of neurons from the same brain region, slice 

imaging of neurons stained for a particular molecular marker, and more (Hamilton et al. 

2012; White et al. 2019). Each of these data types expresses facts about absolute or relative 

neuronal population sizes. Integrating such diverse sources of information for a neuronal 

census poses two primary challenges: formatting all relevant observations in terms of a 

common neuronal classification scheme; and inferring population sizes from the properly 

formatted evidence. Solving the first challenge will ultimately require a broad consensus in 

the neuroscience community on how to define neuron types objectively and reproducibly 

(Armañanzas and Ascoli 2015). For the purpose of illustration, in this study we tentatively 

adopt a recent circuit-based classification proposal (Ascoli and Wheeler 2016) for which 

relatively abundant data are available for parts of the rodent brain such as the hippocampus.

Solving the second challenge entails a workflow for integrating contrasting measurements 

and interpolating through missing data points. Operations research offers many techniques 

for leveraging inconsistent and/or incomplete information to achieve an optimal estimate for 

a set of target parameters. These techniques fall under the broad umbrella of mathematical 
optimization. Here we describe the use of mathematical optimization to obtain an estimated 

neuronal census. The neuronal population counts to be estimated are represented as free 

parameters. Data relating neuron types to their properties (e.g. from literature search or 

experiment) are formatted as equations in terms of these parameters. These equations are 
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composed into an objective function, which can be optimized by a variety of algorithms. 

Thus the novelty of this work consists of applying, for the first time, established operations 

research strategies to the open neuroscience problem of the brain cell census. The present 

study illustrates the proposed approach with a concrete application to a subregion of the 

hippocampal formation of the mammalian brain.

2 Methods

In order to describe the operations research aspects of our approach, we first explain how it 

is possible to derive a system of equations encoding constraints for a neuronal census. In the 

most general sense, every neuron type is associated with a distinct collection of properties 

(e.g. morphological, physiological or molecular) through a many-to-many relationship. In 

other words, no single property uniquely identifies a neuron type, and any property is 

typically associated with multiple neuron types. However, the full set of properties of a given 

neuron type is indeed different from that of all other neuron types. Useful constraints consist 

of measurements, observations or reports on neuronal properties that can link combinations 

of neuron types to specific numerical values.

Consider for instance a brain region with only two neuron types, A and B, and 

corresponding counts nA and nb. If a stereology experiment determines the total number of 

neurons in that region to be 1000, this provides a useful constraint (and corresponding 

equation) by setting the sum of the two target counts to the measured value (nA + nB = 

1000). Now suppose that only neuron type A expresses a particular protein and an article 

reports that, out of 20 cells tested in that region, 15 were found to be positive for that protein 

while 5 were negative. This provides another useful constraint (and a second equation) by 

indicating a ratio (3:1) between the two target values (
nA
nB

= 3). In this simple case the 

number of equations equals the number of unknown counts, yielding a well-constrained 

system with a single exact solution (nA = 750, nB = 250).

In a more general sense, a system of equations is overdetermined if there are more 

constraints (equations) than parameters and underdetermined if there are fewer constraints 

than parameters. In the census problem, overdetermined systems may arise from multiple 

experiments measuring the same variable (e.g. the total number of neurons in a region) and 

yielding inconsistent results. Unless the equations are trivially redundant, overdetermined 

systems are inconsistent and thus do not have exact solutions. In this case numerical 

optimization may find a best estimate that minimizes the discrepancy from all available 

constraints. Underdetermined systems arise when insufficient constraints are available for 

one or more of the target unknowns. If none of the constraints are mutually inconsistent, an 

underdetermined system typically has an infinite number of solutions. In this case numerical 

optimization may find the range of values defining the possible solutions.

2.1 Classification and analysis framework

As a pilot study, we applied our methodology to estimate the population size of each known 

neuron type in the hippocampal subregion of the dentate gyrus (DG). This required a 

neuronal classification scheme for the dentate gyrus. We defined DG cell types based on the 

Attili et al. Page 3

Ann Oper Res. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge base Hippocampome.org, an online repository containing morphological, 

molecular, and physiological information on neurons of the rodent hippocampal formation 

(Wheeler et al. 2015). Hippocampome.org classifies neurons primarily by neurotransmitter 

released and the presence of axons and dendrites in the distinct subregions and layers of the 

rodent hippocampus (Figure 1). It also includes molecular biomarker (Hamilton et al. 2017) 

and electrophysiological properties (Moradi and Ascoli et al. 2019) for each type. 

