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A B S T R A C T   

Individuals with gender incongruence (GI) experience serious distress due to incongruence between their gender 
identity and birth-assigned sex. Sociological, cultural, interpersonal, and biological factors are likely contribu
tory, and for some individuals medical treatment such as cross-sex hormone therapy and gender-affirming 
surgery can be helpful. Cross-sex hormone therapy can be effective for reducing body incongruence, but re
sponses vary, and there is no reliable way to predict therapeutic outcomes. We used clinical and MRI data before 
cross-sex hormone therapy as features to train a machine learning model to predict individuals’ post-therapy 
body congruence (the degree to which photos of their bodies match their self-identities). Twenty-five trans 
women and trans men with gender incongruence participated. The model significantly predicted post-therapy 
body congruence, with the highest predictive features coming from the cingulo-opercular (R2 = 0.41) and 
fronto-parietal (R2 = 0.30) networks. This study provides evidence that hormone therapy efficacy can be pre
dicted from information collected before therapy, and that patterns of functional brain connectivity may provide 
insights into body-brain effects of hormones, affecting one’s sense of body congruence. Results could help 
identify the need for personalized therapies in individuals predicted to have low body-self congruence after 
standard therapy.   

1. Introduction 

Awareness of gender incongruence has climbed sharply in recent 
years. Issues related to self-identity, body image, and medical in
terventions in individuals with a gender incongruence diagnosis (GI) are 
challenges for the 21st century, particularly given the high suicide risk 
associated with GI (Clements-Nolle et al., 2006; Maguen and Shipherd, 
2010; Mueller et al., 2017; Narang et al., 2018), possibly due to their 
core dysphoria related to gender incongruence and/or psychiatric con
ditions such as anxiety (Bouman et al., 2017a) and depressive disorders 
(Witcomb et al., 2018). These psychiatric conditions in many could be 
the result of stigmatization and childhood maltreatment (Guss et al., 

2019; Yang et al., 2015). Gender incongruence in ICD-11 (World Health 
Organization, 1992) or gender dysphoria, in DSM-5 (American Psychi
atric Association, 2013), refers to significant distress and/or impairment 
due to a feeling of incongruence between a person’s experienced gender 
and their birth-assigned sex. A subset of those who identify as trans
gender suffer from GI (van de Grift et al., 2016a, 2016b; van de Grift 
et al.a, 2016c, though not all GI-experiencing people identify as trans
gender (Safer and Tangpricha, 2019). This implies that being trans
gender does not equate with having a mental health condition. 

GI is often treated with cross-sex hormone therapy (Dhejne et al., 
2016; Nguyen et al., 2018; Solomon et al., 2019), in many cases followed 
by gender-affirming surgery (van de Grift et al., 2018). In a non-trivial 
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proportion, therapy has had limited success as evidenced by the high 
heterogeneity in quality of life outcomes across studies (Murad et al., 
2010; Nobili et al., 2018), as well as variable improvements in body 
image (van de Grift et al., 2016b, 2017). This may be due to inter- 
individual biological variability, contributions from sociological or 
cultural factors, or a combination of these factors (Cooper et al., 2020). 
The desired therapy outcome is improved congruence between one’s 
gender identify and the sex-related physical characteristics of one’s 
body. This outcome is a conscious experience and has a prominent basis 
in gender roles, psychological and sociological structures, and in neural 
function. The medical profession currently lacks the ability to predict 
who will respond well to therapy and who will not - a critical piece in 
moving towards personalized, evidence-based medicine to optimize 
clinical outcomes and efficacy of therapy. This needs to be considered in 
the context of rapidly changing societal notions of gender identity. The 
current study is specifically focused on constructing a preliminary pre
diction model of cross-sex hormone therapy response. 

Overall there have been few studies that have examined predictors of 
clinical outcomes for cross-sex hormone or gender-affirming surgical 
treatments. A recent study of hormone and surgical treatments (van de 
Grift et al., 2017) found that that body dissatisfaction pre-therapy pre
dicted body dissatisfaction post-therapy (p < 0.001), but there was no 
predictive value of birth-assigned sex (p = 0.83), age (p = 0.23), nor by 
clinicians valuation at first sight that the person’s gender is their expe
rienced gender (p = 0.50), sometimes referred to by the (contested) term 
“passing.” A study of surgical treatments found better outcomes were 
predicted by pre-treatment lower dissatisfaction with secondary sex 
characteristics (p < 0.001) and less psychopathology (p < 0.028), as 
well as being homosexual (p < 0.002) (defined in relationship to birth- 
assigned sex) (Smith et al., 1999). 

