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A B S T R A C T   

Rapid and widespread changes in brain anatomy and physiology in the first five years of life present substantial 
challenges for developmental structural, functional, and diffusion MRI studies. One persistent challenge is that 
methods best suited to earlier developmental stages are suboptimal for later stages, which engenders a trade-off 
between using different, but age-appropriate, methods for different developmental stages or identical methods 
across stages. Both options have potential benefits, but also biases, as pipelines for each developmental stage can 
be matched on methods or the age-appropriateness of methods, but not both. This review describes the data 
acquisition, processing, and analysis challenges that introduce these potential biases and attempts to elucidate 
decisions and make recommendations that would optimize developmental comparisons.   

1. Introduction 

Early childhood is characterized by rapid brain development (Gil
more et al., 2018) and represents a critical time for establishing devel
opmental trajectories of neural anatomy and physiology. Consequently, 
experiences are most influential during these early years, with the po
tential to shape and alter typical developmental trajectories (Nelson and 
Gabard-Durnam, 2020). Magnetic resonance imaging (MRI) technology, 
which began as a tool to study disorders and aberrations in adult clinical 
populations, was brought to bear on typical infant and early childhood 
brain structure (Pfefferbaum et al., 1994; Raininko et al., 1994) and 
function (Born et al. 1998, 2000; Martin et al., 1999) over two decades 
ago. With the ability to study the brain at early stages of life came the 
opportunity to understand developmental changes and trajectories using 
a longitudinal time frame. However, substantial and rapid changes in 
brain anatomy and physiology present significant and unique challenges 
for data acquisition, processing, analysis, and interpretation as part of a 
developmental neuroimaging pipeline. 

Understanding neurodevelopmental changes across early childhood 
requires accurate and precise measurements of brain structure and 
function at all developmental stages (or age groups), and in a manner 
that does not favor a particular developmental stage when they are 

compared. On the one hand, past critiques have highlighted general 
methodological concerns for developmental studies (Madhyastha et al., 
2018; Vijayakumar et al., 2018; or the "Methodological Challenges in 
Developmental Neuroimaging: Contemporary Approaches and Solu
tions" Issue (Vol. 33, 2018) of Developmental Cognitive Neuroscience 
journal). However, these do not address the neurodevelopmental pro
cesses unique to children under five years of age, which are qualitatively 
and quantitatively different and often considerably faster than those 
transpiring after year five. On the other hand, critiques specifically for 
infant studies do not address developmental comparisons (Mongerson 
et al., 2017; Makropoulos et al., 2018; Zhang et al., 2019; Dubois et al., 
2020). Indeed, there are methodological challenges that are unique to 
studies on early development that warrant special consideration 
(Vasung et al., 2019). In the present article, we first outline macroscopic 
anatomical and physiological changes that can impact developmental 
neuroimaging studies of early childhood. Grounded in these develop
mental changes, we then review the unique challenges associated with 
conducting developmental MRI studies in infants (i.e., children ≤ 1 
year) and young children (1− 5 years) and highlight various approaches 
that have been developed to overcome these challenges. We conclude by 
outlining where the field continues to struggle and what future meth
odological developments are needed. Overall, the aim of this review is to 
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provide a resource for trainees and junior investigators, as well as for 
established investigators who are starting to conduct MRI studies in this 
age range. 

2. Developmental changes in brain anatomy and physiology 

Proportionally, the largest neuroanatomical growth transpires in the 
first year of life and tapers thereafter (Matsuzawa et al., 2001; Knick
meyer et al., 2008; Groeschel et al., 2010; Sanchez et al., 2011; Deoni 
et al., 2012; Geng et al., 2012; Gilmore et al., 2012; Li et al., 2013; Lyall 
et al., 2015). Namely, total intracranial volume, cortical gray matter 
volume, subcortical volume, and cerebellar volume more than double in 
the first year (Knickmeyer et al., 2008; Gilmore et al., 2012). A smaller, 
yet significant, increase is observed in cortical thickness (Lyall et al., 
2015), gray matter surface area (Li et al., 2013; Lyall et al., 2015), white 
matter volume (Knickmeyer et al., 2008), and white matter fractional 

anisotropy (FA; Geng et al., 2012), a measure of the structural organi
zation of white matter pathways. The relative growth for the majority of 
these brain measures diminishes substantially in year two (Knickmeyer 
et al., 2008; Geng et al., 2012; Gilmore et al., 2012; Li et al., 2013; Lyall 
et al., 2015), and afterward for gray and white matter (Courchesne et al., 
2000; Matsuzawa et al., 2001; Groeschel et al., 2010) and FA (Reynolds 
et al. 2019). In contrast, relative growth in cortical white matter in
creases (Knickmeyer et al., 2008). Importantly, these growth rates also 
differ by brain region (Gilmore et al., 2012) and white matter tract 
(Deoni et al., 2012; Geng et al., 2012). Please see Fig. 1 for sample MRI 
images depicting relatively rapid brain growth in early compared with 
later development. However, comprehensive examinations of brain 
anatomy are currently limited to the first two years following birth 
(Table 1). Further work is needed to extend developmental trajectories 
to five years. 

