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The aim of this study was to characterize and reveal the protective effects of cinnamaldehyde (CA) against mesenteric ischemia-
reperfusion- (I/R-) induced lung and liver injuries and the related mechanisms. Sprague-Dawley (SPD) rats were pretreated for
three days with 10 or 40mg/kg/d, ig of CA, and then induced with mesenteric ischemia for 1 h and reperfusion for 2 h. The
results indicated that pretreatment with 10 or 40mg/kg of CA attenuated morphological damage in both lung and liver tissues
of mesenteric I/R-injured rats. CA pretreatment significantly restored the levels of aspartate transaminase (AST) and alanine
transaminase (ALT) in mesenteric I/R-injured liver tissues, indicating the improvement of hepatic function. CA also
significantly attenuated the inflammation via reducing myeloperoxidase (MOP) activity and downregulating the expression of
inflammation-related proteins, including interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (Cox-2), and tumor
necrosis factor receptor type-2 (TNFR-2) in both lung and liver tissues of mesenteric I/R-injured rats. Pretreatment with CA
significantly downregulated nuclear factor kappa B- (NF-κB-) related protein expressions (NF-κB p65, NF-κB p50, I kappa B
alpha (IK-α), and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ)) in both lung and liver tissues of mesenteric
I/R-injured rats. CA also significantly downregulated the protein expression of p53 family members, including caspase-3,
caspase-9, Bax, and p53, and restored Bcl-2 in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment
significantly reduced TUNEL-apoptotic cells and significantly inhibited p53 and NF-κB p65 nuclear translocation in both lung
and liver tissues of mesenteric I/R-injured rats. CA neither induced pulmonary and hepatic histological alterations nor affected
the parameters of inflammation and apoptosis in sham rats. We conclude that CA alleviated mesenteric I/R-induced pulmonary
and hepatic injuries via attenuating apoptosis and inflammation through inhibition of NF-κB and p53 pathways in rats,
suggesting the potential role of CA in remote organ ischemic injury protection.
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1. Introduction

Mesenteric I/R injury is a serious pathological condition with
characteristics of hemorrhagic shock, trauma, strangulated
intestinal obstruction, and acute mesenteric ischemia
(AMI) [1–3]. Mesenteric I/R injury may induce remote organ
injuries, including lung and liver injuries which are associ-
ated with high morbidity and mortality [4–6]. Mesenteric
I/R-induced pulmonary injury may lead to either acute dys-
function or severe dysfunction (failure), which may further
cause myocardial, hepatic, and renal failure followed by
death [7–9]. Mesenteric I/R injury is a clinical challenge,
and the effective therapeutic strategy is limited with the
exception of surgery [10–12], showing the requirement of
novel treatment options for ameliorating both direct mesen-
teric I/R injury and indirect remote organ injuries.

Protective effects induced by natural compounds are
found to ameliorate mesenteric I/R-induced local and/or
remote organ injuries. For instance, ginsenoside Rb1 amelio-
rates mesenteric I/R-induced lung injury [13]; curcumin alle-
viates pulmonary and renal injuries induced by mesenteric
I/R, respectively [14, 15]; and ghrelin ameliorates mesenteric
I/R-induced lung injury [16]. Irisin protects against mesen-
teric I/R-induced liver injury [17]. And in our previous study,
CA attenuates mesenteric I/R-induced gut injury via a syner-
gistic inhibition of p53/NF-κB signaling pathways [18].