We recently proposed a hypothesis that GI is characterized by a 
functional disconnection between systems in the brain that process the 
perception of self (“self-referential”) and those that mediate own-body 
perception (Majid et al., 2020; Manzouri et al., 2017). Self-referential 
systems include the default mode network, particularly medial pre
frontal cortical regions such as the dorsal and pregenual anterior 
cingulate cortex (Northoff et al., 2006), and the salience network, 
particularly the insular cortex (Craig, 2010; Uddin, 2015). Involved in 
own-body perception are the temporoparietal junction (Blanke et al., 
2005) and the extrastriate and fusiform body areas (Vocks et al., 2010). 
We proposed that differences in coordinated activation and connections 
between own-body and self-perception networks could explain the 
discomfort with their bodies reported by individuals with GI (Majid 
et al., 2020; Manzouri et al., 2017). 

To better understand relationships between body perception and 
gender-related self-identity, we previously designed a “body morph 
task” (Feusner et al., 2016), specifically to test the degree of incongru
ence between self own-body identification and one’s body sex charac
teristics. Studies using the body morph task (Burke et al., 2018; Feusner 
et al., 2017, 2016; Kilpatrick et al., 2019; Majid et al., 2020) have shown 
that this task may provide an indication of body-related and gender- 
specific self-identity pre- and post-therapy using a metric calculated 
from the body morph task, the body index. In the current study we used 
the body index as our main outcome variable to quantify an individual’s 
body congruence. 

In alignment with our previous studies of structural and functional 
brain systems in GI, we focused on seven brain networks as potential 
predictive features. Previous studies have shown differences in trans
gender compared with cisgender individuals in brain activation (Burke 
et al., 2019), cortical thickness (Kilpatrick et al., 2019), or in connec
tivity (Feusner et al., 2017; Uribe et al., 2020). To capture these regions, 
we included the (i) salience and (ii) default mode networks (Manzouri 
and Savic, 2019), as well as the (iii) fronto-parietal and (iv) cingulo- 
opercular task control networks because they include the dorsal and 
pregenual anterior cingulate cortices, which are implicated in the 
perception of self (Northoff et al., 2006). We additionally included the 

(v) dorsal and (vi) ventral attention networks because they include the 
temporal parietal junction and surrounding cortices important in own 
body perception (Blanke et al., 2005). Finally, we included the (vii) 
memory retrieval network, as it includes midline portions of the poste
rior cingulate shown to be important for self-perception and which in 
our earlier studies showed greater cortical thickness compared to 
(Manzouri et al., 2017; Manzouri and Savic, 2019). All network-defined 
regions of interest (ROIs) were derived using a brain parcellation from 
Power (Power et al., 2011) who partitioned the brain into functional 
networks based on resting-state connectivity data. (See Fig. S1 for node 
locations of a priori networks.) 

For the current study, we used this knowledge of underlying biology 
to build a set of features we hypothesized should be capable of pre
dicting therapeutic outcomes for individuals diagnosed with GI within a 
machine-learning framework. We focused on resting-state fMRI con
nectivity measures before cross-sex hormone therapy, combined with 
clinical data - pre-therapy body index ratings, body mass index (BMI), 
therapy duration, and a (simplified model) of sexual orientation (Kinsey 
scores) - to train and test a penalized regression model for predicting 
post-hormone therapy body congruence, measured by the post-hormone 
therapy body index scores. 

2. Materials and methods 

2.1. Participants 

Participants were recruited in Stockholm, Sweden by the Gender 
Team of the Center for Andrology and Sexual Medicine at Karolinska 
University Hospital, a center specializing in the evaluation and GI 
therapy. Adults aged 18 to 50 who were diagnosed with “Trans
sexualism” based on ICD-10 diagnostic criteria (F64.0, World Health 
Organization, 1992) (note, this term is currently outdated) and sought 
gender-affirming medical interventions were invited to enter the study. 
Because accepted nomenclature has changed since the study began 
(Bouman et al., 2017b), and to be in line with ICD-11 terminology, we 
will refer to participants henceforth as “participants with gender 
incongruence” (GI). Participants identifying as nonbinary, or identifying 
other than transgender were not enrolled. None of the trans women or 
trans men had received hormonal therapy at the time of the first scan
ning session, or gender-affirming surgery at the time of scanning ses
sions. Participants were excluded for previous or current hormonal 
therapy, any known chromosomal or hormonal disorder, or any con
current psychiatric disorder (determined by the Mini International 
Neuropsychiatric Interview, MINI, Sheehan (Sheehan and Lecrubier, 
2010), neurological or other medical disorders including autism spec
trum disorder, substance abuse, or the use of psychoactive medications. 
All participants provided full informed consent in accordance with the 
Karolinska Institute ethical committee (Application # Dnr 2011/ 
281–31/4). See Supplementary Materials for details of hormone therapy 
and gender identity. 

2.2. Data acquisition 

Participants underwent an MRI scan and were evaluated with psy
chometric tools prior to hormonal therapy at session 1 (S1/pre-therapy). 
The participants were scanned and evaluated at session 2 (S2/post- 
therapy), on average 14 months later. We used S1 clinical measures and 
resting state functional connectivity (FC) as inputs to our machine 
learning algorithms to predict metrics of body satisfaction at S2, with the 
goal of determining which patients will benefit from hormone therapy - 
prior to undergoing hormone therapy. 