In addition to developmental changes in brain tissue, anatomical 
structures that support the brain also change. For instance, head 
circumference increases most in the first year of life, while this increase 
is significant but smaller in the second and third years of life (Centers for 
and Disease Control and Prevention, 2001). Average skull thickness also 
increases most in year one, although it still increases substantially in 
years two and three (Table 1;Li et al., 2015a). Meanwhile, angiogenesis 
(i.e., the growth and branching of blood vessels) vastly expands micro
vasculature established prenatally; e.g., the dense layer of veins in 
vascular layer 3 is pruned and supplanted by a plexus of capillaries 
(Norman and O’Kusky, 1986), which scales with local metabolic activity 
and neural and glial (e.g., astrocyte) demands for oxygen. Considerable 
microvascular remodeling also occurs during this time, involving vessel 
sprouting, pruning, and lengthening (Harb et al., 2013; for a review of 
postnatal microvascular development in the brain, please see Coelho-
Santos and Shih, 2019). Downstream, developmental changes in 
vasculature can affect functional MRI and near infrared spectroscopy 
experimentation (for a review, please see Vasung et al. (2019)), as these 
measures derive from neurovascular and gliovascular interactions; i.e., 
neurons and glial cells consume and deplete oxygen to function and this 
oxygen is replenished by oxygenated hemoglobin via blood vessels (Yu 

Fig. 1. Sample structural MRI images depicting brain growth during (A) early and (B) later development. Each quandrant shows brain images from a child at two 
developmental stages as collected longitudinally. Please note the substantial anatomical changes during early development, especially in the first year of life, 
compared to later development. 

Table 1 
Anatomical growth estimates for brain and skull.  

Anatomical Growth Year 1 Year 2 Year 3 

Total Intracranial Volumea 101 % 15 %  
Cortical Gray Matter Volumea,b 129 % 17 %  
Cortical White Matter Volumea 11 % 19 %  
Subcortical Volumea,b,c 117 % 14 %  
Cerebellar Volumea 240 % 15 %  
Cortical Surface 78 % 20 %  
Cortical Thickness 31 % 4.3 %  
Fractional Anisotropy 30 % 7.8 %  
Head Circumference 30 % 5.2 % 2.3 % 
Skull Thickness 38 % 28 % 22 % 

Values summarized from Knickmeyer et al., 2008; Geng et al., 2012; Gilmore 
et al., 2012; Li et al., 2013, 2015a,2015b; Lyall et al., 2015, Centers for Disease 
Control and Prevention, National Center for Health Statistics). 

a Average of min and max range of Knickmeyer et al. (2008). 
b Average of Knickmeyer et al. (2008) and Gilmore et al. (2012). 
c Includes Brainstem for Knickmeyer et al. (2008). 
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et al., 2010). Finally, heart rate, respiration, and water content all 
decrease between infancy and adulthood (Mongerson et al., 2017; Bas
tiani et al., 2019). 

These anatomical and physiological changes have profound impli
cations for conducting structural and functional developmental MRI 
studies for two main reasons. First, methods that were developed for 

adults and older children need to be adapted to the developmental stage 
of the infant or young child to optimize the accuracy and precision of 
brain measures (e.g., tissue volume as a measure of brain structure, or 
functional activation and functional connectivity as measures of brain 
function). Second, practices that are optimal for a child of one age may 
be suboptimal for a child of a different age and induce spurious, age- 

Fig. 2. Factors that may introduce bias when scanning children at different developmental stages between birth and age five.  
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related differences that are driven by methodological inconsistencies, 
rather than true brain development. Ultimately, this leads to a trade-off 
and challenging decision for investigators of whether to optimize 
methods for the neuroanatomy and neurophysiology unique to the 
specific developmental stage, or preserve consistent methods across 
stages. In the case of the former, developmental stages are matched on 
whether methods are optimal for children of that age; in the case of the 
latter, comparisons of developmental stages are matched on the methods 
themselves. Both options have potential benefits, but also introduce 
biases. 

In the following sections, we highlight and describe the acquisition, 
processing, and analysis steps involved in developmental MRI datasets 
that may introduce these biases (please see Fig. 2 for a summary). To 
ease implementation for any trainees and investigators entering the 
field, we have structured these sections largely according to an experi
ment pipeline typical of an early developmental MRI study. 

3. Data acquisition 

Acquiring data for developmental MRI studies in children ages 0− 5 
years presents numerous challenges. The first set of challenges relates to 
the procedures for scanning young children. Infants and toddlers require 
specialized procedures and the absence of these can hamper the quality 
of data acquisition (Raschle et al., 2012a). Second, sequence parameters 
and scanner equipment that are optimal for infants may differ from 
those that are optimal for children between one and five years, given the 
current understanding of widespread and rapid developmental changes 
in brain and head anatomy and physiology. Third, angiogenesis and 
other developmental changes that affect neurovasculature have pro
found implications for acquiring functional MRI (fMRI) data, the signal 
for which depends on neurovascular coupling (Vasung et al., 2019). 
Each step in the data acquisition pipeline carries with it a trade-off be
tween implementing age-appropriate data acquisition practices or using 
consistent methods across developmental stages. Lastly, as data pro
cessing is particularly challenging for children 0− 5 years, data loss is 
likely to be high. This should be considered when estimating sample 
sizes for developmental stages in this age range. 

3.1. General procedures 

Procedures for pediatric imaging require careful consideration to 
maximize compliance and data quality. One reason that procedures for 
MRI data acquisition in developmental neuroimaging for ages 0− 5 are 
challenging is because scanning infants and toddlers requires adapted 
data acquisition procedures (Raschle et al., 2012a). One example of an 
age-specific procedure relates to whether the child is asleep or awake 
during the scan. For the youngest children (i.e., birth to three years old), 
a natural sleep protocol is often used because children of this age can 
sleep in the scanner (Liu et al., 2008; Fransson et al., 2009; Gao et al., 
2009; Doria et al., 2010; Graham et al., 2016; Howell et al., 2019; 
Turesky et al., 2019, 2020, Yin et al. (2020)), which reduces motion and 
increases the likelihood of collecting usable data. Common techniques 
include a form of “feed and wrap,” in which infants are fed prior to the 
scan and swaddled during the scan (Almli et al., 2007; Ibrahim et al., 
2015), while more involved techniques can rely on vacuum immobili
zation (Dean et al., 2014; Hughes et al., 2017; for techniques used to 
induce natural sleep in infants during MRI, please see Raschle et al., 
2012a; Antonov et al., 2017). Notably, this natural sleep procedure is in 
general most successful in the youngest children, although this is subject 
to large inter-individual variability. Infants have also been scanned 
while awake (Deen et al., 2017), more recently during cognitive tasks 
(Ellis et al., 2020), though scanning awake infants is rarer due to higher 
likelihood of motion. For typical developing children closer to five years 
of age, the natural sleep protocol is used less often and supplanted by 
detailed protocols that are specifically designed to engage the child, 
such as watching movies during structural sequences or rebranding 

functional tasks as games (Raschle et al., 2011, 2012; Vanderauwera 
et al., 2017; Yu et al., 2018). Some developmental studies from birth to 
age five have been performed with all children asleep in the scanner 
(Gabard-Durnam et al., 2018), while others allow older children (≥ 3 
years) to remain awake (depending on caregiver preference) and 
younger children (< 3 years) to sleep (Howell et al., 2019), which can 
introduce bias. 