Hippocampome.org identifies 18 distinct neuron types in DG: 14 with cell bodies 

exclusively present in a single layer and 4 with cell bodies distributed across two layers. 

Thus, the target unknowns or decision variables for this neuronal census consist of the 

population counts for 22 layer-wise types, which we represent here with parameters x1, x2, 

… x22 (Table 1).

Our methodology in estimating the neuron type counts consists of three steps: (i) searching 

for actionable information regarding neuronal counts from the peer reviewed literature, (ii) 

assembling a set of equations by mapping the extracted information to the chosen neuron 

type classification scheme, and (iii) numerically optimizing these equations by minimizing 

an objective function (discrepancy from empirical evidence) to derive type-specific counts 

(Figure 2).

2.2 Literature search

Our literature mining protocol began with an analysis of the bibliography of 

Hippocampome.org v.1.7 (hippocampome.org/php/Help_Bibliography.php). 

Hippocampome.org lists 496 publications used as evidence for the definition of neuronal 

types. Each of the dentate gyrus neuron types that are the subject of this study is associated 

with at least one, but typically several, such publication(s). The full text of each DG 

publication was evaluated for relevance and selected for further mining if it contained at 

least one of four kinds of data: stereology-based measurements of cell counts or densities; 

counts or densities derived from image processing techniques; morphological ratios obtained 

from studies that reconstructed small samples of neurons for electrophysiological analysis; 

and inferences based on volumetric estimates and indirect evidence.

Stereology aims to obtain unbiased estimates of cell numbers by inferring population sizes 

in three dimensions from two-dimensional slice images. A traditional stereological 

technique is the “optical disector” (Russ and Dehoff 2012), which uses a varying focal plane 

to obtain many optical “slices” of an intact piece of tissue. A relatively newer method, the 

optical fractionator, transforms the highly anisotropic tissue into a homogeneous suspension 

of free-floating nuclei which can then be counted microscopically or by flow cytometry and 

identified morphologically or immunocytochemically (Herculano-Houzel 2015). In general, 

stereology requires specific training, equipment, and histological processing, as well as 

appropriate sampling strategies, careful calibration, and rigorous statistical analysis 

(Bartheld et al. 2001). Recently, newer image processing techniques for automated object 

segmentation have enabled cell counting from an entire brain region of interest without need 

of sampling (Bhanu and Peng 2000; Peng et al. 2013; Attili et al. 2019). Morphological 

ratios are derived from electrophysiological experiments, such as patch clamp recordings, 
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designed to understand the cell properties in a specific neural system. Unlike stereology, 

electrophysiological cell sampling is not optimized for counting.

Papers from the Hippocampome.org bibliography containing any of the above information 

were further mined for any reference cited in the context of the above information; 

moreover, all references citing the selected papers were also mined if their title explicitly 

referred to relevant neuron type data. Stereology-based measurements and image processing 

calculations were considered more reliable than morphological ratios and indirect 

inferences. This is because stereology and image processing are designed to obtain accurate 

population counts, while morphological ratios typically come from experiments that use 

unclear sampling methodologies and inferences are based on uncertain assumptions. 

Therefore, stereology/image processing constraints were weighted 10:1 against 

morphological ratios and indirect inference constraints. Rodent scaling rules (Herculano-

Houzel et al. 2006) were used to integrate mouse data with most of the available information 

that is specific to rats.

2.3 Data processing

The sets of neurons described by the authors of the identified articles typically did not 

directly align with the Hippocampome.org classification scheme. Thus, constraint formation 

required mapping the literature-defined neuron types (literature types) to 

Hippocampome.org types. Since each Hippocampome.org type has a unique set of 

morphological, electrophysiological, and biochemical properties, we translated the 

description of each literature type into a similarly formalized set of properties, which we 

then used to match one or more Hippocampome.org types. The literature type could next be 

assigned the variable(s) xi associated with the matching type(s). When a literature type had 

properties matching multiple Hippocampome.org types, the sum of the variables 

representing the corresponding Hippocampome.org types was used. As an example of an 

equation generated from an electrophysiological experiment, one of the mined articles 

(Ceranik et al. 1997) states:

“Neurons from dentate gyrus outer molecular layer were recorded and filled with 

biocytin for videomicroscopy. 40 neurons were adequately stained. Out of these, 6 

neurons were identified as displaced granule cells, 14 neurons had a local axonal 

arborization that was confined mainly to the OML, 3 projected to the stratum 

lacunosum moleculare of the CA1 region, and 17 neurons projected to the 

subiculum via the hippocampal fissure.”

