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Abstract

The most common complications in patients with type-2 diabetes are hyperglycemia and 

hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications 

constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of 

peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of 

hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors super-

family and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating 

triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. 

Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα 
and PPARγ agonism. Although they improved metabolic parameters, they paradoxically 

aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain 

elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned 

in phase-III clinical trials. The objective of this review article pertains to the understanding of how 

combined PPARα and PPARγ activation, which successfully targets the major complications of 

diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will 

maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes 

in diabetes.
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INTRODUCTION

Diabetes is the seventh leading cause of death worldwide.1 It is classified into two major 

forms, type 1 and 2. Type-2 diabetes (T2D) melitus affects the majority of the diabetic 

population, and it is associated with obesity and insulin resistance combined with 

insufficient compensatory insulin secretion.2 For patients in whom the recommended 
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lifestyle changes3 are not adequate to control the complications of the disease, 

pharmacotherapy is required to preserve glycemic control. Besides the noninsulin 

antihyperglycemic drugs, such as biguanides, sulfonylureas, meglitinides, glitazones alpha-

glucosidase inhibitors, glucagon-like peptide-1, dipeptidyl peptidase 4 inhibitors, and 

sodium/glucose cotransporter 2 inhibitors, drugs that regulate both glucose and lipid 

metabolism have been generated. The dual-PPARα/γ coactivators or “glitazars” combine the 

insulin-sensitizing effect of PPARγ agonists with the lipid- and triglyceride-lowering effects 

of PPARα agonists, which are additionally accompanied by an increase in the high-density 

lipoprotein (HDL)-cholesterol levels (Fig. 1).4 The dual actions of these agents come in 

varying degrees of PPARα and PPARγ activation, depending on their chemical structure 

(Fig. 2). Some of the glitazars, when compared with the single PPARγ agonists, which are 

also used in antidiabetic treatment, were more efficient in lowering hyperglycemia and 

hyperlipidemia.5,6 However, although glitazars improved clinical efficacy on glucose control 

and lipid metabolism, they were discontinued because of major cardiovascular events, such 

as stroke, myocardial infarction (MI), peripheral edema, and heart failure (Fig. 1 and Table 

1).7–10 This review aims to summarize the basic and clinical research findings to date on 

glitazars and contribute to the understanding of the mechanisms that involve PPARα and 

PPARγ activation and underlie their cardiovascular adverse effects.

Clinical Applications of PPAR Agonists PPARα Agonists

Several studies and clinical trials on PPARα agonists (fibrates) have also attempted to 

investigate their benefits versus adverse effects. The FIELD study showed that fibrates 

reduce total cardiovascular events, specifically reducing nonfatal MIs and revascularizations. 

This decrease however was not significant in the lowering of the primary outcome of 

coronary events in the general population.11 Another study showed that long-term use of 

fenofibrate reduced microvascular-associated complications and was generally well-

tolerated, specifically in patients with T2D. However, it had no significant effect on 

mortality or on other adverse cardiovascular outcomes.12 The positive effect of fibrates has 

been suggested to be mediated by increased expression of HDL proteins (AI, AII), reverse 

cholesterol transport factors (ABCA1, SR-BI), lipid-remodeling factors (lipoprotein lipase), 

and anti-inflammatory functions. It has also been suggested that fibrates alter the 

composition of the atheromatic plaque in a way that leads to regression of atherosclerosis.
13,14 Although the magnitude of the benefits of fibrates is intermediate, it can have high 

clinical significance in high-risk individuals and in those with combined dyslipidemia. 

Despite their partially beneficial role, fibrates are accompanied by several other adverse 

effects due to non–lipid-related differential regulation on homocysteine, creatinine, and 

hemoglobin A1c (HbA1c). Specifically, fibrates have been shown to increase homocysteine 

with gemfibrozil, increasing it less than fenofibrate.15 The ACCORD lipid trial studied 

whether a coadministration of fibrates and statins (another lipid-lowering drug) is more 

efficient in reducing the risk of cardiovascular events by either of the drugs used alone. The 

outcome of the study indicated that combination therapy could not effectively reduce 

cardiovascular disease in most high-risk adults with T2D. In addition, the researchers noted 

that men may experience a more robust benefit from the combination therapy, whereas 

women on combined fibrates and statins therapy seemed to have more cardiovascular 

problems than those on statins alone.16 Furthermore, the combination of fibrates and statins 
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has also been reported to increase the incidence of rhabdomyolysis.17 However, a recently 

developed fibrate, permafibrate (K-877), when coadministered with statins showed milder 

side effects.18,19 Further research on this drug is currently in phase-III clinical trials 

(PROMINENT, NCT03071692, started in 2017).