Moreover, this age and sleep/awake-related bias may be com
pounded when examining certain clinical populations, who tend to 
exhibit greater motion, such as children with attention-deficit/ 
hyperactivity disorder or autism spectrum disorder. Taken together, 
mitigating head motion across early development may require different 
procedures prior to and during data acquisition. However, as discussed 
in greater detail below, this practice also introduces confounds for 
functional neuroimaging as sleep state and sleep stage can affect these 
measures (Horovitz et al., 2009; Picchioni et al., 2013). 

3.2. Sequence parameters 

Sequence parameters are the set of radiofrequency pulse and 
gradient properties that the MRI scanner uses to acquire images, which 
vary considerably depending on whether one wishes to acquire struc
tural, functional, or diffusion images and also on the population exam
ined (Saunders et al., 2007). MRI scanners acquire images at the level of 
the voxel, a three-dimensional unit in the shape of a cube or rectangular 
prism. Analogous to pixels on a computer screen, each voxel occupies a 
small fraction of a larger three-dimensional grid or volume and contains 
a corresponding intensity. The voxel size, which dictates the resolution 
of an image, can be set through the following sequence parameters: 
field-of-view, matrix size (i.e., number of samples in each direction), and 
slice thickness. Meanwhile, the signal-to-noise ratio (SNR) of an image, 
which reflects desired signal intensity compared with the level of 
background noise (Edelstein et al., 1986), can also be affected by these 
sequence parameters (Redpath, 1998), as voxel size and SNR are directly 
proportional (Runge et al., 2013). Resolution and SNR are critical image 
features because—along with tissue contrast, scan time, and presence of 
artifacts—they directly contribute to overall image quality. Accordingly, 
sequence parameters for developmental MRI studies need to be set such 
that voxel sizes and intensities are acquired without bias toward one or 
more developmental stage. This proves difficult when considering that 
the optimal set of sequence parameters (e.g., to maximize resolution and 
SNR) for one developmental stage may be suboptimal for another. 
Therefore, broadly, a second set of challenges for early developmental 
neuroimaging relates to whether to employ age-appropriate sequence 
parameters that optimize image quality for each developmental stage or 
identical sequence parameters for all stages. 

This trade-off is most salient when considering the substantially 
smaller brains of infants by comparison to those of older children. This 
has important implications when considering which voxel sizes to 
employ and whether to optimize for each developmental stage or stan
dardize across stages. First, the same voxel size used for younger and 
older children will represent a much larger proportion of brain tissue at 
the earlier developmental stages, which biases the resolution in favor of 
older children and in a manner that cannot be overcome through 
normalization or smoothing (please see Data processing and analysis 
section below). Furthermore, the substantial growth of individual brain 
structures across early development (Gilmore et al., 2012) means that 
fewer voxels will capture each brain structure in the earlier compared 
with later developmental stages (Keil et al., 2011). Second, due to the 
smaller brain structures in younger compared with older children (Gil
more et al., 2012), single voxels are more likely to include multiple brain 
structures and tissue types, reducing the accuracy of segmentation of 
tissue types (discussed in greater detail below) and brain structures. And 
third, the smaller head size in children can cause a substantial drop in 
contrast between tissues compared with adults (Prastawa et al., 2005). 

Rapid developmental changes in brain anatomy and physiology also 
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cause brain tissue imaged with the same MRI sequence to look vastly 
different for children of different developmental stages (Fig. 1). For 
instance, T1-weighted sequences, which are commonly employed in 
MRI studies for their superior tissue contrast and clear visualization of 
brain structures, show white matter as brighter (i.e., higher intensity) 
than gray matter in adults and children over age one (Gilmore et al., 
2018). By comparison, prior to six months, with increasing myelination 
(Deoni et al., 2012) and decreasing water content (Counsell and Ruth
erford, 2002), gray matter exhibits higher intensity than white matter on 
T1-weighted sequences; gray and white matter exhibit more comparable 
intensity between ages 8–12 months (Paus et al., 2001). While these 
differences may meaningfully characterize developmental changes in 
brain tissue, they also cause challenges for adequately measuring this 
brain tissue (e.g., in terms of volume or thickness). For instance, contrast 
between gray and white matter increases across developmental stages 
and can lead to better tissue labelling in older compared to younger 
children (also, please see Segmentation subsection below). Thus, if the 
aim were to produce images with corresponding relative tissue in
tensities, then different developmental stages would require different 
scan sequences. For structural scans, children over one year would un
dergo T1-weighted sequences and infants under one year would be 
scanned with T2-weighted sequences (Paus et al., 2001; Gilmore et al., 
2018), which rely on different types of proton relaxations (after protons 
are perturbed by radiofrequency pulses). In addition, intensity in
homogeneity, in general, caused by heterogeneous static and radio
frequency fields, becomes more problematic in infants when considering 
ongoing myelination, as well as higher variability in tissue intensity and 
low-intensity contrast (Prastawa et al., 2005). 

