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Abstract

Functional connectivity from resting-state functional MRI (rsfMRI) is typically represented as a 

symmetric positive definite (SPD) matrix. Analysis methods that exploit the Riemannian geometry 

of SPD matrices appropriately adhere to the positive definite constraint, unlike Euclidean methods. 

Recently proposed approaches for rsfMRI analysis have achieved high accuracy on public 

datasets, but are computationally intensive and difficult to interpret. In this paper, we show that we 

can get comparable results using connectivity matrices under the log-Euclidean and affine-

invariant Riemannian metrics with relatively simple and interpretable models. On ABIDE 

Preprocessed dataset, our methods classify autism versus control subjects with 71.1% accuracy. 

We also show that Riemannian methods beat baseline in regressing connectome features to subject 

autism severity scores.

1 Introduction

Resting-state functional MRI (rsfMRI) has shown to be a promising imaging modality for 

diagnosing neurodevelopmental and neurodegenerative diseases, e.g., autism spectrum 

disorder (ASD) and Alzheimer’s disease, and identifying associated biomarkers. However, 

analyses of imaging studies suffer from issues of low sample sizes, such that the conclusions 

are often not generalizable across datasets. The Autism Brain Imaging Data Exchange 

(ABIDE I) dataset is a joint effort from multiple international groups to aggregate a large 

dataset of imaging and phenotypic data for the purpose of identifying biomarkers of autism. 

To address heterogeneity in multisite data, the Preprocessed Connectome Project uses state 

of the art preprocessing that has shown good generalizability to the whole ABIDE I cohort 

[7]. This has fostered new methods for machine learning on covariance / correlation matrices 

of the preprocessed data.

Several recently proposed methods use deep neural networks (DNN) [17, 2, 15, 9, 11] to 

classify autism, achieving high accuracy. DNN learns a nonlinear mapping to semantically 

separate the data, but comes at the expense of high computation cost and difficult 

interpretability. These proposed methods do not take into account the SPD properties of 

correlation matrices.

Correlation matrices are symmetric semi-positive definite, and can be made symmetric 

positive definite (SPD) with a simple regularization step. The space of SPD matrices forms a 

Riemannian manifold. Using Euclidean operations on the manifold can be problematic, but 

many machine learning algorithms are only designed for the Euclidean space features. The 
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two most commonly used Riemannian metrics proposed for the SPD manifold are the affine-

invariant metric (AIM) and the log-Euclidean metric (LEM). The AIM is based on Lie group 

action on points on the SPD manifold, defined by a base point such that all other points are 

compared relative to. The LEM is equivalent to a special case of the AIM for which the base 

point is at identity, mapping the SPD manifold to the Euclidean space. These frameworks 

have been applied to brain network analyses in multiple studies. Varoquaux et al. [20] 

introduced a probabilistic model based on the AIM for comparing single subject correlation 

matrices from a group model to identify outlier stroke patients from a group of healthy 

controls. Ng et al. [16] used the AIM for transport on the SPD manifold to remove nonlinear 

commonalities between scans in longitudinal studies. Other works use the LEM to define 

kernels on the manifold for machine learning algorithms [8, 23].

1.1 Contribution

Although works mentioned above have studied brain connectivity representations as SPD 

matrices on a Riemannian manifold, to the best of our knowledge, no one has demonstrated 

the performance of Riemannian methods on a ubiquitously used benchmark dataset such as 

ABIDE. Furthermore, regression between Riemannian representations of brain networks 

with neuropsychiatric features has not been explored. In our first contribution, we show that 

classification with a simple logistic regression using log mapped correlation matrices under 

the LEM achieves comparable results to other state-of-the-art deep neural network methods 

on the ABIDE dataset, with an accuracy of 70.0%. It uses a simple classification method 

(logistic regression) with little parameter tuning or engineering tricks. Due to the linearity of 

the classifier decision boundary, and the fact that log-Euclidean correlations retain the 

interpretatibility of the original correlations between pairs of regions, we can visualize the 

resulting classifier. Our second contribution is to show that the AIM can improve upon this 

accuracy, by proposing an optimization over the base point that yields a better performance 

at 71.1% accuracy.