2.3. Body morph task and body index (BI) 

Details of the body morph task can be found in (Burke et al., 2019). 
Each participant was dressed in a tight, full-body unitard to provide an 
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accurate representation of their body shape without the discomfort of 
being nude. Hands, feet, and head were cropped from the photos, and 
both front and side views were taken. Each participant’s picture was 
morphed towards those pictures of five different female-presenting and 
five different male-presenting individuals at degree intervals of 20%, 
using FantaMorph Software, version 5.0 (Abrosoft http://www.fantam 
orph.com/). Eleven morph conditions resulted, ranging between 
− 100% morphed completely to a picture of a cisgender person with 
opposite birth-assigned sex to +100% morphed completely towards a 
picture of a cisgender person with same birth-assigned sex as the 
participant. Thus, 0% referred to the original unmorphed own-body 
image of the participant. A set of 62 images (using a randomized 
order and number of repetitions of the body image morphs and 
unmorphed own-body image) were presented for two different viewing 
conditions (short duration = 0.5 s and long duration = 2 s), totaling 128 
trials. 

These images were presented using MATLAB 2012a, on a laptop 
computer. Each trial consisted of the image (presented for either 0.5 or 
2 s) followed by a 1 s response screen with button press options, fol
lowed by a fixation cross. Participants were instructed to respond as 
quickly as possible to the question “To what degree is this picture you?” 
on a 4-point scale (1: 0–25% “me”, 2: 25–50% “me”, 3: 50–75% “me”, 
and 4: 75–100% “me”). Before the task, participants engaged in a 
practice session to ensure task comprehension. We calculated the “body 
index” (BI): the perception of the degree of self, represented by an index 
calculated from ratings across all of the morphed bodies presented. The 
body index provides an indication of an individual’s maximal perception 
of ‘self’ on a continuum from traditionally feminine to traditionally 
masculine appearances. The clinical body index (Feusner et al., 2017) 
was subsequently employed as a predictive feature in our machine 
learning algorithms. 

2.4. Demographics and psychometrics 

Clinical metrics collected at S1 were used as features or covariates of 

non-interest: body mass index (BMI), age, therapy duration (in months 
from initiation of cross-sex hormone therapy) birth-assigned sex, and 
Kinsey sexual orientation score (Kinsey score range is 0–6, with 0 being 
exclusively heterosexual and 6 being exclusively homosexual. Hetero
sexual and homosexual are arbitrarily in reference to birth-assigned sex, 
(Kinsey et al., 2003)). The predicted clinical measure was the body index 
score, calculated from the body morph task described below (Fig. 1). The 
body morph task data were collected on a laptop, prior to the resting 
state MRI acquisition. 

To calculate the body index, we first multiplied each degree (1–4) of 
“self” rated for each morph with the degree of each morph. These 
weighted values were averaged for each participant across ratings for all 
images and then divided by the number of rated images, providing an 
average index of self-perception for each participant, weighted by how 
close or far from the actual self-photograph the image was morphed, and 
in which direction. Positive values of the body index represent ratings 
toward birth-assigned sex (incongruent), while negative values repre
sent ratings toward gender (congruent). 

2.5. MR data acquisition 

MRI data was acquired on a 3 Tesla MRI scanner (Discovery 3T GE- 
MR750, General Electric, Milwaukee, Wisconsin) using a 32-channel 
head coil. Resting-state functional MRI data were acquired with a 
gradient echo pulse sequence with: voxel size of 2.25 × 2.25 × 3 mm, 
TR/TE = 2500/30 ms, FOV = 28.8 cm, 45 interleaved axial slices, 90 flip 
angle. Each resting-state scan totaled 7 min 35 s and participants were 
instructed to rest with eyes closed, to remain as still as possible, and not 
to sleep while the sequence was acquired. Structural data, 3D T1- 
weighted Spoiled Gradient Echo pulse sequence, were acquired with 
voxel size 0.94 × 0.94 × 1 mm, TR/TE = 7.91/3.06 ms, TI = 450 ms, 
FOV = 24 cm, 176 axial slices, and 12 flip angle. 

Fig. 1. The body morph task asks subjects to rate morphed and unmorphed own-body images. Shown are examples of a front view photograph of a participant who 
was assigned male sex at birth morphed by 20, 40, 60, 80, and 100% to a photograph of a female (top), and male (bottom) sex-assigned-at-birth cisgender individual. 
Morphing to same and opposite sex-assigned-at-birth photographs are denoted (arbitrarily) by positive and negative morph degrees, respectively. Note that 100% 
photographs were unaltered images of another person. The 0% image is the unaltered, unmorphed own-body photograph of the participant. 
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2.6. Data analysis 

MRI analysis was performed using FEAT (fMRI Expert Analysis Tool) 
version 5.0.8, part of FSL (FMRIB Software Library http://www.fmrib. 
ox.ac.uk/fsl, (Jenkinson et al., 2012). Bold sequences were motion- 
corrected (FMRIB linear image registration tool MCFLIRT), without 
spatial smoothing, and individual participants’ resting state data were 
denoised using FSL’s AROMA tool (non-aggressive denoising option). 
Functional images were registered to their respective T1-weighted im
ages (FMRIB non-linear image registration tool, FNIRT) after brain 
extraction using FSL’s BET, and then to the MNI-152 brain for functional 
connectivity analysis. Two participants (of 27 recruited) were excluded 
due to head motion greater than 1.5 mm, resulting in 25 participants 
included in these analyses. 