Overall, when deciding on sequence parameters, developmental 
neuroimaging studies encounter a central trade-off between optimizing 
these parameters for the neuroanatomy and neurophysiology unique to 
specific developmental stages, or using the same parameters across 
stages. Both approaches introduce benefits and biases. The first option, 
optimizing sequence parameters to a specific developmental stage, can 
increase the quality of images acquired for children of that age and 
improve the accuracy with which brain measures are estimated. By 
comparison, using suboptimal parameters could reduce image quality, 
which in turn could lead to overestimation of volumetric, surface, and 
thickness estimates of one tissue type and underestimation of the other 
(relative to manual estimations). In this sense, tailoring sequences for 
each developmental stage, to more accurately estimate brain measures, 
can reduce bias in developmental comparisons. The second option, 
preserving scanning parameters across stages, is more common in 
developmental research. This approach may increase comparability 
across age ranges because no differences can be attributed to differences 
in sequence parameters, but it may also introduce bias from reduced 
image quality in specific developmental stages that are scanned using 
parameters that are not optimized for their unique biology. It is possible 
that the bias introduced by suboptimal parameters is more severe for 
developmental studies of early childhood and has been hitherto under
estimated when considering the early childhood population; further 
research will be needed to determine whether this is the case. 

3.3. Scanner equipment 

In addition to scanning procedures and acquisition parameters, in
vestigators face challenges in choosing MRI scanner equipment for 
studying early development. For instance, head coils designed to opti
mize infant imaging are too small for older children. Although head coils 
designed for older children can accommodate a smaller infant head, the 
SNR, encoding performances, and consequent image quality will all be 
lower compared to when using an age-appropriate head coil because the 
gap between the head and head coil is wider (Keil et al., 2011). In the 
last decade, several laboratories and vendors have developed equipment 
that optimizes pediatric MR imaging for specific ages; however, the use 
of age-specific head coils introduces other challenges. First, they can be 

difficult to obtain, as they are often custom-built and costly (Keil et al., 
2011). Second, if the head coil used for one developmental stage yields 
higher SNR compared with the head coil for another stage, then con
founds are introduced. And third, even if SNR is comparable, the 
equipment used for each group is not consistent, which forces a trade-off 
between standardizing the head coil or the fit of the head coil across 
stages. Importantly, if investigators attempt to employ sequences with 
smaller voxel sizes to capture the smaller structures in infants (as 
described in the previous section), then SNR and consequent image 
quality would inherently decrease. The improvements in SNR from an 
age-appropriate head coil could offset the loss in SNR from the reduced 
voxel size. Additionally, age-appropriate head coils are also likely to 
improve comfort for children (Keil et al., 2011), which can increase time 
tolerated inside the scanner while also reducing head motion. As for 
head coils, investigators may also need multiple headphones for func
tional MRI studies to accommodate differing head sizes. 

If conducting longitudinal studies, then scanner updates, upgrades, 
and retirements also pose challenges for conducting multiple longitu
dinal measures of one individual. For example, infants may undergo MRI 
with one scanner; but by the time they are five years old, that scanner 
may have gone through several upgrades. Or perhaps the institution 
conducting the study replaces the scanner used for the infants with a 
newer scanner with superior image quality. As the field moves toward 
using larger datasets, one scanner at one site may be insufficient to ac
quire all of the scans planned for a developmental study. The use of 
different scanners at different scanning sites can alleviate this challenge, 
but doing so might also bias comparisons between developmental stages 
if each site scans only children of particular ages. Future work needs to 
assess whether current guidelines for conducting multi-site studies (e.g., 
Glover et al., 2012) and practices for integrating datasets acquired from 
multiple sites or scanners (i.e., harmonization; Karayumak et al., 2019; 
Pomponio et al., 2020) can be applied to early developmental studies 
without introducing additional confounds. 

3.4. Conditions for fMRI 

fMRI captures neural responses by acquiring multiple volumes while 
participants perform a task or rest (often awake and mind-wandering, or 
asleep). Experimental conditions need to be designed to enable partic
ipant compliance that is consistent across developmental stages. 
Meeting this goal is especially difficult when examining developmental 
changes between birth and age five, foremost because infants can 
perform only passive tasks such as processing auditory or visual stimuli 
(e.g., faces, bodies, and scenes) while awake (Deen et al., 2017) or, while 
asleep, viewing flickering lights through closed eyelids (Born et al., 
1998) or listening to sounds (Anderson et al., 2001). Other studies have 
acquired fMRI data while children were asleep without imposing a task 
(i.e., a resting-state fMRI paradigm; Fransson et al., 2007, 2011; Doria 
et al., 2010; Gao et al., 2015a, 2015b;Graham et al., 2015a, 2015b; 
Pruett et al., 2015; Graham et al., 2016; Mitra et al., 2017; Rudolph 
et al., 2018; Turesky et al., 2019). In theory, passive task and 
resting-state paradigms can also be used for older children, making them 
of interest for developmental studies. In practice, however, as children 
emerge from early infancy, they do not require as much sleep and have 
more difficulty remaining motionless in the scanner during passive tasks 
and resting-state, introducing greater motion into the older compared 
with earlier developmental stages. For task paradigms, fewer long 
functional runs could mitigate motion in infants and toddlers because 
these offer a consistent environment in which children can sleep without 
interruption. However, for older children, dividing a long functional run 
into multiple shorter functional runs reduces the amount of time the 
child needs to remain motionless and still facilitate collection of a suf
ficient number of data points; e.g., our group has probed phonological 
processing in children using separate experimental and control condi
tions (Yu et al., 2018). In contrast, resting-state paradigms, which are 
mainly used to examine functional connectivity, require at least four 
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minutes of continuous data acquisition (after any data removal due to 
scrubbing; Power et al., 2012) for functional connectivity estimates to 
stabilize, according to studies in adolescents (Satterthwaite et al., 2013) 
and young adults (Van Dijk et al., 2010). If a comparable minimum 
duration is needed for infants (Mongerson et al., 2017), then separating 
this paradigm into multiple runs and concatenating volumes cannot be a 
solution. Lastly, even if children are given identical tasks across stages, 
task difficulty can vary inversely by age, introducing another source of 
bias: in infants, the task may be too difficult, but then too easy by age 
five, . 