2 Methods

The typical pipeline for rsfMRI analysis begins with the estimation of network as a 

connectome matrix using some measure of functional similarity between all pairs of regions 

of interest (ROIs) in the brain. To use the connectome for diagnosis of autism spectral 

disease, features are extracted from the correlation matrix as input into machine learning 

algorithms for classification. For many correlation-based measures, such as the most 

commonly used Pearson correlation, the matrices are symmetric semi-positive definite 

matrices. Thresholding the eigenvalues by some positive epsilon regularizes these 

correlation matrices to SPD.

We first review AIM and LEM, and then go over our preprocessing steps on the ABIDE 

dataset.

2.1 SPD matrices

A d×d matrix M is symmetric positive definite if zTMz > 0, ∀z ≠ 0 ∈ ℝd. The space of all 

SPD matrices, denoted S+ +
d , is not a vector space, but a Riemannian manifold. Using 
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Euclidean operations on the manifold can be problematic, leading to the swelling effect, see 

e.g., [4]. Several metrics have been proposed for the SPD manifold [10, 18, 3, 4]. Geodesic 

distance under the AIM [10, 4], given by

dist M1, M2 = M1

1
2log M2

− 1
2M1M2

− 1
2 M1

1
2

F
,

addresses these issues. Under this Riemannian framework, two operations are introduced, 

the Riemannian exponential map and the Riemannian logarithmic map:

ExpM1(X) = M1

1
2exp M1

− 1
2XM1

− 1
2 M1

1
2

LogM1 M2 = M1

1
2log M1

− 1
2M2M1

− 1
2 M1

1
2,

where Exp and Log denote the Riemannian operations, and exp and log denote the matrix 

exponential and logarithm. ExpM1(X) returns a point at time one along the geodesic starting 

at M1 ∈ S+ +
d  and with initial velocity vector X. LogM1 M2  is the inverse operation which 

yields that vector in the tangent space that Exp maps M1 to M2. For data analysis, consider 

M1 as the base point that all data points are compared to. For example, M1 can be set as the 

Fréchet mean, such as in [16].

Another proposed metric is the LEM [3], given by

dist M1, M2 = log M1 − log M2 F .

Notice that distances under the LEM are equivalent to those under the AIM when one of the 

two matrices, M1 or M2, is equal to the identity matrix. This becomes a way of mapping 

SPD matrices to the Euclidean tangent space at identity, i.e., f :S+ +
d ℝd × d

fLEM(M) = log(M) . (1)

After transforming data in S+ +
d  via the log map, we can apply Euclidean models, e.g., 

logistic regression. In the AIM case, the mapping of M2 with respect to some basepoint M1 

is

fAIM M2 = log M1
− 1

2M2M1
− 1

2 . (2)
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We have the choice of either fixing the base point M2 to the Fréchet mean and proceeding 

with Euclidean methods, or learning the base point simultaneously during optimization to 

select the best base point for the learning task. The reader may refer to [10] for the 

computation of the Fréchet mean for the SPD manifold under AIM.

For the optimization over the base point, we propose to use the backpropagation 

computation for matrix operations, i.e., matrix logarithm, described in [13, 12]. As a 

concrete example, in the 2-class logistic regression case, the probability of a data point M2 

being in class Y is given by

P Y = 1 ∣ M2 = 1
1 + exp − c + βvec log M1

−1/2M2M1
−1/2 ,

where M1 is a base point to optimize over and vec(·) is the vectorization of a matrix. The 

energy function is the standard cross-entropy for logistic regression. Because of chain rule, 

minimizing the cross-entropy with respect to M1 involves computing the matrix logarithm 

backgradient Z, using a neural network-like setup such that the matrix logarithm is a “layer” 

upon its inputs (refer to [12] for details). Afterwards, the gradient with respect to C = M1
−1/2

is ∇C = M2CZ+ZCM2. We can update the base point in a couple of ways: 1) by standard 

(additive) gradient descent and then regularizing the resulting M1 to have all positive 

eigenvalues, or 2) by taking the Exp map, Cnew = ExpCold ∇Cold .