Cinnamaldehyde (CA, Figure 1) is the active constituent
of cinnamon extract obtained from the bark of Cinnamo-
mum [19, 20]. CA has various beneficial effects, such as anti-
bacterial [21], anti-inflammatory [22], antioxidative [23],
and antiapoptotic effects [24]. CA is found to protect against
gram-positive/negative infection [25], diabetes [26], gastric
ulcer [27], cardiac hypertrophy [28], and myocardial
[29]/brain I/R injuries [30, 31]. However, whether CA can
efficiently protect against mesenteric I/R-induced injuries in
the lung and liver still needs to be revealed. Based on our pre-
experiments, we proposed that CA pretreatment could ame-
liorate mesenteric I/R-induced liver and lung injuries via
attenuating inflammation and apoptosis through inhibition
of both NF-κB and p53 signaling pathways. Rat models of
mesenteric I/R-induced lung and liver injuries were used to
verify our proposal.

2. Materials and Methods

2.1. Chemicals and Materials. From Aladdin (Aladdin,
Shanghai, China), cinnamaldehyde (purity: ≥98%) was pur-
chased. The assay kits for detecting alanine transaminase
(ALT), aspartate transaminase (AST), and myeloperoxidase
(MPO) and an assay of terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) were obtained from Nan-
jing Jiancheng Institute of Biotechnology (Nanjing, Jiangsu,
China). The protein extraction kits, bicinchoninic acid pro-
tein assay kits, and hematoxylin and eosin staining kits were
obtained from Beyotime Institute of Biotechnology (Haimen,
Jiangsu, China). 4′,6-Diamidino-2-phenylindole (DAPI) was
obtained from Sigma-Aldrich (St. Louis, MO, USA). All
other reagents were of analytical grade.

2.2. Animals. 200-220 g male Sprague-Dawley (SPD) rats
were provided by the Animal Center (Dalian Medical Uni-
versity) (certificate of conformity: NO.SCXK (Liao) 2018-
0003). According to the National Institutes of Health guide-
line (publication no. 85-23, revised 1985) and DalianMedical
University (approval number: L20140402) protocols, rats
were received care and housed one per cage under daily
hygiene and proper environment.

2.3. Induction of Mesenteric I/R Model.Mesenteric I/R injury
on a rat model was induced as previously described [32, 33].
12 h before the I/R injury, the animals were fasted of food,
and then, on the day of the experiment, the rats were anesthe-
tized with pentobarbital (50mg/kg of body weight) intraper-
itoneally (ip). The superior mesenteric artery (SMA) was
clamped with a traumatic microvascular clamp for 1 h to
achieve ischemia; then, the SMA was unclamped for an addi-
tional 2 h to induce reperfusion. And the lung and liver tissue
samples were collected and placed on ice, rinsed with
phosphate-buffered saline (PBS), and stored at -80°C after
the rats were euthanized. Segments of lung and liver tissue
were fixed with formalin for TUNEL, immunofluorescence,
and histological analysis.

The rats were randomly assigned to 5 groups (5
rats/group): (1) sham group: via the intragastric gavage (ig)
route, rats were given a vehicle daily for 3 days before rat
sham surgery; (2) sham+CA group: rats were subjected to
sham surgery after pretreatment with CA (ig) with the con-
centration 40mg/kg daily/3 days; (3) I/R group: via the intra-
gastric gavage (ig) route, rats were given a vehicle daily for 3
days before they were induced with 1 h mesenteric ischemia
and then reperfusion for additional 2 h; (4) I/R+CA (L)
group: rats were subjected to I/R surgery after they were pre-
treated with CA (ig) with the concentration 10mg/kg/day/3
days [18, 34]; and (5) I/R+CA (H) group: rats were subjected
to I/R surgery after they were pretreated with CA (ig) with
the concentration 40mg/kg/day/3 days [18, 35, 36]. The
intragastric gavage suspension of CA in carboxymethyl cellu-
lose (1% CMC) was prepared daily and freshly and given at
2mL/kg.