Additionally, most fMRI experiments rely on the blood-oxygen-level- 
dependent (BOLD) signal to measure brain activation. The BOLD signal, 
which reflects the ratio of oxygenated to deoxygenated hemoglobin, is 
affected by cerebral blood flow, cerebral blood volume, and cerebral 
metabolic rate of oxygen (Ogawa and Lee, 1990; Raichle, 1998). 
Therefore, angiogenesis and microvascular refinement in early devel
opment could directly affect the BOLD signal (please see Developmental 
changes of brain anatomy and physiology section and Coelho-Santos and 
Shih (2019) and Vasung et al. (2019) for reviews). 

The BOLD signal can also be affected by other, distal factors that may 
differ by developmental stage. For instance, as described above, infant 
scans are mainly conducted while infants are asleep, whereas older 
children are not generally instructed to sleep. If children of earlier 
developmental stages are asleep and later developmental stages are 
awake, then resulting developmental effects could instead reflect dif
ferences in consciousness, as these—with differential influences on ce
rebral metabolic processes—affect the BOLD signal and subsequent 
functional measures differently (Horovitz et al., 2009; Picchioni et al., 
2013). Evincing this, one report has shown that resting-state functional 
connectivity in sleeping infants is qualitatively more similar to 
resting-state functional connectivity in adults during sleep relative to 
adults during wakefulness (Mitra et al., 2017). In addition, identical 
patterns of resting-state functional connectivity do not underlie all sleep 
stages. This variability may be monitored using concurrent EEG or by 
tracking physiological measures such as heart rate or respiration. 
However, EEG acquisition in developmnental populations has its own 
set of challenges, especially when performed concurrently with MRI. 

Another factor known to impact consciousness during acquisition 
pertains to scanner background noise (SBN), which can be extremely 
loud at over 100 decibels. SBN can interfere with sleep, which can 
negatively impact head motion, but it also requires special consideration 
in the context of fMRI as it has been shown to attenuate auditory cortex 
responses (Gaab et al., 2007a, 2007b, 2008) and these effects may vary 
by age. Ear protection has effectively attenuated SBN in younger chil
dren (Zahr and de Traversay, 1995). However, keeping ear protection 
fastened can be more challenging in infants and toddlers compared with 
older children. Furthermore, it is important to consider that often only 
one set of headphones are available at an imaging center and their fit 
may differ depending on the age of the child. Certain experimental de
signs, such as sparse sampling (whereby auditory stimuli are played 
during silent delays in MRI volume acquisitions; Gaab et al., 2003; 
Perrachione and Ghosh, 2013), which reduces effects of SBN (Gaab 
et al., 2007b), can be alternatives. Therefore, investigators should 
consider whether these adjustments can be made to their data acquisi
tion protocols in a manner that does not limit their ability to address 
their research questions. However, these sparse protocols increase 
overall scanning duration and contain long periods of silence, which can 
be suboptimal for certain age ranges as it can lead to increased head 
movement. Therefore, investigators should consider whether these ad
justments can be made to their data acquisition protocols in a manner 
that does not limit their ability to address their research questions. 

Lastly, systematic differences in internal and external conditions 
among developmental stages prior to and throughout data acquisition 
may bias fMRI data acquisition. For instance, infant feeding as part of 
the “feed and wrap” technique (Almli et al., 2007; Ibrahim et al., 2015) 
could affect glucose metabolism, which would affect the BOLD signal. 

Also, anxiety and discomfort evoked by scanner background noise (Gaab 
et al., 2007a, 2007b;Raschle et al., 2012a) may disproportionally affect 
infants’ and older children’s responses to stimuli. Differences in scan 
state (environment) too may bias fMRI data acquisition as functional 
brain networks constituting functionally coupled brain regions (Buckner 
et al., 2013) exhibit moderate variability depending upon whether data 
are acquired while the participant is performing a task or at rest (Cole 
et al., 2014; Gratton et al., 2018). For example, with infants swaddled 
(Almli et al., 2007) or vacuum immobilized (Dean et al., 2014; Hughes 
et al., 2017) to induce sleep, and older children physically uncon
strained, somatosensory inputs would differ by developmental stage. 
Overall, different experimental conditions for different developmental 
stages may introduce bias during fMRI data acquisition. 

3.5. Sample size 

The challenges described above have implications for proposed 
sample sizes, attrition rates, and power calculations. First, infants may 
have difficulty sleeping (or remaining asleep) in the scanner, which 
could cause severe and repeated motion artifacts and require that they 
be removed from the scanner. Second, data processing challenges 
unique to the infant stage (e.g., segmentation with inverted and reduced 
gray/white matter contrast; please see below) could reduce the number 
of datasets of sufficient quality to be included in developmental ana
lyses. In longitudinal studies, these challenges can disqualify partici
pants from follow-up scans at later developmental stages if laboratories 
do not choose to impute in their statistical analyses. And third, head 
motion in older children who now may be awake in the scanner (please 
see General procedures subsection above) may reduce the number of 
usable datasets at later stages, particularly stymieing longitudinal 
analyses. 

