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Abstract

Purpose of Review: ‘Broadly neutralizing antibodies’ (bNAbs), are rare HIV-specific 

antibodies which exhibit the atypical ability to potently neutralize diverse viral isolates. While 

efforts to elicit bNAbs through vaccination have yet to succeed, recent years have seen remarkable 

pre-clinical and clinical advancements of passive immunization approaches targeting both HIV 

prevention and cure. We focus here on the potential to build upon this success by moving beyond 

neutralization to additionally harness the diverse effector functionalities available to antibodies via 

Fc-effector functions.

Recent Findings: Recent studies have leveraged the ability to engineer bNAb Fc domains to 

either enhance or abrogate particular effector functions to demonstrate that activities such as 

antibody dependent cell-mediated cytotoxicity contribute substantially to in vivo antiviral activity. 

Intriguingly, recent studies in both non-human primates and in humans have suggested that passive 

bNAb infusion can lead to durable immunity by enhancing virus-specific T-cell responses through 

a ‘vaccinal effect’.

Summary: The combination of antibody engineering strategies designed to enhance effector 

functions, with the broad and potent antigen recognition profile of bNAbs, has the potential to give 

rise to powerful new therapeutics for HIV. We aim to provide a timely review of recent advances to 

catalyze this development.
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Introduction

Human immunodeficiency virus (HIV)-specific antibody (Ab) responses against the viral 

Envelope (gp120, gp41) are typically detectable within a few weeks of infection, and 

increase over the course of disease (1–3). However, the majority of these antibodies are non-

neutralizing (4). Broadly neutralizing antibodies (bNAbs) are defined as Abs with the ability 

to neutralize highly variable viral pathogens. In the case of HIV, although the natural 

emergence of bNAbs is rare, substantial efforts have led to the isolation of an array of 

bNAbs which achieve varying neutralization potencies and breadths across the vast diversity 

of HIV clades by binding to vulnerable sites on the Envelope glycoprotein (5). The 

development of vaccine approaches capable of eliciting bNAbs remains a ‘holy grail’ in the 

field, towards which progress continues. In the absence of a vaccine, however, the passive 

infusion of bNAbs holds potential both for the prevention and treatment of HIV, through 

direct neutralization of the HIV virions and by boosting different components of the immune 

system to control or eliminate infection (5). Building off of success in non-human primate 

simian-human immunodeficiency virus (SHIV) models of HIV infection (6, 7), the passive 

transfer of several different bNAbs to HIV-infected individuals has been shown to transiently 

suppress viremia (8, 9**). Beyond neutralization, a critical aspect of Abs in general – which 

extends to bNAbs - is their ability to exert diverse effector functionalities by virtue of 

interactions mediated through their ‘Fragment crystallizable’ (Fc) domains (10). These Fc 

domains of bNAbs mediate the opsonization of virions or infected cells by complement 

components, which leads directly to lysis (11, 12). By engaging with Fc receptors on 

effector cells, bNAbs can also enhance the killing of infected CD4+ T cells by natural killer 

(NK) cells, and increase the phagocytosis of infected cells by macrophages and neutrophils 

(13, 14). Here, we summarize the current knowledge about Fc-mediated functions of bNAbs, 

and technical advancements that have led to improved efficacy of these antibodies by 

modifying their Fc domains.

Antibody-dependent complement-mediated lysis (ADCML)

The classical pathway of the complement system activates by the attachment of C1q to the 

Fc domain of antibodies that have bound to pathogens or to infected cells. C1q activates C1r 

and C1s serine proteases that initiate the recruitment of other complement factors. This 

proteolytic cascade leads to the formation of membrane attack complex (MAC) and lysis of 

the pathogen or infected cell (Figure 1A) (15). IgG1 and IgG3 subclasses are the most 

efficient activators of complement (16). Mujib et al tested a large panel of bNAbs and 

concluded that anti- V1/V2/glycan bNAbs such as PG9, PG16, and PGT145 bound to HIV 

Envelope on the surface of primary HIV-infected cells and induced ADCML (17). 2F5, 