PPARγ Agonists

Most of the antidiabetic drugs that activate PPARγ exhibit cardiovascular risk in a direct or 

indirect manner. The thiazolidinediones (TZDs), such as pioglitazone and rosiglitazone, 

have been associated with fluid retention and increased risk for cardiac dysfunction and 

heart failure.20–22 A meta-analysis of randomized trials and the PROactive study showed 

that although diabetic patients treated with pioglitazone had lower all-cause mortality, they 

had a higher heart failure incidence.23,24 Rosiglitazone has been associated with even higher 

risk of heart failure and other cardiovascular events25,26 and MI.27 In contrast, the RECORD 

trial showed that rosiglitazone treatment increased the risk for heart failure but did not reveal 

any association with MIs.28,29 In accordance to the RECORD trial, the AHA/ACCF Science 

Advisory in 2010, upon reevaluation of the cardiovascular effects of TZDs, acknowledged 

that the association of rosiglitazone with increased risk for heart failure still remains 

uncertain30. Afterward, in 2013, rosiglitazone was reapproved without any restrictions by 

the United States Food and Drug Administration.

Dual PPARα/γ Agonists

The effort to develop PPAR agonists without adverse effects led to the development of dual 

agonists (glitazars) that activate both PPARα and PPARγ, thus combining the lipid-lowering 

effects of PPARα with the insulin-sensitizing effects of PPARγ. Depending on their 

molecular structure, these molecules exert varying degrees of PPARα and PPARγ activation. 

Although glitazars lower plasma glucose and triglycerides,4 they have been associated with 

ischemic events31 and congestive heart failure.32 A precautionary statement for an approved 

dual agonist, saroglitazar, was issued for patients with diabetes and congestive heart failure.
32 Other glitazars, such as tesaglitazar, aleglitazar, muraglitazar, and cevoglitazar have been 

discontinued due to adverse side effects, including heart failure and myocardial ischemia.31

The first dual agonist was farglitazar, which was discontinued in phase-III clinical trials due 

to evidence of edema.33 Farglitazar had also been tested in phase-II clinical trials for the 

treatment of hepatic fibrosis but failed to show significant therapeutic effects.34 The 

retraction of farglitazar was followed by discontinuation of ragaglitazar,35 imiglitazar, and 

tesaglitazar trials,36 due to carcinogenicity in rodent toxicity models, elevated creatinine 

levels in serum, and cardiac dysfunction, respectively. Imiglitazar treatment increased HDL 

cholesterol levels. This was associated with higher apolipoprotein A-I levels, larger HDL 

particles, and suppression of small-density HDL particles. Imiglitazar decreased plasma 

triglycerides and apolipoprotein B-100 levels. However, evidence of liver enzyme 

abnormalities led to its withdrawal from phase-III clinical trials.37,38

Tesaglitazar decreases hyperglycemia and dyslipidemia9 and prevents atherosclerosis in 

mice with low-density lipoprotein (LDL) receptor deficiency.21 Later, two series of phase-III 

clinical trials, named GALLANT and GALEX, tested tesaglitazar versus common 
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antidiabetic drugs, such as metformin, pioglitazone, and placebos. All studies were 

terminated due to side effects, such as congestive heart failure and renal toxicity, that 

occurred despite tesaglitazar’s strong antihyperlipidemic and antihyperglycemic effects.
21,39–42

Similarly, muraglitazar development was discontinued due to higher rates of all-cause 

mortality compared with pioglitazone. Higher mortality was associated with edema, cardiac 

dysfunction, stroke, heart failure, and increased weight gain rate.22,43 A double-blind 

randomized clinical trial that compared muraglitazar and pioglitazone showed that 

muraglitazar decreased hemoglobin A1c (HbA1c), cholesterol, apolipoprotein B, and 

triglycerides (P < 0.0001) and increased HDL-C.43

Muraglitazar and tesaglitazar failure was followed by the development of glitazars with 

slightly modified chemical structures. However, all alternatives were eventually abandoned 

due to various cardiovascular and other adverse effects. Naveglitazar, a dual PPARα/γ 
agonist with γ-dominance, was also discontinued due to carcinogenic effects in the urinary 

bladder of rats, which were preceded by urothelial hypertrophy, inflammation, and changes 

in urinary composition.44 Three more dual agonists, sipoglitazar, cevoglitazar, and 

AVE-0847, were also discontinued due to adverse effects.