2.2 ABIDE

The ABIDE I dataset is a collection of rsfMRI and phenotypic data for typically developing 

controls and ASD subjects acquired at 20 different sites. The Preprocessed Connectome 

Project [7] has preprocessed ABIDE data using state of the art pipelines to promote 

shareability and fair comparison of results. We obtain the fMRI data from the Project, 

preprocessed with the CPAC pipeline and parcellated according to the Harvard-Oxford atlas, 

and select the 871 subjects (468 controls, 403 ASD) to be consistent with [1, 17]. The 

resulting time series at each of the d = 111 regions are normalized to mean = 0 and standard 

deviation = 1.

3 Results

3.1 Classification

We first compare between raw and Fisher-transformed Pearson’s correlation matrices, as 

well as eigenvalue-regularized and log-Euclidean transformed matrices as input for each 

subject into logistic regression for classification. We eigendecompose raw correlation 

matrices and lower-bound small eigenvalues to 0.5, and re-compose them into regularized 

correlation matrices to ensure that the matrices are SPD. Log-Euclidean matrices are 

obtained by taking the matrix logarithm of the regularized correlation matrices. All matrices 

are then reduced to upper triangles and vectorized into feature vectors. Matrix features 

involving log-Euclidean transform are of 6205 dimensions because diagonal entries are 

included in the upper triangle, whereas all other features are of 6105 dimensions.
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We use the Scikit-Learn implementation of logistic regression with L2 penalty as classifier, 

and evaluate the classification performance through a nested ten-fold cross-validation 

scheme (folds selected at random). At each fold, 10% of the data is set aside for testing, and 

the other 90% is ten-fold cross-validated to get the best parameter for L2 penalty. The range 

of parameters we cross-validate over are [0.01, 0.05, 0.075, 0.1, 0.2, 0.5, 0.75, 1.0, 3.0, 5.0].

We then also compare the affine-invariant transformed matrices with an optimization for the 

base point in TensorFlow using the same ten-fold cross-validation scheme. At the first layer, 

square correlation matrices are affine-invariant transformed with variable M2, then linearized 

to a 6205 dimensional vector and fed into a sigmoid function for classification. The cost 

function to optimize over is the sum of the logistic regression cross-entropy plus L2 penalty 

with parameter λ. In TensorFlow, the range of parameters we cross-validate over are [5, 10, 

15, 20, 100, 200]. The matrix backpropagation is modified to the method described in the 

previous section. The optimization is run until convergence within 50 iterations.

Table 1 shows the results. Our baseline of using just vectorized correlation matrix features 

has an accuracy score of 65.7%, comparable to baseline scores reported in [1, 17]. A t-test 

shows that both the log-Euclidean and the affine-invariant transformed features have a 

statistical significant improvement in performance over the raw correlation baseline (p = 

0.02 and p = 0.002, respectively). The regularized correlation matrix shows similar accuracy 

to the raw correlation features, indicating that the increase in performance is solely due to 

the Riemannian mappings. Figure 2 describes the range of classification accuracy from ten-

fold cross-validation for the baseline compared to log-Euclidean and affine-invariant mapped 

features. Using the model learned from the log-Euclidean features, we visualize the highest 

weights in the classification thresholded at |w| > 0.25 in Figure 3. Red connections indicate 

positive weights that push classification toward the ASD group (label=1) and blue 

connections are negative weights toward the control group.

Figure 1 is a diagram of the learned weights on the ROIs grouped by subnetworks from 

[19]–visual, default mode, sensorimotor, auditory, executive control, and frontoparietal 

networks. The colormap runs from negative values in blue (driving classification toward 

control) to positive values in red (toward autism). For visualization, very small weights have 

been filtered. There is evidence of patterns within and between subnetworks. The weights 

within a subnetwork are simplified to their means within a block. Our results show that 

control subjects tend to have higher intranetwork connectivity especially within the 

sensorimotor, executive control, and default mode networks, whereas subjects with ASD 

have stronger internetwork connectivity, e.g., between the default mode and the 

sensorimotor networks. This is in agreement with existing literature that the default mode 

network is not well segregated from other subnetworks for the ASD population [5, 21, 22].