4E10, 2G12, VRC01, and 3BNC117 were not able to enhance the clearance of virus-

infected cells by ADCML in their experiments (17). Complement activation and its lysis 

effect can be prevented by specific surface molecules that are called regulators of 

complement activation (RCA) (18, 19). RCAs like CD46, CD55, and D59 prevent the 

generation of MAC, which is the final step of all three pathways of complement activation 

(18, 19). RCAs can be transferred to virions from infected cells, and therefore, be present on 

both the cell-free virus and the CD4+ infected cells (20, 21). Saifuddin et al showed that HIV 

virions hijacked and expressed human CD46, CD55, and CD59 on their surfaces to escaped 
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ADCML (20). Functional blockade of CD59 significantly enhanced the ADCML activity of 

2F5, 4E10, and 2G12 bNAbs against three HIV laboratory strains (R5, X4, and R5/X4), six 

primary isolates, and provirus-activated ACH-2 cells (21). Similarly, Hu et al reported that a 

recombinant protein of the bacterial toxin intermedilysin inhibited human CD59 function, 

enabling efficient ADCML of virions and infected cells (22). In this context, blockade of 

RCAs by anti-RCA-antibodies, inhibitory peptides, or other potential small molecules may 

boost the function of bNAbs and facilitate the neutralization of the cell-free virions or 

infected cells by ADCML.

Antibody-dependent cellular cytotoxicity (ADCC)

NK cells bind to antibody-coated infected cells by their Fc receptors and induce them to 

undergo apoptosis, or other mechanisms of death, in a process called ADCC (Figure 1B). 

Disease progression has been reported to be slower in HIV-infected individuals that exhibit 

potent ADCC activity (23–28). NK cells use FcγRIIIA (CD16), a low affinity receptor, for 

binding to clustered IgG molecules on the surface of coated cells. Upon binding, NK cells 

release perforin and granzymes that trigger the target cell to die (13, 25–27, 29). There are 

thus two critical, and separable components of Ab function that determine ADCC potency: i) 

degree of binding to infected cells – determined by the Fab Ab region, and ii) degree of 

binding to CD16 on NK cells – determined by the Fc Ab region.

With respect to Fab activity, the relationship between the ability of an Ab to neutralize virus, 

and its ability to bind to infected cells correlate only in a non-reciprocal way. That is, Abs 

that exhibit potent virus neutralization generally are also effective at binding to infected cells 

while, on the other hand, it is common to identify antibodies that are able to bind to infected 

cells but cannot neutralize virus. This discrepancy arises from the fact that neutralization of a 

viral particle specifically requires binding to the functional viral trimers (or “spikes”) that 

mediate binding to the CD4 receptor and CCR5 or CXCR4 co-receptor, and subsequent 

fusion to infected cells. While such functional trimers will be present at some level on 

infected cells, these cells will also be decorated by a variety of non-functional forms of 

Envelope, including gp41 ‘stumps’, gp120/gp41 monomers, and other species – which 

commonly expose epitopes that are not present on functional trimers. Antibodies that target 

such non-functional forms of Envelope can therefore bind to infected cells, and target these 

cells for ADCC, but do not neutralize viral particles. When Env is in open conformation, 

antibodies against conserved CD4-induced (CD4i) epitopes can be generated. These anti-

CD4i Abs have shown to be strong inducers of ADCC (29–32), however both the Vpu and 

Nef proteins of HIV have been shown to attenuate ADCC by anti-CD4i Abs (24, 33, 34).

While it is therefore possible to use non-neutralizing antibodies in therapeutic strategies 

aimed at inducing ADCC, there are three main advantages for utilizing bNAbs. First, there is 

extensive clinical experience with several bNAbs from passive infusion studies. Second, 

there are advantages to harnessing neutralizing activity alongside ADCC in an antibody 

therapeutic. Third, the neutralizing activity against a broad array of viral isolates that defines 

a bNAb is likely to translate into equally broad ADCC activity. Supporting this, we recently 

demonstrated, using a panel of clade B virus reactivated from latent reservoirs, that the 
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ability to neutralize a given virus generally correlated with the ability to bind to 

corresponding infected cells – a critical pre-requisite for ADCC (35*).