Another attempt with aleglitazar portrayed a protective role of the drug in mouse 

cardiomyocytes exposed to high glucose levels in vitro.45 Aleglitazar protects the heart 

against ischemia–reperfusion injury by suppressing myocardial apoptosis and decreasing 

infarct size.46 However, aleglitazar was discontinued in phase-III trials due to other side 

effects, including severe gastrointestinal bleeding and bone fractures.47

Another PPARα/γ agonist, CG301269, also had beneficial metabolic effects in animal 

studies with rodents.48 Furthermore, administration of CG301269 in a mouse model of 

myocardial ischemia/reperfusion did not exacerbate heart failure. Conversely, another dual 

PPARα/γ agonist, LY510929, which treated hyperlipidemia and hyperglycemia in rats, 

caused left ventricular hypertrophy after treatment for 2 weeks.49

The most recently developed dual PPARα/γ agonists are chiglitazar and saroglitazar. 

Specifically, chiglitazar is a PPARα/γ/δ panagonist that improves insulin sensitivity and 

glucose tolerance, and reduces the homeostatic model assessment index, plasma 

triglycerides, total cholesterol, low-density lipoprotein cholesterol levels, alanine 

gluconeogenesis, and hepatic glycogen levels in monosodium glutamate (MSG) obese rats.50 

Two phase-III trials concluded that chiglitazar is a safe treatment option against T2D 

(NCT02121717), although adverse events, such as weight gain, edema, and hypoglycemia, 

were reported.

Saroglitazar is the only glitazar still in clinical development. It is a dual PPARα/γ agonist 

with significant lowering effects on serum lipids and glucose. A study with 23 male and 11 

female patients with T2D and dyslipidemia, who were treated with saroglitazar, showed 

significant reduction in total cholesterol, LDL cholesterol, and plasma triglycerides.4 

Saroglitazar incurs moderate PPARγ activation and more robust activation of PPARα,51 

even in comparison with the PPARα activator, WY14,643.52 A recent study showed that 
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saroglitazar diminishes hypertriglyceridemia and improves insulin sensitivity and β-

pancreatic cell function by alleviating glucolipotoxicity, possibly through direct PPARγ 
activation in patients with T2D and high blood triglyceride levels.7 The substance was 

approved in June 2013 for clinical use in India.53 Saroglitazar has never been associated 

with cardiovascular complications, although its product information contains a precautionary 

statement for its use in patients with T2D and congestive heart failure. These findings 

combined with those from older studies for other dual PPARα/γ agonists presented the high 

efficiency of dual PPARα/γ agonists against hyperglycemia and hyperlipidemia.54–56

Molecular Mechanisms of Cardiac Toxicity by Single or Dual PPARα–PPARγ Activation

Since the beginning of clinical development for both single PPAR agonists and dual PPARα/

γ agonists, there have been concerns about their potential association with cardiovascular 

complications.57 Therefore, elucidation of the mechanisms that underlie adverse outcomes is 

warranted. Accordingly, various studies have focused on the molecular basis of these 

unexplained effects.

PPARs are nuclear receptors that act as transcriptional factors by forming heterodimers with 

retinoid X receptors and binding to cis-acting DNA elements (PPREs). Endogenous ligands, 

such as steroids, retinoids, cholesterol metabolites, and dietary lipids, can activate PPARs.58 

PPARs transcriptional activity can be increased or decreased depending on interaction with 

either coactivators, including the CBP/p300, the p160/SRC family (SRC-2/GRIP1/TIF2, 

SRC-3/Pcip/rac3/ACTR/AIB1/TRAM-1), and the PPARγ coactivator 1 (PGC-1) family 

(PGC-1α, PGC-1β)59 or corepressors, such as nuclear receptor corepressor protein 

(NCoR)60 and the silencing mediator of retinoid and thyroid hormone receptors (SMRT).61 