For the LASSO and ridge analyses, we leveraged MATLAB Version 
R2015b, Mathworks, Inc., Natick, MA) as part of the Statistics and 
Machine Learning Toolbox. The scripts are available at this link (Open 
Science Framework): https://osf.io/zn2ev/. 

2.7. ROI selection 

We used a functionally-defined set of ROIs (10 mm diameter spheres 
using FSL’s fslmaths command with the roi argument) that have been 
previously mapped to functional networks (Jenkinson et al., 2012; 
Power et al., 2011; Reggente et al., 2018). We narrowed our scope to 
seven a priori networks that covered regions and networks with func
tional and/or structural differences between cisgender or transgender 
individuals: default mode, fronto-parietal, dorsal attention, salience, 
cingulo-opercular, memory retrieval, and ventral attention. This resul
ted in 264 ROIs, each of which was tagged with one of seven functional- 
network identities. 

2.8. ROI correlation matrices 

We collected resting-state data from each participant prior to cross- 
sex hormone therapy and used the denoised images to determine con
nectivity among the ROIs. For each participant we computed the mean 
BOLD activity within each of the ROIs at every time point (every 2.5 s), 
resulting in a time course of mean ROI activity. We then computed a 
pairwise Pearson correlation matrix for each mean time course resulting 

Fig. 2. Analysis flow chart. (A) The average resting- 
state activity within ROIs from seven functional brain 
networks defined by Power (30) was used to create a 
mean BOLD time course. Pairwise Pearson correla
tions of these time courses resulted in a functional 
connectivity matrix specific for each network. (B) 
The lower diagonal of each participant’s network- 
specific matrix was concatenated with the partici
pant’s pre-therapy clinical features scores to create a 
feature set for that participant. (C) The LASSO 
regression model was trained on n − 5 participants’ 
feature sets and their associated post-therapy body 
index scores and used to predict each of the left-out 
participant’s post-therapy body index scores. Left- 
out participants are denoted as highlighted feature 
sets (only three shown here). This process was 
repeated until all participants had been left out in a 
fold of the cross-validation and had been assigned a 
predicted post-therapy body index score. We corre
lated the array of predicted values (ŷ) with the actual 
values (y), resulting in Pearson’s r, and R2 a measure 
of our model’s feature-dependent ability to capture 
the outcome variable variance across participants. 
Note that due to our participant sample size (n = 25), 
one-fold of the cross-validation left out five 
participants.   
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in 264 × 264 matrices containing the pairwise functional connectivity 
values (r-values) across all ROIs. 

2.9. Feature creation 

We indexed each correlation matrix depending on network identity, 
extracted the lower diagonal of each matrix and then identified the rows 
and columns corresponding to the functional connectivity across ROIs 
within a specific network. The resultant values constituted the func
tional connectivity (FC) feature sets. We included these feature sets plus 
clinical data, as the “hand-selected” features that we tested in the ma
chine learning algorithms. See Fig. 2 for a flow chart of the machine 
learning analysis. 

2.10. Machine learning regression analysis predicting post-therapy body 
index using least absolute shrinkage and selection operator (LASSO) 

We built a least absolute shrinkage and selection operator (LASSO) 
(Reggente et al., 2018; Tibshirani, 1996); regression model whose reg
ularization parameter (lambda, λ = 5.0) was optimized using the least 
angle regression (LARS) algorithm (Efron et al., 2004; Tibshirani et al., 
2004) on an N − 1 cross-validation that maximized the Pearson corre
lation between actual and predicted post-therapy body index scores. To 
minimize overfitting, we used these optimized model parameters in an 
N − 5 cross-validation: a random subset of 5 participants (20%) were left 
out and the model was trained on the remaining participants and tested 
on the left-out subjects; this process was repeated until each participant 
was left out of the training set once. We did 100 iterations of this pro
cedure and averaged over the 100 iterations for the final prediction 
values. 

LASSO was chosen as the regression model of choice due to its ability 
to handle large feature sets, impose a self-directed feature selection, and 
output continuous variables. Using each trained model’s intercept term 
and beta coefficients, we calculated a predicted measure of interest from 
each left-out participant’s feature set. After obtaining a prediction for 
each participant (ŷ), we correlated the array of predicted values with the 
actual values (y) to quantify the model’s feature-dependent ability to 
capture the variance in clinical measures across participants. Although 
the sample size was small due to the select nature of this this treatment- 
seeking population, adequate sample sizes for machine learning ap
proaches using regularization are challenging to determine and depend 
on the strength of the relationships between predictive features and the 
outcome of interest, which in this first-of-its-kind study were not known 
a priori. 