Concordantly, at roughly 70 % (e.g., Almli et al.), success rates for 
developmental studies from birth to five years are fairly low, and these 
rates vary by developmental stage. For instance, success rates tend to 
follow a U-shape across development, decreasing from birth to 
toddlerhood and then increasing closer to age 5. Specifically, children 
scanned at 2–4 weeks, 1 year, and 2 years had success rates of 60 %, 50 
%, and 50 % respectively (Knickmeyer et al., 2008); and between 2 and 
5 years, higher rates have been reported at 72 % (Thieba et al., 2018). A 
study by our group reported on this trend using cross-sectional data, 
showing 63 % success rates at 3–7 months, 59 % at 8–15 months, and 97 
% at 4–6 years (Raschle et al., 2012a, 2012b). Success rates also vary 
depending upon the definition of success. For example, Thieba and 
colleagues (2018) reported a 72 % success rate for acquiring one out of 
three scans, but a 48 % success rate for acquiring all three scans (Thieba 
et al., 2018). 

For longitudinal studies, investigators should also expect attrition 
and consequently success rates lower than those cited above. An attri
tion rate of approximately 20 % has been reported, though this figure 
can vary widely depending upon age, socioeconomic status, and psy
chiatric factors (Stange et al., 2018), as well as the duration of time 
between data acquisitions. To mitigate this, maintaining strong re
lationships with parents of children ages 0− 5 years is extremely 
important – though uniquely challenging as this period of their lives is 
often accompanied with considerable flux, especially for those who have 
only recently become parents for the first time (please see Stange et al. 
(2018) for longitudinal neuroimaging retention practices and Teague 
et al. (2018) for general longitudinal retention practices). Guidelines in 
the field that resolve or mitigate these challenges will help to accurately 
estimate proposed sample sizes and attrition. However, in the interim, it 
may behoove investigators to begin with a higher initial sample size for 
developmental studies from birth to age five relative to the initial sample 
size used in developmental studies in children over five years of age. 
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4. Data processing and analysis 

To quantitatively examine developmental stages, MRI data need to 
undergo rigorous pre- and post-processing. Data processing and analysis 
can comprise many steps, but we will limit our discussion to steps that 
are most likely to introduce bias to developmental comparisons. These 
are segmentation, image registration, defining regions-of-interests and 
parcellations, smoothing, head motion quality control (QC), and func
tional MRI (fMRI)specification. As with data acquisition, each process
ing step introduces a trade-off between implementing age-appropriate 
data acquisition practices or using similar or identical methods across 
developmental stages. 

4.1. Segmentation 

Basic tissue segmentation is the process of identifying and separating 
gray matter, white matter, and cerebrospinal fluid voxels, which can be 
important for quantifying tissue volumes, limiting subsequent analyses 
to certain tissue types, and/or registering images (Ashburner and Fris
ton, 2005). Accurate tissue segmentation in an MR image, including 
extracting the brain from the skull (i.e., brain extraction or skull strip
ping), is considerably more challenging for infants compared with older 
ages (Makropoulos et al., 2018), which is a substantial concern as seg
mentation is the gateway to many subsequent analyses (Devi et al., 
2015). Unmyelinated axons, ongoing myelination, low tissue contrasts 
(Prastawa et al., 2005), and thin cortex (Lyall et al., 2015) in infants 
relative to older children and adults have limited the accuracy with 
which canonical segmentation tools can label gray/white matter tissue 
in infants (Makropoulos et al., 2018). 

These age-related, neurobiological characteristics have engendered 
two potential challenges for developmental MRI studies. First, seg
menting brains of different ages requires different tools, techniques, 
and/or parameters. Several labs have developed segmentation tools 
specifically for infants, such as Infant Brain Extraction and Analysis 
Toolbox (iBEAT; Dai et al., 2013; version 2.0 has recently been released: 
https://ibeat.wildapricot.org/) and Infant FreeSurfer (Zöllei et al., 
2020; https://surfer.nmr.mgh.harvard.edu/fswiki/infantFS; for a full 
list of neonate segmentation tools as of 2018, please see Makropoulos 
et al., 2018). In addition, investigators can label tissue manually, which 
is time consuming and labor intensive (Makropoulos et al., 2018), but 
can be an effective alternative to automated tools (de Macedo Rodrigues 
et al., 2015). With regard to techniques, segmentation algorithms 
employing age-appropriate tissue priors—typically gray matter, white 
matter, and cerebrospinal fluid probability maps in which voxel in
tensities reflect the likelihood that that voxel corresponds to a particular 
tissue class (Ashburner and Friston, 2005)—also reduce misclassifica
tion of tissue, compared with segmentations using adult tissue priors 
(Altaye et al., 2008). Tissue priors spanning multiple stages beginning at 
the perinatal period are now available as part of 4D templates (Oishi 
et al., 2018; please see below for details). Similarly, some investigators 
have opted for a 4D longitudinal approach (which, as the name suggests, 
can be applied in longitudinal studies), in which segmentations are 
performed on data from older children (for whom segmentations are 
generally more accurate due to improved tissue contrasts), and then 
used as tissue priors to inform segmentation in infants (Shi et al., 2011; 
Gilmore et al., 2012). Segmentation without tissue priors (Dhankhar 
et al., 2010; e.g., using Advanced Normalization Tools (ANTs; https://gi 
thub.com/ANTsX/ANTs) Atropos with k-means) would theoretically 
circumvent this trade-off, but introduces other bias as the algorithms 
might then rely more heavily on tissue contrast, which is inherently 
poorer in younger children (Prastawa et al., 2005), especially between 8 
and 12 months (Paus et al., 2001). For brain extraction protocols that 
rely on a template with skull (such as the ANTs antsBrainExtraction 
module), age-appropriate templates would also reflect developmental 
increases in head circumference and skull thickness (Centers for and 
Disease Control and Prevention, 2001; Li et al., 2015a). Importantly, 

laboratories have started to focus on the development of tools, tem
plates, and tissue priors for segmentation as well as image registration 
and parcellation steps as outlined below (e.g., please see https://www. 
med.unc.edu/bric/ideagroup/software/). 