There are three PPAR isoforms: PPAR-α (NR1C1), PPAR-γ (NR1C3), and PPAR-β/δ 
(NR1C2).62

PPARα

PPARα is predominantly expressed in tissues with high capacity for fatty acid oxidation 

(FAO), including the heart, liver, macrophages, muscle, and kidneys,63 and regulates the 

expression of proteins that are involved in this process.64 PPARα ligands, such as fibrates, 

lower plasma triglyceride levels and increase HDL levels.65

PPARα regulates the expression of genes that encode for proteins that are involved in FAO, 

such as cluster of differentiation (Cd)36, carnitine palmitoyl transferase I (Cpt1), 

diacylglycerol acyltransferase (Dgat), malonyl-CoA decarboxylase (Mcd), and fatty acid-

binding protein (Fabp).66 Mice with global deletion of PPARα have lower levels of FAO, 

higher glucose oxidation, and increased hepatic lipid content.67 Cardiomyocyte PPARα is 

activated by fatty acids released from intracellular triglyceride stores to be catabolized for 

mitochondrial ATP synthesis.68,69 Accordingly, overexpression of PPARα increases FAO 

and decreases glucose oxidation.64 Constitutive cardiomyocyte-specific expression of 

PPARα (αMHC-PPARα) increases oxidation rate, as shown by increased palmitate turnover 

from triglyceride stores.70 Interestingly, along with increased lipid oxidation, constitutive 

cardiomyocyte PPARα expression leads to cardiac lipid accumulation.64 This is likely 

accounted for by increased fatty acid uptake through CD36,71 which also stimulates a 
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positive-feedback PPARα activation loop that is constituted by phosphorylation of PPARα 
by GSK3α.72 The ventricular hypertrophy and dysfunction phenotype of these mice 

resembles diabetic cardiomyopathy because they have profound accumulation of 

intramyocardial triglycerides after short-term fasting.64 It has been shown that PPARα 
cooperates synergistically with KLF15 to induce gene expression,73 whereas binding of 

Sirtuin (SIRT) 1 on PPARα has the opposite effect.74 In conclusion, PPARα plays a central 

role in stimulating fatty acid uptake and oxidation.

Various factors activate PPARα expression, such as glucocorticoids,75 farnesoid X receptor 

(FXR),76 AMP-activated protein kinase (AMPK),77–79 estrogen-related receptor (EER)α,80 

retinoic acid,81 retinoid X receptor (RxR),82 phorbol-12-myristate-13-acetate,83 branched 

chain amino acids,84 nitrate,85 heat shock factor-1,86 diabetes,64,87 and exercise training.88 

On the other hand, cardiac PPARα expression is reduced during heart failure,89 MI,90 

hypoxia,91,92 endotoxemia,93,94 and polymicrobial sepsis.95 The details of the mechanisms 

that lead to this reduction remain elusive. The JNK signaling pathway has been associated 

with reduced cardiac PPARα gene expression.96 Many factors, such as IL-1β,97 IL-6,97 

PPARδ,98,99 NF-κ?,100 glucose,101,102 insulin,103 Akt,104 c-Myc,105 the Janus kinase/signal 

transducers and activators of transcription (JAK/STAT) pathway,106 periostin,107 reactive 

oxygen species,100 growth hormone,108 androgens,109 and angiotensin II,110 have been 

reported to downregulate Ppara expression.

Pharmacologic activation or constitutive cardiomyocyte expression of PPARα causes 

intramyocardial lipid accumulation and cardiac dysfunction64,111 accompanied by the 

activation of protein kinase C signaling and β-adrenergic receptor desensitization.112 

Adrenergic signaling attenuation may also be accounted for by phosphodiesterase 1C, which 

is stimulated by PPARα.113 PPARα−/− mice have decreased myocardial fatty acid 

metabolism.114–116 Despite the importance of FAO for cardiac function,117 these mice have 

normal cardiac function at baseline according to some studies.116,118,119 This suggests the 

activation of other proteins that may substitute PPARα in stimulating FAO. Conversely, 

other studies showed that PPARα−/− mice have reduced cardiac function at baseline, which 

was attributed to fibrosis,115,120 abnormal mitochondrial structure, and oxidative stress.
121,122 Following metabolic stress, such as starvation, exposure to high temperature, and 

high workload, PPARα−/− mice had lower levels of cardiac ATP115,119 and lower contractile 

performance.119 Stimulation of β1-adrenergic receptors by isoproterenol reduced positive 

inotropic effect.120 Short-term starvation67,118 and CPT1 inhibition114 caused hepatic and 

cardiac lipid accumulation and hypoglycemia.