3.2 Regression

To show that the Riemannian features also have predictive power in regression, we compare 

the performance of log-Euclidean and affine-invariant transformed matrices versus raw 

correlation matrices in the prediction of autism severity as measured by the ADOS Total 

score. Though there has been work on doing regression on Riemannian manifolds [6, 14], it 

has not been applied for ASD analysis. Because regression is more challenging than 
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classification, and some sites lack ADOS scores for control subjects, we limit our analysis to 

the largest site with a roughly even split of ASD and control subjects that have ADOS Total 

score. The Utah site has 62 subjects with scores ranging from 0 to 21. Scores below 10 are 

considered typically developing. We use partial least squares regression (PLS), with the 

features projected down to one component and regressed to ADOS. It is not trivial to adapt 

the base point optimization for the NIPALS algorithm in solving PLS. Instead, here we fix 

the base point to the Fréchet mean. Table 2 shows the root mean squared error (RMSE), R2 

and Q2 coefficient of determination values between Riemannian and baseline correlation 

matrix features. The R2 is computed over the whole data subset, and the Q2 value is 

calculated through a leave-one-out cross-validation (LOOCV) scheme. The plot of true 

versus predicted ADOS using the Fréchet mean base point is shown in Figure 4. To show the 

statistical significance of improvement, we do a permutation test. We sum up the absolute 

value of the residuals of the LOOCV predictions and take the difference of the proposed 

method from the baseline correlation as the test statistic. Then we do 10000 permutations 

swapping the predictions between the two classes and sum up the number of times that the 

differences are greater than our nonpermuted test statistic value. Both log-Euclidean and 

affine-invariant metrics signicantly improve over the raw and Fisher correlation baselines 

(also similarly significant by t-test on the RMSE).

The regression weights in Figure 5 show similar patterns to the classification results, though 

not the same. This is expected because the regression data is only a single-site subset. The 

classification and the regression weights share a correlation of 0.31, reasonably consistent 

for such high-dimensional data. Summarizing weights into means of each block, we can see 

the pattern that the intraconnectivity in the default mode and sensorimotor networks drives 

the regression toward low ADOS scores (control) and interconnectivity between the two 

networks pushes regression toward high ADOS scores.

4 Conclusion

In this paper, we have established that the Riemannian representation of SPD matrices is 

beneficial for the autism classification and regression tasks and comparable in performance 

to other modern methods. In particular, the results are interpretable under the log-Euclidean 

metric, whereas the affine-invariant metric leads to high learning performance. For future 

work, we will compare how the choice of ROI may have an effect on predictions. We will 

also develop the affine-invariant base point update for other analyses, and study whether it 

may yield an improvement in performance in a deep neural network.
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Fig.1. 
Classification weights grouped by subnetwork
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Fig.2. 
Box plots of the classification accuracy over ten-fold cross-validation.
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Fig.3. 
Plot of the connections with highest weights in the classification
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Fig.4. 
Predicted vs. true ADOS scores for regression under AIM
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Fig.5. 
Regression weights grouped by subnetwork
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Table 1.

Accuracy performance of Riemannian and various state of the art classification methods

Method Validation Accuracy (Stdev) Sensitivity Specificity

Abraham et al. [1] CV10 0.668 - -

Dvornek et al.[9] CV10 0.685 (0.06) - -

Parisot et al.[17] CV10 0.695 - -

Heinsfeld et al. [11] CV10 0.70 0.74 0.63

Raw Correlation CV10 0.657 (0.06) 0.728 0.573

Fisher Correlation CV10 0.672 (0.05) 0.737 0.594

Regularized Correlation CV10 0.660 (0.06) 0.741 0.565

Log-Euclidean CV10 0.700 (0.05) 0.809 0.575

Affine-Invariant CV10 0.711(0.05) 0.838 0.585
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Table 2.

Comparison of Riemannian features against baselines in PLS regression

RMSE R2 Q2 Raw Corr Improve Fish Corr Improve

Raw Correlation 6.17 0.631 −0.05 - -

Fisher Correlation 6.18 0.624 −0.062 - -

Log-Euclidean 5.42 0.816 0.182 p =0.0112 p =0.0127

Affine-Invariant 5.36 0.837 0.202 p =0.0064 p =0.0069
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