2.4. Tissue Staining and Histology. Hematoxylin and eosin
(H&E) (H&E staining®, Haimen, Jiangsu, China) staining
was performed after the lung and liver tissue samples were
fixed in formalin solution, paraffined, and then sliced. The
samples were randomly selected and stained with H&E stain-
ing according to the manufacturer’s instruction (H&E stain-
ing®, Haimen, Jiangsu, China). The extent of I/R-induced
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Figure 1: Chemical structure of cinnamaldehyde.
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lung and liver injuries causing histopathological damages
was evaluated as prescribed. The lung injury score was eval-
uated as grades ranging from 0 (minimum) to 4 (maximum),
of each of the following 3 terms: accumulation of the inflam-
matory cells, alveolar wall thickness, and alveolar hemor-
rhage [37]. The liver histological score was evaluated as
grades ranging from 0 (minimum) to 4 (maximum), of each
of the following 6 terms: condensation of the nucleus, frag-
mentation of the nucleus, nuclear fading, cytoplasmic color
fading, vacuolization, and erythrocyte stasis [38].

2.5. Biochemical Analysis. The levels of tissue ALT, AST, and
MPO were measured according to the manufacturer’s
instructions (Nanjing, Jiangsu, China). At 4°C condition,
the rat lung and liver tissues were homogenized in saline
and then centrifuged for 10min at 3000 g/min. Tissue
enzyme activities were determined by using the assay kits
(Nanjing, Jiangsu, China).

2.6. Immunofluorescence Staining. Paraffin-embedded rat
lung and liver tissue slides were dewaxed, and 0.1%
TritonX-100 solution was added for 10min, and then, the
slides were washed with PBS three times. Tissue samples
were incubated with primary antibodies against NF-κB p65
and p53 (Proteintech, Wuhan, Hubei, China; 1 : 100) over-
night at 4°C, then incubated with secondary antibody (Pro-

teintech, Wuhan, Hubei, China; 1 : 100), and then, the slides
were washed with PBS and stained with DAPI (1μg/mL).
Samples were visualized using fluorescence microscopy
(BX63, IX81, Olympus, Japan).

2.7. Immunostaining of TUNEL. Rat lung and liver tissue
slides were dewaxed with gradients of alcohol, then perme-
abilized with 0.1% TritonX-100 solution for 10min; after
that, the slides were washed with PBS. And slides were
stained using a TUNEL staining kit (One-Step TUNEL kit®,
Nanjing, Jiangsu, China) according to the manufacturer’s
instruction. The slides were visualized using a fluorescence
microscope (BX63, IX81, Olympus, Japan).

2.8. Western Blotting. The protein samples of randomly 3
individual rat lung and liver tissues were loaded and resolved
using 8, 10, or 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), and then, the proteins were
transferred to nitrocellulose membranes for 1 h, and at the
solution of 5% skimmed milk, the membranes were blocked
for an additional 1 h at 37°C. After that, they were incubated
with the primary antibody overnight at 4°C: Cox-2, IL-1β, IL-
6, TNFR-2, caspase-3, caspase-9, Bcl-2, Bax, p53, NF-κB p65,
NF-κB p50, IK-α, and IKKβ (Proteintech, Wuhan, Hubei,
China). Then, the membranes were washed in Tween-20
and Tris-buffered saline (T-TBS)/3 times and incubated at
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Figure 2: Cinnamaldehyde alleviated morphological damages of both lung and liver tissues of mesenteric I/R-injured rats. (a) Tissue
histology images of lung (scale bar = 200μm; magnification ×100 of H&E). (b) Tissue histology images of liver (scale bar = 200 μm;
magnification ×100 of H&E). (c) Histological evaluation of the lung tissues after mesenteric I/R. (d) Histological evaluation of the liver
tissues after mesenteric I/R. (e) Tissue level of hepatic ALT. (f) Tissue level of hepatic AST. All results are analyzed as the mean ± SD
(n = 5). ∗∗∗P < 0:001 vs. sham group; ###P < 0:001, ##P < 0:01, and #P < 0:05 vs. I/R group.
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Figure 3: Cinnamaldehyde ameliorated against mesenteric I/R-mediated lung and liver inflammation. (a) Tissue levels of pulmonary and
hepatic MPO. (b) The levels of IL-6, IL-1β, Cox-2, and TNFR-2 protein expression in lung tissues. (c) Inflammatory protein expression
quantifications in lung tissues. (d) The levels of IL-6, IL-1β, Cox-2, and TNFR-2 protein expression in liver tissues. (e) Inflammatory
protein expression quantifications in liver tissues. All results are analyzed as the mean ± SD (n = 3). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P <
0:05 vs. sham group; ###P < 0:001, ##P < 0:01, and #P < 0:05 vs. I/R group.
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37°C in secondary antibody (Proteintech, Wuhan, Hubei,
China) for 1 h. Enhanced chemiluminescent (ECL) solution
(Proteintech, Wuhan, Hubei, China) was used to visualize
the membranes. And proteins were quantified by using
Image Lab software (Bio-Rad, CA, USA) for 3 independent
experiments. β-Actin was the corresponding expression of
normalization [39, 40].