These studies indicate that PPARα is important for activation of cardiac FAO and inhibition 

of glucose utilization. It is possible that PPARα−/− mice do not develop cardiac dysfunction 

at baseline because of either compensatory activation of other PPAR isoforms or higher 

glucose utilization.118 Nevertheless, activation of PPARγ may act as an insulin-sensitizing 

process that promotes glucose uptake. However, this compensation is not sufficient when 

prolonged during myocardial stress.
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PPARγ

PPARγ is expressed mainly in adipose tissue. It has a pivotal role in adipogenesis, 

thermogenesis, and fatty acid and triglyceride storage.63,123,124 TZDs, recognized as 

“glitazones,” are PPARγ ligands, which act as insulin sensitizers that lower plasma glucose.
125 However, until today, there is a lot of controversy about the association of PPARγ 
agonists with cardiovascular risk and whether they can cause heart failure via direct actions 

on the heart or indirectly via increased salt and water retention.20

There is a broad range of transcriptional factors and physiological stimuli that upregulate 

PPARγ expression, such as C/EBPs,126,127 estrogen,128 Krüppel-like factor (KLF)5,129 

KLF15,130 MEK/ERK signaling,131 c-Fos132 TGF-β,133 Smad1,134 p38 kinase, early 

growth-response factor-1 (Egr-1),135 FGF21,136,137 ghrelin,138 polyunsaturated fatty acids,
102,139,140 the orphan nuclear receptor RORα,141 the zinc-finger protein Zfp423,142 and 

vitamin E.143 Transcriptional factors and stimuli that suppress PPARγ expression are 

lipopolysacharides,144,145 JNK,146–148 TNFα,149–152 IL-11,151 CCAAT/enhancer-binding 

protein homologous protein (CHOP),153 retinoic acid,81,154 estrogen receptor (ER)-α,155 

KLF2,146,156 KLF7,157 the JAK/STAT pathway,106,126,127 interferon-gamma,144,158 leptin,
159 angiotensin II,110 fasting,160 and androgens.161

Both gain and loss of PPARγ function mouse models have been generated. Mice with 

cardiomyocyte-specific constitutive PPARγ1 expression have increased cardiac lipid 

accumulation, abnormal mitochondrial structure, and dilated cardiomyopathy.124 This 

mouse model has also been described as a model of arrhythmia and sudden death, which is 

attributed to prolongation of the QRS and QT intervals, polymorphic ventricular tachycardia, 

and ventricular fibrillation.162 The level of PPARγ overexpression seems to influence the 

timing and severity of the phenotype.124

Although constitutive expression of cardiomyocyte PPARγ is clearly cardiotoxic, ablation of 

PPARγ does not seem to be protective either. Mice with global PPARγ deletion are lethal, 

and the embryos have cardiac abnormalities caused by placental defects.163 Cardiomyocyte-

specific PPAγ−/− mice develop cardiac hypertrophy with preserved systolic cardiac function, 

which is not associated with altered cardiac metabolism.164–166 Hypertrophy has been 

attributed to elevated NF-κB expression,164 macrophage infiltration,165 and cardiomyocyte 

elongation.167 Cardiomyocyte-specific PPARγ−/− mice have increased oxidative damage, 

mitochondrial abnormalities, and die from dilated cardiomyopathy.168 Interestingly, PPARγ 
ablation was not accompanied by changes in the expression profile of PPARγ target genes. 

This implies that compensatory mechanisms, likely via the activation of other PPAR 

isoforms, are activated when PPARγ is blocked. Inducible cardiomyocyte-specific PPARγ 
deletion decreases the expression of FAO-related genes and proteins and lowers fatty acid 

utilization, whereas glucose utilization does not change.169 Thus, although activation of 

PPARγ has been attributed to cardiotoxicity, its inhibition also compromises cardiomyocyte 

biology and leads to cardiac dysfunction.
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Combined Activation of PPARα and PPARγ

Controversial conclusions have been reported about the effects of dual PPARα/γ agonists on 

atherosclerotic plaque formation. Despite findings suggesting that treatment with a dual 