Several other studies have assessed and compared ADCC activity across different bNAbs. 

Bruel et al investigated the CD16 signaling and the killing activity of NK cells, using a panel 

of ten bNAbs and found that the most active bNAbs were those that induced the strongest 

CD16 stimulation (36). NIH45–46 and 3BNC117 antibodies, which target the CD4bs, anti-

glycan/V3 antibodies 10–1074 and PGT121, and 10E8 anti-gp41 antibody induced strong 

ADCC, while anti-glycan/V3 antibody PG16 and anti-CD4bs VRC01 were less active (36). 

In contrast, the anti-CD4bs antibody 12A12, anti-gp120/gp41 interface antibody 8ANC195, 

and anti-MPER antibody 4E10 were not observed to induce ADCC (36).

For bNAbs that bind equivalently to infected cells, the second factor that will determine 

ADCC potency is the degree to which these bind to CD16 on NK cells. Of the subclasses of 

IgG, the affinity for CD16 is highest for IgG3 - followed by IgG1, IgG4 and IgG2. Fc 

glycosylation variations, and polymorphic differences between individuals, can also affect 

the binding strength of IgG molecules to CD16 (37*). It has been shown that afucosylated 

IgG1 at asparagine (N)-297 position increased the binding affinity of IgG1 to CD16 on NK 

cells by 50 folds, which led to enhanced ADCC activity (38). Fucosylation of N-297 has 

been suggested to limit the conformational flexibility of IgG1 through its steric interaction 

with N162 on CD16, as truncation of N162 reverses the decreased binding affinity (39). A 

number of mutations have been discovered which enhance ADCC activity by augmenting 

CD16 binding, as reviewed below.

Antibody-dependent phagocytosis (ADP)

Granulocytes, monocytes, and macrophages are professional phagocytes express which 

express a diverse set of FcγRs Fc receptors on their surfaces, which mediate elimination of 

infected cells through ADP (Figure 1C) (40). Neutrophils are abundant in the circulation and 

rapidly migrate to sites of infection and perform effector functions (41). However, they have 

mainly been considered as anti-bacterial and anti-fungal immune cells, and their protective 

role in HIV infection is not well characterized (42). Saitoh et al reported that neutrophil 

extracellular trap (NETs) capture HIV by first detecting virus via TLR7 and TLR8, and then 

eliminating the virus through myeloperoxidase and α-defensin, but did not study the effect 

of anti-HIV antibodies and the roles of Fc receptors (43). Sips et al reported evidence 

supporting that in certain mucosal sites, ADP may be the dominant mode by which Abs 

engage effector cells. Contrary to low expression of CD16 on NK cells and their weak 

engagement in ADCC, macrophages and neutrophils expressed high levels of CD16 and 

CD32 on their surface and showed effective phagocytic clearance of immune complexes. Fc-

engineered variants of the bNAb VRC01 bearing each the following sets of mutations all 

enhanced macrophage phagocytosis: S267E/H268F/S324T (SEHFST), S239D/I332E/

G236A (SDIEGA), S239D/I332E (SDIE) and S239D/I332E/A330L (SDIEAL), with all 

except SEHFST increasing neutrophil phagocytosis as well (14). In addition to FcγRs, 

mucosal macrophages and monocytes express FcαR that may be involved in IgA2-mediated 

phagocytosis (14). The length of the hinge between the Fab and Fc may play an important 

role in increasing the magnitude of ADP (44–46). Chu et al used THP-1 monocytic cell line 
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and constructed hinge variants of HIV-specific antibody subclasses. They found that native 

IgG3 subclasses of VRC01 (anti-CD4bs) and 447–52D (anti-loop 3) bNAbs had higher 

phagocytic activity compared to their corresponding native IgG1 subclasses. They also 

showed that IgG1, and IgG3 variants of both bNAbs with extended hinges elicited stronger 

phagocytic activity compared to their native forms (47*). Although there are many studies 

about the biology of macrophages in response to HIV, details of their roles in ADP clearance 

of HIV are not well known. The interaction of granulocytes with HIV, including their 

potential to reduce HIV reservoirs through ADP (ex. mediated by bNAbs) also requires 

further study.