2.9. Statistical Analysis. One-way analysis of variance
(ANOVA) followed by the Student-Newman-Keuls test was
used to the normal distribution data. All values are presented
as the mean ± standard deviation ðSDÞ, of at least 3 indepen-
dent experiments. Prism 5.0 (GraphPad, La Jolla, CA) soft-
ware was used for data analysis. P values of less than 0.05
indicated the statistical significance of the differences.

3. Results

3.1. Protective Effects of CA against Mesenteric I/R-Induced
Lung and Liver Morphological Damages. The following are
the pulmonary and hepatic morphological damages induced
by mesenteric I/R injury in I/R rats compared with sham rats
using H&E staining: characterized with significant inflamma-
tory cell infiltration, perivascular and interstitial edema,
deposition in the alveolar spaces, and hemorrhage in lung tis-
sues (Figure 2(a)) and nuclear condensation, cell shrinkage,
and margination and apoptotic debris in liver tissues
(Figure 2(b)). And these morphological alterations were sig-
nificantly ameliorated by CA pretreatment at concentrations
10 and 40mg/kg (Figures 2(a) and 2(b)). The pulmonary and
hepatic histopathological scores were significantly increased
in injured rats by mesenteric I/R compared with the
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Figure 4: Cinnamaldehyde attenuated apoptosis in both lung and liver tissues of mesenteric I/R-injured rats. (a) TUNEL-apoptotic cell assay
in the injured lung after mesenteric I/R (scale bar = 100 μm; magnification ×200). (b) TUNEL-apoptotic cell assay in the injured liver after
mesenteric I/R (scale bar = 100μm; magnification ×200).
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Figure 5: Continued.

6 Oxidative Medicine and Cellular Longevity



corresponding sham groups, and pretreatment with CA sig-
nificantly reduced these elevated scores (Figures 2(c) and
2(d)). CA did not cause any significant pulmonary and
hepatic morphological alterations in the sham groups. And
mesenteric I/R showed a significant elevation of enzymatic
levels of ALT and AST in hepatic tissues of mesenteric I/R-
injured rats, showing mesenteric I/R-induced liver damage
and hepatic dysfunction compared with sham rats
(Figures 2(e) and 2(f)). CA pretreatment induced a signifi-
cant reduction of the enzymatic activities in the hepatic tissue
of the mesenteric I/R-injured rats. CA did not significantly
alter ALT and AST levels in sham rats.

3.2. Protective Effects of CA against Mesenteric I/R-Induced
Inflammation in Lung and Liver Tissues. The contents of
myeloperoxidase (MPO) in lung and liver tissues were ele-
vated in mesenteric I/R-injured rats significantly compared
with the sham rats, and pretreatment with CA at concentra-
tions 10 and 40mg/kg showed a significant reversion of the
increased MPO (Figure 3(a)). The results of western blot indi-
cated that inflammatory protein expressions of IL-6, IL-1β,
Cox-2, and TNFR-2 were significantly upregulated in both
pulmonary and hepatic tissues of the mesenteric I/R-injured
rats (Figures 3(b)–3(e)). And CA pretreatment showed a sta-
tistically obvious reduction of IL-6, IL-1β, Cox-2, and
TNFR-2 protein expressions (Figures 3(b)–3(e)), suggesting
that CA alleviates mesenteric I/R-induced injuries through
attenuating the inflammation. CA did not significantly change
these protein expressions in sham rats.