PPARα/γ agonist (tesaglitazar) stabilizes atherosclerotic plaque in diabetic LDLr−/− mice,
170 an experimental model of insulin resistance and dyslipidemia showed increased 

macrophage-rich plaque formation in apolipoprotein E–knockout mice receiving the dual 

PPARα/γ agonist (S)-3-(4-(2-carbazol(phenoxazin)-9-yl-ethoxy)phenyl)-2-ethoxypropionic 

acid (compound 3q).171 The latter was associated with higher vascular expression of P-

selectin, MCP-1, VCAM-1, and CD36, which are markers of endothelial activation and 

inflammation associated with plaque complexity.171 These findings provided a potential 

framework for investigation on whether dual α/γ agonists are associated with high risk for 

cardiovascular adverse effects, when used by individuals with insulin resistance.22

A study in rats showed that daily treatment with suprapharmacological doses of the PPARα/

γ agonist LY510929 increases heart weight, left ventricular lumen volume, and wall 

thickness in male and female rats on a dose-dependent manner. This study identified plasma 

aminoterminal proatrial natriuretic peptide (NTproANP) levels as a potential biomarker of 

the progression of PPARα/γ agonist–induced left ventricular hypertrophy in rats.49

A possible explanation for the observed heart failure pertains to glucolipotoxicity that is 

driven by the combined increase of PPARγ-driven insulin sensitization and glucose uptake 

in the setting of higher PPARα-induced activation of fatty acid uptake and oxidation.172 

This hypothesis corroborated previous studies showing that PPARγ can induce cardiac FAO-

related gene expression124 without causing cardiac dysfunction when PPARα is inhibited.
173,174

Newer studies124,173,174 indicated that combined PPARα and PPARγ activation compromise 

cardiac function. Constitutive cardiomyocyte-specific overexpression of PPARγ causes 

intramyocardial lipid accumulation and cardiac dysfunction124 characterized by ventricular 

tachycardia and fibrillation.162 Interestingly, cardiac dysfunction seems to occur when both 

cardiomyocyte PPARα and PPARγ are present. Along these lines, constitutive PPARγ 
expression in cardiomyocytes of PPARα-knockout mice did not result in cardiac 

dysfunction, despite the increased myocardial lipid content.173 Pharmacologic activation of 

PPARγ with TZDs promotes cardiomyocyte hypertrophy in vitro.175 However, it has also 

been proposed that the cardiotoxic effect of rosiglitazone may be independent to 

cardiomyocyte PPARγ activation as shown in mice with cardiomyocyte-specific deletion of 

PPARγ, which develop cardiac hypertrophy that is further exacerbated by treatment with 

rosiglitazone.164,176 Availability of fatty acids that follows lipoprotein-derived or 

intracellular triglyceride hydrolysis is a critical component for the activation of PPARs.68,177

PPARγ-mediated cardiac toxicity occurs primarily in the presence of PPARα. Therefore, 

cardiac dysfunction of mice that overexpress cardiomyocyte PPARγ may be due to fatty 

acid–mediated PPARα activation, which does not occur in the aMHC-Pparg;Ppara–/– mice.
173 Nevertheless, there are mixed results on PPARγ-driven activation of PPARα with some 

studies showing that rosiglitazone increases PPARα expression,178 although others showing 

reduced expression of PPARα-target genes.179 Along these lines, previous studies have 
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shown that activation of either PPARα or PPARγ in cardiomyocytes is associated with 

accumulation of acyl-carnitines and diacylglycerols in cardiomyocytes that lead to cardiac 

dysfunction,112,173 although cardiac acyl-carnitine content was reduced in the aMHC-

Pparg;Ppara–/– mice.173

In accordance with those studies, a recent one focusing on tesaglitazar has confirmed that 

cardiac dysfunction is associated with alterations in cardiac content of triglycerides, acyl-

carnitines, diacylglycerols, and phosphatidic acid.180 Combined treatment with tesaglitazar 

and resveratrol, which blocked the cardiotoxic effect of tesaglitazar, restored normal levels 

of acyl-carnitines, phosphatidic acid, and phosphatidylcholine.180 In a similar context, 

activation of different PPAR isoforms seems to alter representation of lipid species in total 

lipidome. Specifically, rats treated with a PPARα agonist had higher hepatic saturated fatty 

acids and monounsaturated fatty acids and lower ω−6 and ω−3 polyunsaturated fatty acids.
181 On the other hand, treatment with a PPARγ agonist resulted in lower plasma 

triglycerides and phospholipids, higher hepatic phospholipids, lower total cardiac fatty acids 

and saturated fatty acids, and higher cardiac ω−6 polyunsaturated fatty acids.181 Thus, the 

modulation of relative activation of PPARα and PPARγ by different dual PPARα/γ agonists 

may result in differential organ lipid content that may eventually protect or compromise 

organ function.