Clinical features included pre-therapy body index rating, therapy 
duration, BMI, and Kinsey scores. Kinsey scores were included to avoid a 
confound of sexual orientation on sexual dimorphism in brain networks 
in transgender individuals (Manzouri and Savic, 2019). Age was treated 
as a covariate of non-interest and iteratively regressed out of each 
feature in the feature set prior to the machine learning regression. We 
did not include birth-assigned sex as a covariate, as it is considered 
within the body index ratings. For predicting body index for short 
duration trials, we used the pre-therapy body index ratings for short 
duration trials as a feature, likewise, for predicting pre-therapy body 
index for long duration trials, we used the body index ratings for long 
duration trials as a feature. In a preliminary analysis, we examined the 
effect of therapy duration in our analyses by including therapy duration 
either as a covariate or as a clinical feature. For six of the seven net
works, using therapy duration as a feature was more predictive than 
using therapy duration as a covariate (Table S1); therefore, results re
ported for body index are for therapy duration as a feature. 

2.11. Machine learning prediction of post-therapy body index using ridge 
regression 

To provide a robustness check on our LASSO predictions, we re-ran 

the above machine learning analysis using ridge (Marquardt and Snee, 
1975) regression. Ridge regression is appropriate when the predictor 
features potentially have collinearity. (See Table S2, also see Table S3 
for additional post hoc tests of specificity.) 

2.12. Statistical methods 

We report results of Pearson’s correlations as R2 values and r-values, 
to provide a measure of the variance explained by the model and to 
allow assessment of effect sizes. According to Cohen (Cohen, 2013; 
Cohen et al., 2017; Lachenbruch and Cohen, 1989), the effect size is low 
if the values of r-values are around 0.1, medium if r-values are around 
0.3, and large if r-values are more than 0.5. 

Unless otherwise indicated, all predictions were tested for signifi
cance of p < 0.05 and were subjected to the stringent Bonferroni method 
to correct for multiple comparisons. The Bonferroni-adjusted p-value, 
pbf ≤ 0.006 (p < 0.05/9), was adjusted for a total of 9 comparisons: the 
seven networks in our a priori hypotheses, one combination of all seven 
networks, and one combination of the fronto-parietal and cingulo- 
opercular networks. For an additional statistical validation, and to 
examine the distribution of all our statistical results (to determine if the 
distribution is by chance and whether or not our results-of-interest are 
by chance), we used the Benjamini-Hochberg procedure (Benjamini and 
Hochberg, 1995). See Supplemental Materials S7 for those statistical 
results that substantiate the results of using the Bonferroni method for 
multiple comparisons. 

3. Results 

3.1. Participants 

Twenty-five adults ages 18–50, mean years 25.2 (SD 7.8), with GI 
participated in the study. Data from 16 women, assigned male at birth, 
and 9 men, assigned female at birth, were combined for all analyses. See 
Table 1 for demographics. 

3.2. Body congruence changes 

For short duration trials, body index scores changed in the direction 
of increased congruence pre- to post hormone-therapy in 18 of 25 par
ticipants (72%), see Fig. S2. The pre-therapy mean was − 10.4 (SD, 
21.8); the post-therapy mean was − 23.1 (SD, 25.7), t24 = 3.1, p = 0.002, 
1-tailed. Similarly, for long duration trials, change in the direction of 

Table 1 
Demographics, clinical values and ratings of the participants (N = 25).  

Characteristic Value SD P value T- 
test 

P value 
correlation 

Trans women/Trans men 16/9    
Age 25.2  7.8   
BMI 24.1  5.5   
Kinsey scores 4.0  2.0   
Years of education 13.3  1.9   
Therapy duration (months) 14.3  5.4   
Body index pre-therapy short 

duration trials 
− 10.4  21.8   

Body index post-therapy short 
duration trials 

− 23.1  25.7 p = 0.002 
* 

p < 0.001+

Body index pre-therapy long 
duration trials 

− 11.1  33.5   

Body index post-therapy long 
duration trials 

− 21.3  31.7 p =
0.040* 

p < 0.001+

Negative values of the body index represent (arbitrarily) ratings toward pictures 
of opposite sex-assigned-at-birth individuals (congruent with sense of self in 
those diagnosed with gender incongruence). 

* Paired one-tailed, t-test, comparing pre- versus post-hormone therapy. 
+ Correlation, comparing pre- versus post-hormone therapy. 
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increased congruence was observed in 15 of 25 participants (60%). The 
pre-therapy mean was − 11.1 (SD, 33.5); the post-therapy mean was 
− 21.3 (SD, 31.7), t24 = 1.8, p = 0.04, 1-tailed (Table 2). More-negative 
scores on the body index are indicative of greater congruence of their 
body with their gender identity. There were associations in a compari
son of pre- and post-therapy values of body index scores: body index 
ratings for short duration trials (R2 = 0.41, r = 0.64, p = 0.006) and 
body index ratings for long duration trials (R2 = 0.39, r = 0.63, p =
0.008). There was a trend for an association between therapy duration 
and body index ratings after hormone therapy for short duration trials, 
(R2 = 0.11, r = 0.33, p = 0.11), see Table S4. 