In this description, the author defines four different groups of neurons having somata in the 

DG outer molecular layer (SMo in Fig. 1 and Table 1 above). Based on the descriptions of 

their axons, the groups of 14 and 17 neurons were matched to unique Hippocampome.org 

types MOPP and DG Neurogliaform, respectively. This allowed us to construct the equation 
x19
x20

=   14
17 , where x19 and x20 are the parameters representing the respective outer molecular 

layer counts of MOPP and Neurogliaform cells. Equations were converted to a percent-error 

format for optimization (
17x19
14x20

− 1 = ε), where Ɛ is the error term (residual). The “displaced 

granule cells” and “3 projecting to the stratum lacunosum moleculare” represented groups 
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with no corresponding Hippocampome.org types, so similar equations could not be 

constructed for these groups.

2.4 Optimization

Let a vector containing population counts x1, x2, … xn be a “count vector” x. Then, given a 

set of constraints c1, c2, … cm and corresponding weights w1, w2, … wm, our goal is to find 

a count vector x that best satisfies the weighted constraints. There are multiple plausible 

ways to formulate this optimization problem. One approach is to express our constraints as a 

linear system of equations. This presents a linear least squares problem that can be easily 

solved with popular methods. Unfortunately constraints are implicitly weighted in this 

formulation by the magnitudes of the known parameters they contain. The resultant massive 

and arbitrary weight disparities undesirably bias optimization results. Below we demonstrate 

this fact and present an alternative formulation that minimizes the weighted percent errors of 

each constraint.

2.4.1 Linear formulation—To formulate the problem as linear least squares, we need to 

derive from each constraint ci a linear equation in x. Our constraint set consists of two kinds 

of constraints, sums and ratios:

x6 + x11 + x13 + x15 = 16, 801 sum

x19
x20

= 6
11 ratio

Sum constraints are already linear equations in x. Ratio constraints can be converted into 

linear equations in x:

x19
x20

= 6
11       11x19 − 6x20 = 0

Thus, all constraints have a corresponding linear equation. This allows us to formulate the 

matrix equation Ax = b, with A an m × n matrix with rows corresponding to the left-hand-

side coefficients for each equation, and b a vector containing the right-hand-side constants 

or known parameters. The equation has no solution because our linear system is 

overdetermined and inconsistent, but there exists a best fit x that minimizes the sum of 

squared errors. We need to place boundary conditions on x, since neuron counts cannot be 

too small or large. We also wish to differentially weight the constraints arising from different 

source experiments. Now let Li and Ui be lower and upper bounds for xi, and let W be an m 
× m diagonal matrix with weights w1, w2, … wm the diagonal. Then we can define the 

problem as follows:

εiL x =   ∑
j = 1

n
Aijxj − bi
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∑
i = 1

m
wi εiL x 2 = ‖W

1
2 Ax − b ‖

2

x = argxmin   ‖W
1
2 Ax − b ‖2

subject toLi ≤ xi ≤ Ui for xi ∈ x

This is a constrained, weighted, linear least squares optimization problem. Most numerical 

programming environments provide off-the-shelf routines that can efficiently solve this type 

of problem (e.g. scipy.optimize.lsq_linear in Python, bvls in R).

Unfortunately, this formulation has an undesirable property for count estimation. Our 

constraints contain known parameters of widely varying magnitudes. Consider the error 

terms εaL x  and εb
L x  for two of our sum constraints:

εaL x = x1 + x7 + x8 + x9 + x12 + x14 + x16 + x17 + x21 + x22 − 1, 200, 000

εb
L x = x6 + x11 + x13 + x15 − 16, 801

Now suppose we have a count vector x* such that both constraints a and b are violated by 

some common factor F. Then εaL x*  and εb
L x*  are:

εaL x* = 1, 200, 000F − 1, 200, 000 = 1, 200, 000 F − 1

εb
L x* = 16, 801F − 16, 801 = 16, 801 F − 1

The ratio of the errors is:

εaL x
εb
L x

= 1, 200, 000 F − 1
16, 801 F − 1 = 1, 200, 000

16, 801 ≈ 71

Thus, when constraints ca and cb are equally violated in percentage terms, our squared error 

objective function penalizes the deviation from ca approximately 712 = 5,041 times more 

than the deviation from cb. Thus constraints are implicitly weighted according to the size of 

the known parameters (constants) they contain. This property is undesirable, since there is 

no reason to expect the precision of the source measurements to increase with their 
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magnitude. One could eliminate the implicit weighting for sum constraints by normalizing 

with respect to the measured count. However, no equivalent operation is available for ratio 

constraints. Therefore, the linear formulation is a poor choice for application to counts 

estimation.