Combined PPARα/γ activation by tesaglitazar suppresses gene expression of SIRT1 and 

activation of PGC1α, which eventually leads to lower mitochondrial abundance.180 

Inhibition of PGC1α expression also occurs in aMHC-Pparg when treated with a PPARα 
agonist.173 PGC-1α is the main coactivator for PPARs that serves as a scaffold, recruiting 

regulatory proteins for chromatin remodeling and transcription activation.182–184 PGC1a 

controls FAO-related gene expression185 and mitochondrial biogenesis.186 Cardiac PGC1α 
gene expression is decreased in rodents and humans with heart failure.187 Similarly, 

PGC1α-knockout mice develop cardiac dysfunction,185 and they aggravate heart failure 

following pressure overload.188 Surprisingly, overexpression of cardiomyocyte PGC1α also 

leads to cardiac dysfunction.186 The mechanism behind the toxic effect of increased levels of 

PGC1α is attributed to the impairment of mitochondrial biogenesis and function.186 On the 

other hand, short-term PGC1α overexpression in cardiomyocytes improves mitochondrial 

biogenesis and oxidative respiration and cardiac function. Thus, dilated cardiomyopathy of 

the αMHC-PGC1α transgenic mice is most likely due to the profound and long-term 

increase of PGC1α expression. Nevertheless, the same study186 reported that transgenic 

lines with constitutive but not extremely high expression of PGC1α have normal cardiac 

function. Thus, the level of PGC1α activity seems to be a critical factor for the protective or 

aggravating role of this protein.

The activity of PGC1α is regulated by posttranslational mechanisms, including 

phosphorylation and acetylation. Acetylation of PGC1α is mainly controlled by the 

enzymatic activities of the acetyltransferase (general control of amino acid synthesis) GCN5 

and the deacetylase SIRT1. A recent study showed that the dual PPARα/γ agonist 

(tesaglitazar) reduces cardiac SIRT1 expression and increases PGC1α acetylation. SIRT1 

inhibition has been previously linked with cardiac dysfunction in several forms of cardiac 

stress. Resveratrol, which activates PPARγ,189 SIRT1, and PGC1α,190 maintained the 
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beneficial antihyperlipidemic and antihyperglycemic effects of tesaglitazar and 

simultaneously negated the cardiotoxic effect of dual PPARα/γ activation while increasing 

mitochondrial abundance.180 Conversely, treatment of PPARα−/− mice with tesaglitazar did 

not change PGC1α and SIRT1 expression and had a less profound effect in cardiac function 

compared with C57BL/6 mice that were also treated with tesaglitazar.180 Thus, PPARα 
activation seems to account primarily for the cardiotoxic effects of dual PPARα/γ activation. 

Future studies on the role of PPARα in stimulating transcriptional and posttranslational 

repressors of PGC1α and SIRT1 would be useful to delineate the pathways that mediate the 

cardiotoxic effects of PPARα activation by single or dual agonists. Several factors that 

suppress PGC1α expression have been described so far in different tissues, including the 

histone methyltransferase Smyd1,191 hypoxia inducible factor,192 p160 myb binding 

protein193, and various miRs, such as miR-23a,194 miR-696,195 miR-211,196 miR-130b,197 

miR-494,198 miR-29a,199 miR-485–5p, miR-485–3p,200 and miR-30b.201 Accordingly, the 

role of combined activation of PAPRα and PPARγ in stimulating suppressors of SIRT1 or 

altering NAD+/NADH ratio is another potential area for investigation that can delineate how 

dual PPARα/γ activation suppresses SIRT1 expression.180

Administration of rosiglitazone in mice with low levels of cardiac PPARα expression 

increases PGC1α expression,174 whereas PPARγ activation in LDLr−/− mice fed with high-

fat diet, which increases cardiac PPARα levels,202,203 reduces PGC1α expression,179 and 