3.3. Body congruence prediction 

3.3.1. Predicting post-therapy body index ratings using LASSO machine 
learning regression 

For these analyses, we first examined functional connectivity (FC) 
from resting-state fMRI data between all nodes of each a priori network 
separately. Next, we examined FC between all nodes (combining all 
seven a priori networks). Finally, as a post-hoc analysis, we examined FC 
between the nodes resulting from the combination of our two most 
predictive networks, the cingulo-opercular and fronto-parietal net
works.. Short-duration trials predicted post-therapy body congruence 
(Table 2), but long-duration trials were not significantly predictive 
(Table S5). Clinical data points that were also leveraged alongside the FC 
values in the feature set included pre-therapy body index ratings, sexual 
orientation (Kinsey scores), BMI, and time from initiation of therapy. See 
Table S6 for similar results, without considering therapy duration. 

3.3.2. Individual a priori networks 
The associations between the algorithm’s predicted post-therapy 

body index ratings (ŷ) and the actual ratings (y) was statistically sig
nificant when using two of the seven a priori networks, the fronto- 
parietal network and the cingulo-opercular network, alongside the 
clinical features. When only the clinical features were considered in the 
model, there was not an association between predicted (ŷ) and actual (y) 
body index values (R2 = 0.24, r = 0.49, p = 0.013); however, when the 
model included both the clinical features and the network-defined 
functional connectivity, there were associations for the fronto-parietal 
network (R2 = 0.30, r = 0.54, p < 0.005) and for the cingulo- 
opercular network (R2 = 0.41, r = 0.64, p < 0.006), for Bonferroni 
corrected, pbf ≤ 0.006. See Table 2 and Fig. 3. 

3.3.3. Aggregated a priori networks 
Including all seven of the a priori networks in the model along with 

pre-therapy clinical features resulted in a lower predictive power (R2 =

0.09, r = 0.30, p = 0.149). However, combining the two networks 
(cingulo-opercular and fronto-parietal) that showed significant associ
ations between predicted and actual body index ratings above, with 
clinical features, resulted in a significant account of the variance (R2 =

0.32, r = 0.57, p = 0.003). 

3.3.4. Predicting post-therapy body index ratings using ridge machine 
learning regression 

We additionally tested predictions using ridge regression. The results 
when including the same clinical and network features were similar to 
those using the LASSO models, showing predictive power when 
leveraging functional connectivity within the cingulo-opercular (R2 =

0.41, r = 0.64, p = 0.001) and fronto-parietal networks (R2 = 0.32, r =
0.57, p = 0.003), and when combining the two networks (R2 = 0.32, r =
0.57, p = 0.003), all significant at a Bonferroni corrected p-value 
threshold pbf ≤ 0.006, Table S2. Clinical features alone were not pre
dictive, (R2 = 0.25, r = 0.50, p = 0.010). 

3.3.5. Post hoc prediction of pre-therapy body index ratings 
To examine whether the same networks that predicted post-therapy 

body congruence were also associated with pre-therapy body congru
ence, we combined network connectivity and clinical features in a model 
to predict pre-therapy body congruence. The association between the 
predicted pre-therapy body index ratings and actual pre-therapy ratings for 
short duration trials was not significant when using clinical features and 
the FC of any of our a priori networks. 

4. Discussion 

This study in individuals with GI tested whether multivariate pattern 
recognition using neurobiological features from resting state brain 
connectivity along with clinical features could be used to predict ther
apeutic response to cross-sex hormone therapy. The goal was to predict, 
on an individual basis, the important clinical outcome of body congru
ence in those with GI after hormone therapy by using brain functional 
connectivity data from a short (7.5 min) MRI scan, BMI, and body 
congruence ratings before hormone therapy. Multivariate connectivity 
in the cingulo-opercular and fronto-parietal networks before hormone 
therapy explained a high proportion of the variance in individual body 
congruence after hormone therapy. Clinical variables alone were not able 
to explain body congruence using the body index ratings. These findings 
have implications for identifying those who will benefit more or less 
from hormone therapy. Furthermore, these results support our previous 
finding using anatomical metrics (Kilpatrick et al., 2019; Manzouri and 
Savic, 2019), and contribute to identifying the specific brain networks in 
GI, prior to therapy, whose connectivity patterns are critical with respect 
to hormone therapy effects. 