2.4.2 Percent error formulation—We can avoid the implicit weighting in the linear 

formulation by directly optimizing the percent errors of each constraint. Let LHSi (x) and 

RHSi be the left and right sides of the measurement form of constraint ci (all xi on left, 

measured constant on right; see ‘Equations’ in supplementary materials). Incorporating 

weights and boundary constraints, minimization of the squared percent errors gives the 

optimization problem: i:

εiP x =
LHSi x − RHSi

RHSi
=

LHSi x
RHSi

− 1

x = argxmin ∑
i = 1

m
wi εiP x 2

subject to Li ≤ xi ≤ Ui for xi ∈ x

This formulation does not suffer from the implicit constraint weighting of the linear 

approach. Equations constructed in this manner have been listed in Table 2.

2.4.3 Algorithms and implementations—A diverse array of algorithms exists for 

numerical optimization. The relative performance of different algorithms depends on the 

characteristics of the objective function and the tuning of algorithm hyperparameters, e.g. 

learning rates and boundary/initial conditions. A comprehensive review of available 

algorithms is beyond the scope of the present article. Instead we only describe the 

algorithms we applied to the DG neuronal census problem. Some of these algorithms require 

boundary and/or initial conditions for x. Where required, we chose a lower bound of 0 for all 

neuron types, an upper bound of 1.2 million for granule cells (the principal cells of the DG), 

and an upper bound of 1 million for all other neuron types. We chose initial conditions to be 

consistent with estimates from an early modeling proposal (Morgan et al. 2007): 800,000 for 

granule cells, 90 for hilar ectopic granule cells, 15,000 for mossy cells, 5,000 for mossy 

Molden cells, and 1,000 for all other neuron types.

The non-negative least squares algorithm solves the linear least squares problem 

argx   min Ax − b 2 with the constraint x ≥ 0 (Lawson and Hanson 1995). This algorithm 

does not take any hyperparameters. The bounded-variable least squares variant (Stark and 

Parker 1993) minimizes the same objective function, but subject to explicit boundary 

conditions. We used the respective R implementations nnls (Mullen and van Stokkum 2015) 

and bvls (Mullen 2015). Boundary conditions for bvls were set as described above.
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The interior point algorithm is popular for solving large nonlinear programming problems 

(Byrd et al. 2000). This algorithm requires boundary and initial conditions in addition to 

other hyperparameters. We used the MATLAB implementation fmincon (Mathworks, 

Natwick, MA, USA). Boundary and initial conditions were set as described above. The 

following hyperparameters were set to their default values: maximum number of iterations 

(1000), variable tolerance (10−6), function tolerance (10−6), constraint tolerance (10−6), and 

unboundedness threshold (10−20). The maximum number of function evaluations was set to 

100,000 and the derivative approximation was calculated by forward differences with LDL 

factorization and an initial barrier of 0.1.

Simulated annealing is a popular optimization method for complex non-linear objective 

functions with multiple local minima (Van Laarhoven and Aarts 1987; Xiang et al. 2013). 

This algorithm requires boundary and initial conditions in addition to other hyperparameters. 

We used two different implementations: MATLAB’s simulannealbnd (fast annealing 

option) and R’s optim_sa (Husmann and Lange 2017). Boundary and initial conditions were 

set as described above. All other hyperparameters were set to their default values: function 

tolerance (10−6), maximum number of inner loop iterations (100,000), reannealing interval 

(100), outer loop temperature reduction (0.99), maximum function evaluations per variable 

(3000), stall iterations per variable (500), and initial temperature (100).