3.3. Protective Effects of CA against Mesenteric I/R-Induced
Lung and Liver Apoptosis. Our results indicated that
TUNEL-positive apoptotic cells were significantly more

observed in both injured pulmonary and hepatic tissues of
the mesenteric I/R group compared with the sham groups.
And pretreatment with CA significantly decreased TUNEL-
positive cells in lung and liver tissues compared with I/R-
injured rats (Figures 4(a) and 4(b)), suggesting that pretreat-
ment with CA significantly alleviated mesenteric I/R-induced
lung and liver apoptosis. CA did not significantly show
TUNEL-positive cells in lung and liver tissues in sham rats.

3.4. The Role of CA-Induced Protection against p53 and NF-κB

3.4.1. Cinnamaldehyde Inhibits p53. The transcriptional fac-
tor p53 is a proapoptotic factor which exerts a crucial role
in mediating apoptosis in lung and liver injuries [41, 42].
The results of western blot showed that the expression of
apoptosis proteins, such as caspase-3, caspase-9, Bax, and
p53, was significantly increased and the antiapoptotic protein
expression of Bcl-2 was significantly decreased in both lung
and liver tissues of mesenteric I/R rats compared with the
sham rats. The pretreatment with CA restored the increased
expression of caspase-3, caspase-9, Bax, and p53 and also
restored the reduced Bcl-2 significantly in both pulmonary
and hepatic tissues of mesenteric I/R-injured rats, suggesting
that CA ameliorated mesenteric I/R-induced lung and liver
apoptosis (Figures 5(a)–5(d)). CA did not significantly show
any changes in the apoptotic protein expressions in sham rats.

3.4.2. Cinnamaldehyde Inhibits NF-κB. The transcriptional
factor NF-κB is related to inflammation, immune responses,
oxidative stress, and cell death in injured tissues [43–45]. The
main NF-κB complex family member is NF-κB p65 [46].
Western blot results showed that NF-κB p65, NF-κB p50,
IK-α, and IKKβ protein expressions of NF-κB-related
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Figure 5: Cinnamaldehyde protected against mesenteric I/R-induced lung and liver injuries through inhibition of p53 in rats. (a) The protein
expression levels of caspase-3, caspase-9, Bcl-2, Bax, and p53 in lung tissues of I/R-injured and sham rats. (b) p53-apoptotic protein
expression quantifications in lung tissues. (c) The protein expression levels of caspase-3, caspase-9, Bcl-2, Bax, and p53 in liver tissues of
I/R-injured and sham rats. (d) p53-apoptotic protein expression quantifications in liver tissues. All results are expressed as the mean ± SD
(n = 3). ∗∗P < 0:01 and ∗P < 0:05 vs. sham group; ##P < 0:01 and #P < 0:05 vs. I/R group.
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signaling pathway were upregulated in both injured pulmo-
nary and hepatic tissues of mesenteric I/R rats significantly
in comparison with the normal tissue controls, and CA sig-

nificantly downregulated these protein expressions in both
injured pulmonary and hepatic tissues of mesenteric I/R rats
(Figures 6(a)–6(d)), indicating that CA pretreatment protects
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Figure 6: Cinnamaldehyde protected against mesenteric I/R-induced lung and liver injuries by suppression of the NF-κB pathway in rats. (a)
The protein expression levels of NF-κB p65, NF-κB p50, IK-α, and IKKβ in lung tissues. (b) NF-κB-related protein quantifications in lung
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against mesenteric I/R-induced lung and liver inflammation
and apoptosis. CA did not show any significant protein
expression alterations in sham groups.