4.1. Multivariate approach provides novel insights 

The predictive model that we built and tested was able to explain 
41% of the variance in body congruence subsequent to cross-sex hor
mone therapy when using pre-therapy patterns of resting-state func
tional connectivity. The predictive power of multivariate connectivity 
was substantiated by the overlapping results of LASSO and ridge ma
chine learning algorithms, which converged to provide evidence that 
functional connectivity from cingulo-opercular and fronto-parietal net
works can be used prior to initiation of hormone therapy to predict body 
congruence after hormone therapy. Exploiting multivariate techniques 
may provide additional insight into not only the neurobiological bases 
but also the sociological, cultural, and psychological bases of gender and 
body satisfaction. A recent study (Clemens et al., 2020) employed ma
chine learning, based on functional connectivity, to predict self-reported 
gender identity in four groups (trans/cis, women/men). Including 
therapy duration in our analyses generates a model that assigned beta 

Table 2 
Associations between predicted post-therapy body congruence for seven brain 
functional connectivity networks, combined with clinical features, using 
multivariate analysis.  

Network R2 Functional connectivity and 
clinical features 

r-value Pearson’s 
Correlation 

Cingulo-opercular  0.41*  0.64* 
Fronto-parietal  0.30*  0.54* 
Memory Retrieval  0.20  0.45 
Salience  0.19  0.43 
Dorsal Attention  0.09  0.31 
Ventral Attention  0.06  0.24 
Default Mode  0.02  0.14 
All 7 networks  0.09  0.30  

Exploratory post-hoc   
Cingulo-opercular & 

Fronto-parietal  
0.33*  0.57* 

Clinical features alone were not significant, R2 = 0.24, r = 0.49. Pearson’s r- 
values are provided for an estimate of effect sizes. Results are for short-duration 
trials. 

* for pbf ≤ 0.006, Bonferroni-corrected significance level. 
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weights for each feature included in the model. Therefore, if a new 
person came into a clinic, entering a specific future time point after 
therapy initiation, e.g. 6 months, or 1 year, could provide an estimate of 
that person’s body congruence at that future time point. The algorithm 
that did not include therapy duration was similarly predictive 
(Table S6). 

4.2. Network connectivity predicts outcome of cross-sex hormone therapy 

This work can be appreciated in the context of the evolving concept 
of using a functional connectome as a “fingerprint” that indexes highly 
individualized latent neural organization (Finn et al., 2015). This latent 
neural organization is linked to response tendencies, processing of 
stimuli, multisensory integration, and patterns of conscious and un
conscious thinking (Finn et al., 2015). The most predictive networks in 
the current study, the fronto-parietal and cingulo-opercular networks, 
comprise important regions implicated in self-identity, self-referential 
thinking, as well as supporting top-down control of executive func
tioning (Herold et al., 2016; Seeley et al., 2007). While the fronto- 
parietal and cingulo-opercular networks are largely intraconnected 
and separable, they also appear to communicate, or perhaps compete, 
for control functions (Dosenbach et al., 2007). Others (Koush et al., 
2019) found that the superior frontal gyrus (within the fronto-parietal 
network) modulates self-referential processes in the temporal parietal 
junction as well as affective valuation in ventromedial prefrontal cortex - 
which in turn is an important hub of the default mode network. 

In the current study the fronto-parietal and cingulo-opercular net
works were predictive of post-therapy, but not pre-therapy body 
congruence. One explanation is that these networks might be more 
involved in cognitive reorganization as a result of hormone therapy. In 
future studies, pre-therapy connectivity in these networks could be 
investigated as markers for potential brain network reorganization due 
to hormonal milieu changes. As these are cognitive control networks it 
might point to the directed control of self-referential thought processes 
with body self-awareness. This is potentially informative of the neuro
logical underpinnings of gender identity in relation to body and hor
monal status among transgender individuals as they transition. 

The observation that these networks that significantly predicted post- 
therapy body congruence were not also associated with pre-therapy body 
congruence suggests that these networks may be more specifically 
involved in cognitive reorganization occurring with hormone therapy. 

One speculation, for example, is that this may identify those individuals 
whose multivariate connectivity pattern may index better or worse 
ability to bring their experience of their gender identity in line with the 
perception of their post-hormone bodies. 

Connectivity before hormone therapy within the fronto-parietal and 
cingulo-opercular networks was most predictive of body congruence for 
short duration trials. It is not clear why ratings of short-duration trials 
were more predictive of body congruence than ratings of long-duration 
trials. One possibility is that the longer two-second trials allow rumi
nation that interferes with the “truer” reflexive responses required by 
the half-second trials. Related to this, some of the ratings for long 
duration trials may have been influenced by individuals’ difficulty 
viewing the body images for longer times because of continued 
dysphoria triggered by viewing the images. This is in addition to long
standing patterns of avoidance of viewing their bodies, leading to ratings 
that may have been made in a cursory way and thereby not reflecting 
their true degree of congruence. 

The observation that two of the seven networks that we had hy
pothesized a priori were significantly predictive is an indication of the 
specificity of these results and therefore a lower likelihood of overfitting. 
Other studies have also shown specificity of predictive networks, some 
conforming and some not conforming to a-priori hypotheses (Christov- 
Moore et al., 2020; Khosla et al., 2019; Lehmann et al., 2015; Seeley 
et al., 2007). 