The pattern search method finds a sequence of points that approach an optimal point based 

on an adaptive mesh (Audet and Dennis Jr 2003; Conn, Gould and Toint 1997). The value of 

the objective function either decreases or remains the same from each point in the sequence 

to the next. This algorithm requires boundary and initial conditions in addition to other 

hyperparameters. We used the MATLAB implementation patternsearch. Boundary and 

initial conditions were set as described above. The polling method was set by two 

parameters: poll order algorithm (“Consecutive”) and search function 

(“GPSPositiveBasis2N”). All other hyperparameters were set to their default values: initial 

mesh size (1), expansion factor (2), contraction factor (0.5), initial penalty (10), penalty 

factor (100), bind tolerance (10−3), size tolerance (10000), mesh tolerance (10−6), maximum 

number of iterations per variable (100), maximum function evaluations per variable (2000), 

variable tolerance (10−6), function tolerance (10−6), and constraint tolerance (10−6).

Each of the algorithms returns an estimated count vector x. The population counts for the 18 

DG neuron types of Hippocampome.org can then be obtained simply by summing the layer-

specific vector elements for each type (e.g. the count of Basket CCK+ cells equals x9 + x10) 

and rounding to the closest integer.

3 Results

The literature search and data processing procedures described above yielded 50 

independent pieces of information (constraints) extracted from 32 distinct peer-reviewed 

scientific sources pertinent to the cell census of the unilateral (i.e. one hemisphere only) 

dentate gyrus of the adult rat. The experimental evidence for 22 constraints was based on 

stereology, for 6 on image processing, for 13 on morphological ratios, and for 9 on indirect 

inferences, resulting in a total sum of weights of 302. These constraints were formulated as 
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mathematical equations (Table 2) and assigned weights based on the reliability of each 

source. Here we only present representative examples for each type of evidence for 

illustrative purposes. The full set of 50 equations used in the optimization, their scientific 

interpretations, and source quotations are included in the ‘Equations’ tab of the 

supplementary materials at hippocampome.org/php/data/ANOR_suppl_mat.xlsx.

We tested three algorithms (interior point, pattern search, and simulated annealing) on the 

percent-error optimization problem and two (non-negative least squares and bounded-

variable least squares) on the linear least squares problem. Though non-negative and 

bounded-variable least squares optimized the linear least squares objective, we scored their 

solution vectors using the percent-error objective for comparison with the other algorithms 

(Table 3). Interior point and pattern search had equivalent performance, superior to 

simulated annealing. Simulated annealing performance depended on the implementation 

(MATLAB was superior to R). Non-negative and bounded-variable least squares performed 

equivalently, indicating a lack of sensitivity to upper bounds for this problem.

Although interior point and pattern search converged to the same objective value, their 

solution vectors were different. Individual vector elements (i.e. population counts) varied 

substantially (> 30%) between the two vectors for 8 out of 18 neuron types (Table 4). 

Interestingly, the midpoint of the vectors yielded the same objective value. This suggests that 

the two vectors exist within a continuous solution space. Non-negative and bounded-variable 

least squares yielded qualitatively different results, with many low-population neuron types 

set to their lower bound. This is explained by the above analysis of implicit weighting in the 

linear least squares problem formulation. Solution vectors for all algorithms are provided in 

the ‘Results’ tab of the supplementary materials at hippocampome.org/php/data/

ANOR_suppl_mat.xlsx.

These results cannot be validated directly due to the unavailability of independent neuron 

type count data, with the exception of granule cells and hilar ectopic granule cells. 

Nevertheless, the objective value for the two best-performing algorithms corresponded to a 

total residual error of 7.8% of the weight sum (302). This number may be interpreted as a 

measure of the residual deviation from published estimates and the existing disagreement 

within the literature. On the one hand, the results are most strongly determined by the 

stereological and image analysis data, since we weighted those sources ten times more than 

the evidence from morphological ratios and indirect inferences. On the other hand, in the 

absence of alternative approaches to determine neuron type counts, stereology and image 

analysis counts provide the most reliable indirect evidence to evaluate the plausibility of 

these estimates on a layer-by-layer basis. Specifically, we summed the averages of the 

neuronal counts obtained from the interior point algorithm and pattern search across each of 

the three dentate gyrus layers: granular (SG), hilar (H), and molecular (SM). We then 

compared these values against the distributions of the corresponding estimates available in 

the literature (Figure 3). Our results fall within one standard deviation of the mean in all 

three cases (SG: 988,759 vs. 1,115,971±260,218, N=13; H: 46,610 vs. 69,484±39,079, 