HIV bNAb isotypes and subclasses

The majority of bNAbs which have been isolated thus far possess the IgG isotype Fc 

domain, and many of these are of the IgG1 subclass, however this may not be optimal for the 

engagement of effector functionalities. Richardson et al demonstrated that an IgG3 bNAb 

that is specific for V2 loop of the Envelope (VRC026), mediated enhanced ADCC and 

neutralization potency compared to the corresponding IgG1 variant (48). Of note, the in vivo 
half-life of IgG3 is shorter than IgG1, which might necessitate shorter intervals between 

administration in a therapeutic setting. Hypothetically, the elicitation or infusion of bNAbs 

in a prophylactic setting may benefit from a combination of anti-HIV IgG and IgA isotypes, 

to achieve protective mucosal immunity (49). IgG has multiple advantages in terms of 

engaging effector functions: it is the main isotype involved in complement fixation and thus 

a potent driver of ADCML virions (17), IgG is also a potent inducer of ADCC by NK cells 

to induce cell death in infected cells, as well as of engulfment of infected cells through ADP 

by monocytes, macrophages and neutrophils (49–51). IgA, however, is the dominant isotype 

in mucosal secretions, and the mucosa is the natural site of most HIV transmissions. Thus, 

IgA may be more effective in blocking transcytosis of HIV, preventing the infection of CD4+ 

T cells at mucosal surfaces (52–56), and protecting DCs from infection, which is of great 

importance as well (57, 58), whereas IgG may complement these functions by enabling 

clearance of cells that do become infected. In two studies, anti-gp41 IgA protected HIV 

transmission in IgG seronegative individuals that were highly exposed to HIV (56–59). 

Tudor et al have investigated the role of CH1 domain by constructing a 2F5 IgA2 bNAb and 

comparing it with 2F5 IgG1. They demonstrated that 2F5 IgA2 bound to gp41 with a higher 

affinity and blocked CCR5-tropic HIV transcytosis across epithelial cells more efficiently 

(60). It is interesting to note that the dominant subtype of IgA in mucosal tissues is IgA2, 

whereas IgA1 is more prevalent in the periphery (46, 60), where its role in HIV-inhibition is 

not well studied. A distinct potential advantage of IgA1 with respect to harnessing bNAbs 

for HIV cure, is its ability to engage the IgA1 receptor, FcαRI (CD89) which is expressed 

on monocytes, macrophages and granulocytes (61), and can drive potent elimination of HIV 

infected cells by ADP (62). Thus, whereas all antibodies currently in the clinic or in clinical 

trials – for any indication, ex. rituximab for lymphoma – have been IgG, exciting 

opportunities exist to explore alternative isotypes of bNAbs.

While bNAbs can hypothetically be produced as a variety of different Ig isotypes and 

subclasses, with the goal of leveraging the various advantages of each – either alone, or in 

combinations – the possibility for negative synergies should also be considered. This can be 
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illustrated using the RV144 HIV vaccine trial, in which both: i) IgG antibodies that bound to 

the variable regions 1 and 2 of Envelope and ii) ADCC activity correlated inversely with the 

rate of infection amongst vaccines, whereas levels of binding of plasma IgA antibodies to 

these same sites correlated directly with the rate of infection (63, 64). This has been 

suggested to indicate that ADCC mediated through IgG may have offered protection, which 

was inhibited by competition with IgA – an effect that could be observed in vitro (65). In 

moving forwards to explore alternative isotypes of bNAbs, investigators should be mindful 

for the potential for such competitive interactions.