Second, segmentation quality is age-dependent even with specialized 
tools and techniques. This can lead to under- or overestimation of tissue 
volumes, surface areas, and cortical thickness in the younger age group 
and therefore erroneous, age-related differences when compared to 
older age groups. Given that some toolkits (e.g., Statistical Parametric 
Mapping (SPM; https://www.fil.ion.ucl.ac.uk/spm/) 12) perform tissue 
labelling in concert with image registration as part of the unified seg
mentation framework (Ashburner and Friston, 2005), segmentation 
quality may also affect analyses of brain structure or function that 
require normalizing to standard space (please see below). As with data 
acquisition (please see above), segmentation procedures for develop
mental studies come with a careful trade-off between adapting ap
proaches to the age-appropriate range or maintaining approaches for 
measurements across stages. 

4.2. Image registration 

Registration is the process of aligning images to one another, and 
different data processing steps may depend upon it for various reasons. 
For instance, to control for head motion throughout a functional run, 
functional volumes will be realigned (via x, y, and z translations and 
pitch, roll, yaw rotations) such that brain images in every volume 
overlap. To control for one individual’s head movement between scans 
of different modalities (e.g., structural and functional volumes), the 
image alignment procedure is often referred to as co-registration. In the 
special case of normalization, all individual brain images are aligned or 
spatially normalized to a standard brain image (i.e., a template), which 
is important for group analyses to ensure that the location of any given 
brain area in one participant spatially corresponds to the location of the 
same brain area in another participant. 

Normalization can be especially challenging for developmental 
studies for two main reasons. First, the process of registering very young 
brains to templates (either through linear or non-linear procedures) can 
require specialized tools. For instance, the first version of iBEAT soft
ware relied on Hierarchical Attribute Matching Mechanism for Elastic 
Registration (Shen and Davatzikos, 2002) for registering individual and 
standard images (Dai et al., 2013). In our experience, popular MRI data 
processing software packages such as SPM or the voxel-based 
morphometry toolkit implemented through it have suboptimally 
normalized individual infant images. That these tools couple normali
zation with segmentation is consistent with the limited adaptability of 
unified segmentation algorithms (Beare et al., 2016). In contrast, the 
ANTs algorithms could register individual infant and template images 
(Turesky et al., 2019) and as ANTs was not designed specifically for 
younger children, it can also process data effectively for older children, 
precluding bias due to different tools (we have made our code from a 
relevant study available on github: https://github.com/TeddyTuresky/ 
Resting-StateInfantsBangladesh2019). Crucially, accurate normaliza
tion (and segmentation) also depend upon rigorous correction for in
tensity inhomogeneity (Mongerson et al., 2017; Makropoulos et al., 
2018), which is substantial in infants (Prastawa et al., 2005; please see 
Data acquisition: Sequence Parameters subsection). N4ITK, an intensity 
inhomogeneity correction module implemented through ANTs (Tustison 
et al., 2010), is commonly used for infants (Wu and Avants, 2012; 
Makropoulos et al., 2014; Turesky et al., 2019), but it is unclear whether 
optimal corrections for all developmental stages can be achieved by an 
identical set of parameters. 

It is also unclear which templates are most appropriate for processing 
early developmental data. For infants, most groups use age- 
corresponding templates (Gao et al., 2015a, 2015b; Turesky et al., 
2019), and often with secondary transformations to or from adult tem
plates to draw on stereotaxic standards (Graham et al., 2015a, 2015b; 
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Graham et al., 2016). On the other side of the early developmental age 
range, at five years, adult templates have been used (Raschle et al., 
2012a, 2012b; Raschle et al., 2014). However, brain structure from birth 
to age five changes so rapidly (Matsuzawa et al., 2001; Groeschel et al., 
2010; Sanchez et al., 2011) that using an adult template or even a 
template corresponding to the mean or median of the developmental age 
range investigated can potentially favor registration accuracy for some 
developmental stages over others, as use of age-inappropriate templates 
can lead to misclassifications of tissue and brain regions (Wilke et al., 
2003). 

Use of age-appropriate templates (i.e., a 4D template with one target 
image per age group) can reduce this confound (Oishi et al., 2018), 
though there is still the concern that normalization in the youngest 
children would not be as precise as in older children (Shi et al., 2011), 
potentially due to reduced image contrast. Some have opted to use T1 
structural images from one child with longitudinal data as a template 
(Gao et al., 2015a, 2015b). Beyond this, a 4D template comprising both 
T1-weighted and T2-weighted images can reduce the bias introduced by 
image contrast as described earlier; however, this requires that labora
tories collect both sequences (with sufficient image quality) at all stages 
along the developmental trajectory they wish to investigate. This can be 
costly and time-consuming. There are several 4D templates currently 
available (Oishi et al., 2018). However, none extend from birth to early 
childhood in a longitudinal sample, contain both T1 and T2 sequences, 
and have corresponding tissue priors. A close offering used by others 
(Graham et al., 2015a, 2015b; Graham et al., 2016) was a template 
containing both T1- and T2-weighted images from infants ages 0–4.5 
years (3D templates for 0–2, 2–5, 5–8, 8–11, 11–14, 14–17, 17–21, 
21–27, 27–33, 33–44, 44–60 months; Almli et al., 2007; Fonov et al., 
2009;http://nist.mni.mcgill.ca/?p=1005). However, this template was 
only partially longitudinal and did not have corresponding tissue priors, 
which are critical for accurate segmentation. More recently, Zhang and 
colleagues (2016) generated a longitudinal 4D template containing T1- 
and T2-weighted images and corresponding tissue priors. However, this 
template currently extends only to 12 months of age (Zhang et al., 2016; 
https://www.nitrc.org/projects/infant_atlas_4d/. To our knowledge, no 
multi-year 4D templates for diffusion images have been released for the 
early developmental period, though a framework for constructing one 
has been proposed (Hart et al., 2010). 