N=10; SM: 158,846 vs. 289,031±124,334, N=3). The values of all data points for this 

analysis are included in the ‘stereology visualization’ tab of the supplementary data at 

hippocampome.org/php/data/ANOR_suppl_mat.xlsx.
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4 Conclusions

This work demonstrates that the proposed pipeline of annotation, conversion into equations, 

and optimization can yield a viable solution to the neuronal census problem. Previous 

approaches to this open problem in neuroscience in another hippocampal region (area CA1) 

entailed deriving estimates for interneuron type populations from the literature chiefly based 

on expression of neurochemical markers (Bezaire et al. 2016). However, due to the extant 

sparsity of neurochemical marker data, that effort relied on a very large number of forced 

assumptions that are still awaiting empirical validation (Bezaire and Soltesz 2013). More 

recently, the positional mapping of distinct inhibitory subtypes in the developing 

somatosensory cortex was algorithmically inferred by combining cellular and molecular 

constraints from protein tissue stains and genetic expression profiles (Keller et al. 2019). 

Here we use a variety of relevant data from the literature to derive the resultant neuron type 

populations. Our use of optimization algorithms allows one to solve the cell census problem 

by leveraging all suitable information relating reported counts to neuronal properties, 

including location and transcriptomics, but also electrophysiology, morphology, and any 

other available empirical evidence.

The DG neuron type counts reported is this study should only be considered as preliminary 

results presented for the sole purpose of providing an in-depth illustration of this 

methodology. Further research must be conducted before finalizing the appropriate choice of 

algorithms for each specific use case. The use of simulated annealing for convex 

optimization is actively investigated (Kalai and Vempala 2006; Abernethy and Hazan 2015). 

Restricted Newton step methods such as nonlinear least squares (More 1978) and the Trust-

Region-Reflective Algorithm (Coleman and Li 1996; Gill et al. 1981) may also be used to 

optimize overdetermined systems. Exploring multiple algorithms with different parameter 

settings is essential to identify the combination of implementation details yielding the best 

results.

Ultimately, however, the robustness of results will depend on the quality and quantity of the 

available data. Producing more complete and useful results will thus require feeding further 

constraints to the optimization algorithms. Possible sources of additional constraints include 

forthcoming results of ongoing experiments, more thorough data mining of existing 

literature, and assumptions based on domain expert knowledge. The amount of relevant 

empirical evidence in neuroscience has been increasing over the years and this growth is 

widely expected to continue in the foreseeable future. For the time being, the presented 

count estimates are likely inflated due to the exclusion of as-yet undiscovered neuron types 

as well as of types too vaguely described in publications for inclusion in 

Hippocampome.org. Future analyses could account for these neurons by including additional 

decision variables representing unknown types in each layer.

It is noteworthy that two distinct solutions were found in the case of dentate gyrus neuron 

types counts with equal objective value but considerable differences in population sizes. The 

fact that the midpoint of these two solution vectors also constitutes a solution of equal 

objective value suggests the existence of an infinite set of optimal solutions. A possible 

approach to better selecting a solution within this set would be to add a regularization term 
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(Hoerl and Kennard 1970; Tibshirani 1996; Wang et al. 2006) on the cell counts and bias 

them towards zero. Here we simply interpret the results as possible ranges of plausible 

values, in line with the multiple animal strains and varied age groups corresponding to the 

various constraints utilized in the optimization. As a positive side effect, even an 

underdetermined system can be useful in identifying the most under-constrained target 

unknowns in need of additional experimental evidence. Researchers can leverage this 

information to design specific experiments for revealing the missing information.

In this study, we assessed the reliability of available data at the level of experimental 

categories (e.g. stereology vs. morphological ratios) and employed this information in 

assigning weights. Certain source articles, however, may contain useful information to 

quantify the reliability of individual datasets, such as a standard error for their measurements 

(e.g. Buckmaster and Jongen-Relo 1999). Such an analysis also provides a method to weigh 

the constraints and corresponding equations in the optimization. Out of the 32 publications 

utilized in the presented application to the dentate gyrus neuron type census, 14 reported a 

standard error or similar estimates of variance. While here we simply utilized averages from 

all information sources, a future improvement might consist of quantifying the uncertainty in 

the morphological ratios with a statistical model.