Engineered Neutralizing antibodies

The density of HIV Envelope on the surfaces of virions and infected cells is sufficiently low 

that two such molecules are rarely in close enough proximity to be recognized by the Fabs of 

a single antibody, potentially limiting ADCC (66, 67). To overcome this limitation, 

Ramadoss et al constructed a bispecific bNAb antibody, using VCR01 as the backbone that 

had a high affinity single chain variable fragment (scFv) to target CD16 on NK cells. The 

affinity of this recombinant bNAb to gp41 was equal to original VCR01, and its affinity to 

CD16 was increased. This recombinant bNAb bound to infected primary CD4+ T cells and 

boosted NK cell killing activity (68*). The scarcity of Envelope glycoprotein may also be 

addressed by making bi- or tri-specific antibodies, which can increase both avidity and the 

neutralization breath (69). It has been suggested that increased avidity of multivalent bNAbs 

also enhances other functionalities such as ADCML, ADCC, and ADP, but this needs to be 

investigated in more detail (10, 70, 71). Bourzanos et al generated Fc domain variants of 

3BNC117, 10–1074 and PG16 IgG1 bNAbs including G236A/S239D/A330L/I332E 

(GASDALIE) and G236R/L328R (GRLR) and compared these with wild type bNAbs. 

While no differences in binding to gp120 and neutralization of viruses were observed, 

GASDALIE versions of these bNAbs showed increased binding to FcγRs and enhanced 

antiviral activity in vivo, while binding was abrogated for GRLR variants (72). Next, they 

developed a bi-specific anti-Envelope bNAbs of IgG1 subclass and generated a modified 

version of this antibody as well. A hinge domain of IgG3 was added to the Fc domain of the 

modified version to increase Fab domain flexibility. They observed increased neutralization 

activity of the modified version compared to the parental Ab in vitro and in HIV infected 

humanized mice (73). Improving antibody half-life is another aspect of bNAb engineering, 

as LS mutant (M428L and N434S) of VRC01 showed enhanced binding to neonatal Fc 

receptor (FcRn), which led to increased half-life, but did not affect its ADCC activity in a 

cynomolgus macaque model of SHIV (74). The LS mutant of VRC01 was shown to be safe 

in a phase one clinical trial, and exhibited a 4-fold longer half-life than the parental Ab (75). 

As FcRn-enhancing mutations may decrease ADCC activity, one study investigated the 

combinational effect of QL, LS, A, AAA and YTE mutations that increase FcRn binding, 

with DE and DLE mutations that increase ADCC. While the gp120 binding affinities of all 

combinations were similar to the original VRC01, only DE-LS and DLE-LS mutants 

enhanced both epithelial transcytosis as an indication of half-life, and ADCC in vitro (76). 

Recently, Kerwin et al replaced potential destabilizing residues in the variable region of 10–

1074 IgG1 bNAb. They replaced the heavy chain residue T108 with R108 at the base of the 

CDR3 loop which allowed for the formation of a nascent salt bridge with heavy chain 

Danesh et al. Page 6

Curr Opin HIV AIDS. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



residue D137. They also induced three additional mutations to increase conformational 

stability (77). We also have shown in a novel humanized mouse model that Fc domain of 

10–1074 antibody was essential for viral control – where treatment of these mice with 10–

1074 bNAb significantly reduced the viral load compared to 10–1074-FcRnull (78*). As is 

evident in the above, there is tremendous potential to employ protein engineering approaches 

to enhance multiple aspects of bNAbs in order to fully leverage the potential of these as 

therapeutics.

Vaccinal effect of bNAbs

In the use of tumor-targeting Abs to treat cancer, there have been multiple reports of anti-

tumor activity has persisted after Abs have cleared. This has led to the postulation of a 

‘vaccinal effect’ whereby transient treatment with these Abs is thought to have primed 

adaptive immune responses (79, 80). How might such a vaccinal effect arise, and could this 

be of benefit in the HIV setting?

Immature DCs sense pathogens through pattern recognition receptors and initiate a 

proinflammatory immune response by secretion of cytokines. They develop to mature DCs 

after the phagocytosis of pathogens and become professional antigen presenting cells upon 

migration to secondary lymphoid tissues (81). DCs can uptake HIV virions and infect CD4+ 

T cells through infectious synapse, and therefore contribute to pathogenesis of HIV. 