3.4.3. Cinnamaldehyde Protects against Mesenteric I/R-
Triggered p53 and NF-κB p65 Nuclear Translocation in
Lung and Liver Tissues. The transcriptional factors NF-κB
p65 and p53 are both activated under stress conditions,
inducing NF-κB p65 and p53 subunit import into the nucleus
and triggering the inflammatory mediators and proapoptotic
targets [47, 48]. The immunofluorescence assay showed that
the p53 nuclear import was more increased in both injured
lung and liver tissues of I/R rats compared with the sham ani-
mals. And pretreatment with CA inhibited the nuclear trans-
location of p53 significantly in both injured lung and liver
tissues of mesenteric I/R rats (Figures 7(a) and 7(b)), suggest-
ing the role of p53 in mediating CA-induced protection

against mesenteric I/R-induced pulmonary and hepatic
injuries.

The immunofluorescence results also showed that NF-κB
p65 nuclear import was also significantly increased in both
injured lung and liver tissues in mesenteric I/R rats in com-
parison with the control groups. And pretreatment with CA
inhibited the nuclear translocation of NF-κB p65 signifi-
cantly in both lung and liver of I/R-injured rats
(Figures 8(a) and 8(b)), suggesting the way of NF-κB p65 in
mediating CA-induced protection against mesenteric I/R-
induced pulmonary and hepatic injuries.

4. Discussion

Mesenteric I/R induces either local [49–51] or remote organ
injuries, including heart [52], lung [53], liver [54], kidney
[55], and brain [56] injuries. Remote organ injuries are a
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Figure 7: Protective effects of cinnamaldehyde against p53 nuclear translocation in both lung and liver tissues of mesenteric I/R-injured rats.
(a) p53 immunofluorescence in sham/I/R-injured lung tissues (scale bar = 100μm; magnification ×200). (b) p53 immunofluorescence in
sham/I/R-injured liver tissues (scale bar = 100 μm; magnification ×200).
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serious consequence of mesenteric I/R injuries due to the
damage of intestinal mucosa and translocation of bacteria
and endotoxins into the distant body organs [57, 58].

Our previous study showed that mesenteric I/R induced
excessive intestinal (local) morphological changes, inflam-
mation, oxidative stress, apoptosis, and upregulated p53
and NF-κB pathway-related proteins in mesenteric I/R-
injured rats and hypoxia/reoxygenation- (H/R-) injured
intestinal epithelial cells-6 (IEC-6), and CA pretreatment sig-
nificantly restored all the above-mentioned changes in mes-
enteric I/R-treated rats and H/R-treated IEC-6 cells [18].

In this study, our results supported our proposal. CA pre-
treatment alleviated morphological damages in both injured
lung and liver tissues of mesenteric I/R rats and significantly

restored the injury-related enzymatic alterations of ALT and
AST in liver tissues. CA pretreatment significantly attenuated
inflammation in mesenteric I/R-induced lung and liver inju-
ries via downregulating the expression of inflammation-
related proteins, including IL-6, IL-1β, Cox-2, and TNFR-2,
and by reversing MPO activity in both injured lung and liver
tissues of mesenteric I/R rats.