In summary, operations research offers a powerful approach to generating quantitative 

estimates and a measurable error for the unknown counts of cell types. Although we 

illustrated this method to estimate neuronal counts in the dentate gyrus, this technique can be 

extended to quantify the neuron type population size in any region of the brain. In future 

work, we aim to extend this methodology for estimating populations of neuronal types 

beyond the dentate gyrus and throughout the entire hippocampal formation, including areas 

CA1, CA2, CA3, the subiculum, and the entorhinal cortex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Hippocampome.org neuron type classification. A. Layer organization of the rodent 

hippocampus, highlighting the dentate gyrus and surrounding regions. B. A dentate gyrus 

granule cell (cell body and dendrites: black, axon: red) with color-coded properties 

(neurotransmitter and axonal-dendritic distributions: blue; molecular expression and 

electrophysiology: green). Label abbreviations: CB: calbindin; CR, calretinin; H, Hilus; PV, 

parvalbumin; SG, stratum granulosum; SLM, stratum lacunosum-moleculare; SLU, stratum 

lucidum; SM/SMi/SMo, stratum moleculare (inner/outer); SP, stratum pyramidale; SR, 

stratum radiatum; Vrest, resting voltage potential.
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Fig. 2. 
Methodological pipeline to estimate neuron type counts through three sequential phases: 

literature mining, data processing, and numerical optimization. HCO: Hippocampome.org
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Fig. 3. 
Layer-by-layer comparison of the average neuron counts from interior point and pattern 

search (red asterisks: layer totals from Table 4) against literature-based stereological and 

image analysis estimates in hilus (Grady et al. 2003; Fitting et al. 2010; Mulders et al. 1997; 

Ramsden et al. 2003; Lister et al. 2006; Sousa et al. 1998; Rasmussen et al. 1995; Erö et al. 

2018; Murakami et al 2018; Attili et al. 2019), granule layer (West 1990; Hosseini-

Sharifabad and Nyengaard 2007; Bayer et al. 1982; Mulders et al. 1997; Rasmussen et al. 

1995; Kaae et al. 2012; Rapp et al. 1996; Fitting et al. 2010; Sousa et al. 1998; Calhoun et 

al. 1998; Insausti et al. 1998; Erö et al. 2018; Murakami et al 2018), and molecular layer 

(Erö et al. 2018; Murakami et al 2018; Attili et al. 2019). The bottom and top of the boxes 

represent first and third quartiles respectively, the bold midline is the median, the whiskers 

indicate the span of data within one and a half inter-quartile ranges from the box, and the 

circles are the remaining points. H: Hilus, SG: Stratum granulare (granule layer), SM: 

Stratum moleculare (molecular layer).
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Table 1

Layer-specific neuron types (left) and decision variables representing corresponding counts (right). See legend 

of Fig. 1 for layer abbreviation definitions. For the 4 neuron types with cell bodies distributed across two 

layers, the naming scheme follows the convention ‘layer: type’.

Neuron type Decision variable

Granule x1

Hilar Ectopic Granule x2

Semilunar Granule x3

Mossy x4

Mossy MOLDEN x5

AIPRIM x6

Axo-Axonic x7

Basket x8

SG: Basket CCK+ x9

SMi: Basket CCK+ x10

H: HICAP x11

SG: HICAP x12

H: HIPP x13

SG: HIPP x14

HIPROM x15

MOCAP x16

MOLAX x17

SMi: MOPP x18

SMo: MOPP x19

Neurogliaform x20

Outer Molecular Layer x21

Total Molecular Layer x22

Ann Oper Res. Author manuscript; available in PMC 2021 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Attili et al. Page 21

Table 2

Representative equations and scientific meaning with original source, type of experimental evidence, and 

corresponding weights (Wt.).

Equation Interpretation Source Experimental 
evidence

Wt.