Interestingly, some bNAbs like 10–1074 and PGT121 have been shown to accumulate at 

virological synapses and block the transfer of viral material to uninfected T cells (82). 

However, the main role of DCs is to prime both cellular and humoral immunity. The use of 

new generation of bNAbs that show increased neutralization breath, and the presence of 

FcγRs on DCs, may contribute to efficient uptake of neutralized virus that is not infectious 

for DCs anymore. This may allow for the development of a similar vaccinal effect that has 

been proposed in the cancer field, which needs to be investigated in detail. It has been shown 

that treatment of SHIV-infected cynomolgus macaques with 3BNC117 and 10–1074 bNAbs 

for two weeks led to undetectable viral loads that were maintained for two to six months. 

Almost half of the animals behaved as controllers with undetectable viral loads, and the rest 

maintained a very low level of viremia for two years. Infusion of an anti-CD8β depleting 

antibody to controller animals resulted in specific decline of CD8+ T cells and subsequent 

viral rebound, suggesting the existence of a vaccinal effect by these two potent bNAbs 

(83**). In line with this study, HIV-infected individuals with undetectable viral load were 

treated with 3BNC117 and 10–1074 bNAbs after analytical antiretroviral (ART) interruption 

(ATI). All participants developed enhanced Gag-specific CD8+ T cell responses, and eight of 

nine participants had increased specific CD4+ T cell responses (84**). The mechanism of 

generation of the adjuvant effect of these bNAbs at the presence of natural antigen and its 

effectiveness in long term control of HIV infection needs be investigated in more details, 

including the consideration of whether this can be modulated through the use of alternative 

Fc domains.
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Conclusion

The absence of an effective vaccine has made bNAbs highly appealing in the field of HIV, as 

these antibodies can be used prophylactically to prevent infection. Several studies indicate 

that bnAbs may be effective as a prophylactic treatment but there is not yet a licensed 

product to this effect. The effect of a single dose of these antibodies can last for several 

months, which makes them a potentially attractive alternative to daily ART. bNAbs also hold 

potential to contribute to curing HIV infection, or achieving ART-free remission, as a result 

of targeting various effector cells to eliminate reservoir-harboring cells - an outcome that 

depends on the binding activities of both the Fab and Fc domains. New advances have 

allowed for the modification of Fab to generate multivalent antibodies, and the modification 

of Fc domains to substantially increase the binding of these antibodies to their corresponding 

Fc receptors. The use of one highly potent bNAb alone, will lead to temporary viral control 

and then viral escape mutation. Similar to the excellent effectiveness of combinational ART, 

the use of multiple engineered antibodies might be a new path towards the eradication of the 

HIV reservoir or durable suppression of viral replication.
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Key points

• The role of bNAbs in HIV reservoir control is not limited to neutralization as 

their Fc domains are involved in diverse effector functionalities.

• The use of alternative isotypes, or engineered Fc domains can enhance 

multiple functional aspects of bNAbs toward their potential application as 

prophylactic or therapeutic agents.

• The potential for passive administration of bNAbs to enhance virus-specific 

T-cell responses through a vaccinal effect holds promise as a strategy to 

achieve HIV remission.
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Figure 1: Antibody-dependent killing of infected CD4+ T cells is mediated by bNAbs.
bNAbs initiate several effector functions through their Fc domain. A) Attachment of C1q to 

the Fc domain of bNAbs that have bound to HIV infected cells initiates the complement 

cascade, which leads to formation of MAC and lysis of the infected cells by ADCML. B) 

bNAbs bind to the Env glycoprotein on the surface of HIV-infected CD4+ T cells. NK cells 

recognize infected cells and bind to Fc domain of the Ab through their FcγR. This binding 

allows their activation and degranulation, which leads to ADCC killing of the infected cells. 

B) Professional phagocytes express a diverse set of FcγRs on their surfaces that can bind to 

bNAb-coated infected cells, deriving them to eliminate infected cells by ADP.
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