The transcriptional factors p53 and NF-κB were involved
in various tissue injuries [59–62]. NF-κB 65 is the key subunit
of the NF-κB pathway (NF-κB p65, NF-κB p50, IK-α, and
IKKβ) which creates a crucial role in inducing apoptosis,
immune response, and inflammation [63, 64]. And p53 is
also the key subunit of the p53 signaling pathway [65]. Our
results showed that NF-κB-related proteins, including NF-
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Figure 8: Protective effects of cinnamaldehyde against NF-κB p65 nuclear translocation in both lung and liver tissues of mesenteric I/R-
injured rats. (a) NF-κB p65 immunofluorescence in lung tissues of sham/I/R rats (scale bar = 100 μm; magnification ×200). (b) NF-κB p65
immunofluorescence in liver tissues of sham/I/R rats (scale bar = 100 μm; magnification ×200).
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κB p65, NF-κB p50, IK-α, and IKKβ, were significantly
upregulated, and p53-related proteins, including caspase-3,
caspase-9, Bax, and p53, were also significantly upregulated,
and Bcl-2 was significantly downregulated, in both lung
and liver tissues of mesenteric I/R-injured rats. Pretreatment
with CA restored these aberrant parameters significantly in
both lung and liver tissues of mesenteric I/R-injured rats.
Pretreatment with CA showed a significant reduction of
TUNEL-apoptotic cells in both injured lung and liver tissues
of mesenteric I/R rats, suggesting CA-mediated attenuation
of inflammation and apoptosis against mesenteric I/R-
induced lung and liver injuries. The immunofluorescence
assay showed that CA mediated a significant inhibition of
both NF-κB p65 and p53 nuclear translocation in both
injured lung and liver tissues of mesenteric I/R rats, indicat-
ing that attenuation of inflammation and apoptosis and inhi-
bition of nuclear translocation were related to CA-mediated
amelioration against mesenteric I/R-induced lung and liver
injuries.

Infection and inflammation are among the major clinical
challenges in the treatment of mesenteric I/R injury and are
involved in the recommendations for the management and
treatment of mesenteric ischemia (acute or chronic) in the
recent clinical guidelines [66–70], indicating that both anti-
infection and anti-inflammatory interventions are required
for treatment of mesenteric I/R-induced local and/or remote
organ injuries [71–73]. Although the antibacterial properties
of antibiotics are necessary for the treatment of mesenteric
I/R, they often cause renal and hepatic injuries [74–76]. Cur-
rent evidence indicates that CA not only possess ameliorative
effects and anti-inflammatory effects for ameliorating tissue
injuries but also possess antibacterial activities [25, 77, 78],
suggesting that CA could be a potential therapeutic interven-
tion for treating mesenteric I/R-induced local and/or remote
organ injuries.

In conclusion, in this study, our results revealed that pre-
treatment with CA significantly ameliorated and protected
against mesenteric I/R-induced lung and liver injuries via
reducing aberrant inflammation and apoptosis. CA did not
show any significant changes on the corresponding controls.
And CA-mediated protection and amelioration against mes-
enteric I/R-induced remote organ injuries via suppression of
p53 and NF-κB exert an important role in the protection.
Based on the ameliorative effects together and its bacterial
inhibitory effects, this study reveals that CA can be consid-
ered a potential choice for alleviating mesenteric I/R-induced
remote organ injuries, and the actual relationship of p53 and
NF-κB under I/R and remote organ injuries may require
future study.
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CA: Cinnamaldehyde
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ig: Intragastric gavage
ip: Intraperitoneally

AST: Aspartate transaminase
ALT: Alanine transaminase
H&E: Hematoxylin and eosin
MPO: Myeloperoxidase
TNFR-2: Tumor necrosis factor receptor type-2
Cox-2: Cyclooxygenase-2
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nick end labeling.

Data Availability
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Additional Points

Highlights. (1) Intestinal ischemia/reperfusion-induced lung
injury. (2) Intestinal ischemia/reperfusion-induced liver
injury. (3) Intestinal ischemia/reperfusion-induced lung
and liver inflammation. (4) Intestinal ischemia/reperfusion-
induced lung and liver apoptosis. (5) Cinnamaldehyde pro-
tects against intestinal ischemia/reperfusion-induced lung
and liver inflammation and apoptosis. (6) Cinnamaldehyde
protects against intestinal ischemia/reperfusion-induced
lung and liver injuries via inhibition of NF-κB and p53 sig-
naling pathways.
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