x6
16801 +  

x11
16801 +  

x13
16801 +  

x15
16801 − 1 =  

ε
Count of inhibitory hilar 
neurons is 16,801 Buckmaster & Jongen-

Relo 1999, Table 1

Stereology

10

x1
1080000 +

x7
1080000 +  

x8
1080000 +

x9
1080000 +  

x12
1080000 +  

x14
1080000 +

x16
1080000 +  

x17
1080000 +  

x21
1080000 +

x22
1080000 − 1 =   ε

Count of granule layer 
neurons is 1,080,000

Hosseini-Sharifabad 
and Nyengaard 2007, 
p209

Stereology

10

x2
65420 +

x4
65420 +  

x5
65420 +  

x6
65420 +

x11
65420 +  

x13
65420 +  

x15
65420 − 1 =   ε

Count of all neurons in 
hilus is 65,420 Grady et al. 2003, 

Table 1

Stereology

10

x1
1258848 +

x2
1258848 +  

x3
1258848 +

x4
1258848 +  

x5
1258848 +  

x6
1258848 +

x7
1258848 +  

x8
1258848 +  

x9
1258848 +

x10
1258848 +  

x11
1258848 +  

x12
1258848 +

x13
1258848 +  

x14
1258848 +  

x15
1258848 +

x16
1258848 +  

x17
1258848 +  

x18
1258848 +

x19
1258848 +  

x20
1258848 +  

x21
1258848 +

x22
1258848 − 1 =   ε

Total count of dentate 
gyrus neurons is 1,258,848

Erö et al. 2018, 
Supplementary data 
(Mouse bilateral 
values, halved and 
converted to rat)

Image 
processing

10

x3
189693 +  

x10
189693 +  

x18
189693 +  

x19
189693 +

x20
189693 − 1 =   ε

Count of all neurons in the 
molecular layer is 189,693

Attili et al. 2019, Table 
2 (halved and scaled to 
rat)

Image 
processing

10

x2
127550 +  

x4
127550 +  

x5
127550 +  

x6
127550 +

x11
127550 +  

x13
127550 +

x15
127550 − 1 =   ε

Count of all neurons in the 
hilus is 127,550

Murakami et al. 2018, 
supplementary data 
(halved and scaled to 
rat neurons)

Image 
processing

10

11 * x19
6 * x20

− 1 =   ε
The proportion of outer 
molecular layer MOPP 
cells to neurogliaform cells 
is 6:11

Armstrong et al. 2011, 
p1480, middle-right

Morphological 
ratio

1

5 * x7/ x6 + x11 + x12 + x13 + x14 +
x15 + x16 + x17 + x21 + x22 − 1 = ε

In granular layer and hilus, 
dendrite-targeting 
interneurons are 5 times 
more abundant than axon-
targeting

Han 1994, p103, 
bottom-right

Morphological 
ratio

1
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Equation Interpretation Source Experimental 
evidence

Wt.

7 * (x8 + x9 )
6 * (x13 + x15 ) − 1 = ε

For every 6 basket cells in 
granular layer, 7 hilar cells 
are found that project to 
outer molecular layer

Lubke et al. 1998, 
p1521–6

Morphological 
ratio

1

3 * (x6 + x11 + x12 + x16 )
4 * (x13 + x14 + x21 ) − 1 = ε

The hilar and granular cells 
projecting to outer 
molecular layer are 3/4 of 
those projecting to inner 
molecular layer

Mott et al. 1997, 
p3992–3

Morphological 
ratio

1

64 *   (x10 + x18 )
(169 * x3) − 1 = ε

Of 233 sampled cells in 
inner molecular layer, 64 
are excitatory

Williams et al. 2007, 
p13757, top-right

Morphological 
ratio

1

(x19 + x20)
(2 * x10 + 2 * x18) − 1 = ε

Interneurons are twice as 
abundant in outer as in 
inner molecular layer

Woodson et al. 1989, 
Fig. 2–7

Indirect 
inference

1

Ann Oper Res. Author manuscript; available in PMC 2021 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Attili et al. Page 23

Table 3

Optimization algorithms and their percent-error objective function values.

Algorithm (implementation) Least square sum

Non-negative least squares (R) 161.94

Bounded-variable least squares (R) 161.94

Interior point (MATLAB) 23.47

Pattern Search (MATLAB) 23.47

Simulated annealing (R) 48.21

Simulated annealing (MATLAB) 42.05
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Table 4

Estimated dentate gyrus cell counts by neuron type for the two best-performing algorithms.

Neuron Type Interior point Pattern search

SG Granule 971,495 971,284

Hilar Ectopic Granule 90 90

Semilunar Granule 112,075 112,094

Mossy 21,742 21,742

Mossy Molden 6052 6052

AIPRIM 3658 6308

Axo-Axonic 1086 1086

Basket 2698 4396

Basket CCK+ 10,680 15,960

HICAP 3983 1662

HIPP 4523 4760

HIPROM 7605 7554

MOCAP 816 488

MOLAX 8275 8272

MOPP 19,634 12,912

Neurogliaform 19,135 18,900

Outer Molecular Layer 725 488

Total Molecular Layer 32 80
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