causes cardiac hypertrophy. It has also been shown that treatment of mice with tesaglitazar 

increases PPARδ expression,180 which regulates cardiac FAO.204 PPARδ increases 

expression of UCP3 in the heart204 and skeletal muscle.205,206 Cardiomyocyte-specific 

overexpression of PPARδ increases glucose utilization and glycogen content without 

affecting fatty acid utilization, lipid content, and cardiac function.207 Inducible 

cardiomyocyte-specific expression of constitutively active PPARδ also increases glucose 

utilization.208 However, these mice have increased cardiac FAO, decreased glycogen 

content, and increased mitochondrial biogenesis without oxidative stress.208 Thus, the level 

of activation of PPARδ seems to define the effect of this transcriptional factor independently 

from its expression levels.

These observations signify the importance of future studies focusing on the interplay 

between all three PPAR isoforms and their role in leading to PGC1α inhibition, when 

combined activation occurs. Furthermore, studies on potential cardioprotection by PPARα 
inhibition or activation of the SIRT1-PGC1α signaling in diabetes animal models that will 

be subjected to glitazars treatment are warranted.

CONCLUSIONS

Modulation of PPAR signaling has attracted a lot of interest for discovery and development 

of drugs for the treatment of diabetes. Single agonists of PPARα (fibrates) have been used as 

an adjunct therapy in the treatment of hypertriglyceridemia and hypercholesterolemia.65 In 

addition, single PPARγ agonists (TZDs) have been used to treat hyperglycemia.125 To 

alleviate toxicity of single PPAR agonists, dual PPARα/γ agonists (glitazars) were 

developed with the expectation to be an effective treatment for diabetic patients. Although 

these drugs were successful in improving insulin sensitivity and treating metabolic 
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conditions associated with diabetes, most of glitazars have been suspended due to adverse 

effects on the urothelial, renal, and cardiovascular system (Fig. 3). Various studies have 

identified effects of combined PPARα and PPARγ activation on SIRT1 and PGC1γ 
expression and signaling. Interestingly, activation of the SIRT1-PGC1α metabolic network 

by resveratrol ameliorates the toxic effects of combined PPARα/γ activation.180

Up to date, saroglitazar seems to be the only dual PPARα/γ agonist with antihyperlipidemic 

and antihyperglycemic action that does not have serious adverse effects. However, it is 

accompanied by a warning and precautionary statement for use by patients at high risk for 

heart failure.4 Investigation on whether saroglitazar is less toxic due to milder effects on 

SIRT1-PGC1α signaling and mitochondrial biology remains to be pursued. Additional 

studies are needed to explore whether combined use of glitazars with resveratrol or other 

SIRT1 activators will reduce the adverse effects of glitazars in humans. Also, further studies 

are necessary to elucidate whether combined PPARγ activation and PPARα inhibition can 

alleviate toxicity that has been speculated for the use of single PPARγ agonists, such as 

TZDs.

The goal of the present review article pertains primarily to understanding of the biological 

mechanisms that underlie cardiac toxicity of combined activation of PPARα and PPARγ, 

which materialized in several clinical applications of the dual PPARα/γ agonists. 

Undoubtedly, in the era of the use of sodium/glucose cotransporter 2 inhibitors and 

metformin, development of dual PPAR agonists is not of highest priority for the pharma 

industry. However, single PPARα or PPARγ agonists are still used. Importantly, in several 

cases, activation of a PPAR isoform may induce the expression of others, which eventually 

can resemble the situation of dual PPAR agonists, especially in the context of T2D that 

incurs aberrant load of tissues with lipids that can activate PPARs. Therefore, elucidation of 

the mechanisms, which underlie toxicity of single or multi-PPAR agonists, holds significant 

potential for the improvement of safety of existing treatments. Thus, understanding of 

critical pathophysiology aspects of dual PPARα/γ activation is important from the scientific 

point of view, as well as for the drug development industry.
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FIGURE 1. 
Summary of benefits and adverse effects of single PPARα or PPARγ agonists and dual 

PPARα/γ agonists. Common effects of single and dual agonists are shown in frames.
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FIGURE 2. 
Chemical structures of glitazars.
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FIGURE 3. 
Cardiovascular-related beneficial and toxic effects of glitazars. Figures were produced using 

Servier medical art (http://www.servier.com).
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