4.3. Body index ratings as a measure of body congruence 

The body index has been used in other studies (Burke et al., 2018; 
Feusner et al., 2016; Kilpatrick et al., 2019; Majid et al., 2020) as a 
metric of body congruence. Another scale measuring body congruence is 
the self-report Transgender Congruence Scale (TCS) (Kozee et al., 2012). 
We did not have TCS scores for most of the participants in this study so 
did not include that metric in this analysis; however, we have examined 
TCS scores in two ongoing datasets and found trends for positive asso
ciations between TCS scores and the body index in transgender in
dividuals (Supporting Information). This, in addition to significant 
changes in the body index pre- to post-therapy and an association be
tween therapy duration and changes in body index (Fig. S3) lends sup
port for the body index as a measure of therapy-sensitive body 
congruence. 

Fig. 3. Associations between the distributions of body index predictions and actual post-therapy values are shown in scatter plots. These LASSO cross-validation 
models used feature sets that included pre-therapy functional connectivity from the cingulo-opercular network (Left) and the fronto-parietal network (Right), in 
addition to clinical features. Error bars are standard-errors across the 100 cross-validation predictions for each individual. The Bonferroni-corrected significance level 
is pbf ≤ 0.006. 
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4.4. Potential clinical implications 

The aim of the current work was to investigate the therapeutic 
outcome of cross-sex hormone therapy for people diagnosed with gender 
incongruence. As some members of the transgender community seek 
medical help, and do suffer from gender incongruence, medical treat
ment is a significant need. Some patients can be helped with cross-sex 
hormone therapy, whereas for others this treatment shows poor clin
ical outcome. Therefore, prediction tools could support and inform 
medical professionals whether or not to treat individuals with cross-sex 
hormone therapy. 

Consequently, such a prediction tool could reduce substantial harm 
in terms of physical and psychological impact of subjecting the patients 
to this time-intensive and slowly progressive treatment in a subgroup of 
patients who might receive little benefit from it. Hormone therapy is 
expensive and requires years of commitment in most cases. If these re
sults are replicated in other larger samples, such an algorithm poten
tially could be used to identify individuals for whom it may be critical to 
apply other treatments in addition to hormones to optimize body 
congruence - such as gender-affirming surgeries. In addition, the algo
rithm possibly could identify those who may need alternate types or 
regimens of sex hormones, hormone blockers, or no sex hormones. 

4.5. Limitations and future work 

A limitation of the current study is the modest sample size, however 
see (Zandvakili et al., 2019; Zheng et al., 2017). The cross-validation 
approach of leaving out 20% of the participants for model testing 
reduced the likelihood of overfitting. Future studies with larger samples 
will be required to replicate these findings before applying this approach 
in practice. Larger datasets would provide the opportunity to split the 
participants into training and testing groups for a more robust valida
tion. In addition, validation in fully independent test sets, ideally in 
different settings, would determine if the results may be generalizable to 
other populations with GI in different geographical locations and cul
tural and societal environments. 

Further, our results are limited to binary-identifying individuals and 
thus cannot necessarily be generalized to nonbinary and differently 
gendered populations. Importantly, the use of more complex models 
that include other variables, for example minority stress, societal atti
tudes, a more nuanced characterization of gender identities, and so
ciological factors, would more comprehensively capture likely 
contributing factors to treatment outcomes, and might result in a better- 
performing algorithm. Due to sample size limitations we were not able 
to consider trans men and trans women separately in this study. Future 
work should do so, since a recent report (Majid et al., 2020) has shown 
that trans women generally had lower body index ratings than trans men 
for short duration trials and trans men rated images morphed opposite to 
their birth-assigned sex slightly higher than trans women. This is in line 
with other work (van de Grift et al., 2016a) that found trans men had a 
more positive body image than trans women. Another limitation is that 
the MINI diagnostic evaluation may have missed the presence of certain 
psychiatric conditions. 

Future investigations of the mechanisms underlying the regions 
within the fronto-parietal and cingulo-opercular networks that drive the 
results seen here are warranted. In addition, while the current investi
gation adds to evidence that hormone therapy may enhance body 
congruence in GI, changes in gonadal steroid levels have been shown to 
affect mood and cognition (Epperson et al., 1999; Wierckx et al., 2013). 
Future larger studies could also allow for determination of relative 
weights of specific regions within the fronto-parietal and cingulo- 
opercular networks found to be predictive, including the dorsal and 
pregenual anterior cingulate regions that could represent important 
nodes involved in perception of self. In the future larger studies could 
explore cross-network interactions between these cognitive control 
networks and networks that include nodes involved in body perception 

such as the dorsal and ventral attention (overlaps with the tempor
oparietal junction), memory retrieval, salience (includes the anterior 
insula) and visual networks (includes the extrastriate body area). 

5. Conclusion 

This study illustrates the potential for predicting hormone therapy 
responsiveness in transgender individuals with GI. Results from the 
study could help us understand what pre-therapy brain networks may be 
involved in post-therapy body congruence and point to potential bio
markers that could be used to develop novel ways of improving body 
congruence. 
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