Suboptimal acquisition practices (e.g., sequence parameters; please 
see Data acquisition section above) for one developmental stage can also 
introduce bias if resulting image quality (e.g., due to low contrast or 
motion artifacts) is lower for children of that stage. This is of particular 
concern when registering images. For instance, typically, preprocessing 
procedures for functional imaging involve (1) co-registering functional 
and structural volumes, (2) normalizing structural volumes to a standard 
template, and then (3) applying the transformation in step 2 to the 
coregistered functional image. However, poor T1 or T2 image quality 
could lead to misalignment of functional and structural volumes in 
native space and/or misalignment of structural images with standard 
templates. The resulting functional images might therefore exhibit more 
spatial variability in the developmental stage with poorer image quality, 
which can subsequently affect second-level, age-related comparisons. 
Conversely, some laboratories have opted to perform functional ana
lyses in native space, which eliminates bias introduced by normalization 
(Ferradal et al., 2018), but also prevents brain regions of different par
ticipants from occupying the same stereotaxic space, encumbering 
inter-subject comparisons and interpretations. 

A similar bias can emerge for functional and diffusion imaging mo
dalities specifically. For instance, realignment of functional volumes (i. 
e., registering all volumes in a time series to the first or mean volume) to 
control for head movement during a functional run can be less accurate 
for one developmental stage if the constituent images are of lower 
quality. Less accurate registration can also be expected for normaliza
tion if functional images are registered directly to a template (and not 
first co-registered with individual structural images, which are of higher 

contrast than functional images and therefore often preferred for 
normalization). In addition, a noisier signal can effect less precise esti
mation of task-evoked activation and functional connectivity. Lower 
quality scans can also disrupt diffusion pipelines, which may involve 
registration to subject-specific T1 or T2 images and to standard space 
templates for accurate fiber tract segmentation (Yeatman et al., 2012). 
Independent of misalignments and prior to tract segmentation, lower 
quality diffusion scans can also bias the quality of typical diffusion 
processing steps such as tensor fitting and fiber tractography, and 
optimal sequence parameters (e.g., b-values) may be different for infants 
and older cohorts (Bastiani et al., 2019). 

4.3. Defining regions-of-interest and parcellations 

To examine effects in specific brain regions or voxels, an investigator 
might define a region-of-interest (ROI). Anatomical parcellations are 
useful as ROIs because they reflect subdivisions of the entire brain ac
cording to structural boundaries. However, the challenges described 
above for templates also propagate to corresponding anatomical par
cellations (for the templates that have corresponding parcellations). 
Parcellations corresponding to templates for older children cannot 
accurately label the anatomically smaller, and possibly spatially shifted, 
cortical and subcortical structures in infants and toddlers. Using age- 
specific parcellations can reduce these inaccuracies. Shi and col
leagues (2011) have warped the AAL atlas from adults to infants (Shi 
et al., 2011), but this process still introduces bias as brain structures can 
shift in relative size and stereotaxic location to one another over the time 
course of brain development (Oishi et al., 2018), requiring visual in
spection to confirm sufficient overlap between template and individual 
structures. It will be important for future anatomical parcellation 
methodologies to reflect the anatomy of younger children, rather than 
simply warped anatomy of older children or adults. Li and colleagues 
(2015) generated a 4D cortical surface atlas with volumes for chronical 
ages 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months using 339 longi
tudinally scanned MRIs from 50 healthy infants (Li et al., 2015b; htt 
ps://www.nitrc.org/projects/infantsurfatlas; numbers updated from 
original report). However, this template and corresponding parcellation 
map only include the cortical surface and do not contain subcortical 
brain areas nor corresponding tissue priors. For a list of available infant 
parcellations current to 2018, please see (Oishi et al., 2018). To the best 
of our knowledge, there are currently no longitudinal templates from 
birth to approximately five years of age (even with annual scanning 
intervals) with corresponding tissue priors and anatomical parcellations. 
Lastly, like segmentation, manual delineation of structures is a 
time-consuming and labor-intensive, but effective, alternative (Van
derauwera et al., 2018). 

ROIs to examine specific brain regions or networks may be defined in 
other ways, too. For instance, unlike anatomical parcellations, func
tional parcellations reflect brain regions subdivided according to their 
function (or functional connectivity) rather than structure (Arslan et al., 
2018). Meanwhile, Brodmann areas represent brain regions according to 
cytoarchitecture. Longitudinal birth to two-year (Shi et al., 2018) and 
neonate (Scheinost et al., 2016) parcellations have been generated using 
resting-state functional connectivity data; however, these parcellations 
did not include older children, limiting developmental comparisons to 
younger children. Additionally, ROIs need not conform to a whole-brain 
subdivision, but can also be commonly constructed as representative 
spheres or cubes of voxels sampled from widespread parts of the brain. 
For instance, Smyser and colleagues (2016) warped infant resting-state 
data to an adult template and overlaid Power’s 264 ROIs, defined by 
homogeneity of BOLD signal fluctuations (Power et al., 2011). However, 
fifty ROIs did not overlap with infant gray matter (Smyser et al., 2016), 
again demonstrating that architecture varies considerably in stereotaxic 
location by developmental stages (even when mostly accounting for 
head size) and posing challenges for matching brain areas and networks 
from multiple stages. Overall, further research and tool development are 
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needed to ensure unbiased parcellation and ROI selection across 
developmental stages. 

Finally, coordinates are commonly used to characterize the location 
of brain effects. For children over five years of age and adults, individual 
brain images are often registered to templates in either Montreal 
Neurological Institute (MNI) and Talairach stereotaxic space, each of 
which come with standard coordinate systems. Any resulting brain ef
fects may then be reported using MNI or Talairach coordinates; subse
quent investigators can use these coordinates for ROI analyses after 
registering their own datasets to MNI or Talairach space. The lack of an 
accepted standardized coordinate system for infants is problematic 
(Akiyama et al., 2013), because if an investigator were to select ROIs for 
an infant study based on results of a previous infant study, then he or she 
would need to register the imaging data to the same template used by 
the previous study. Likewise, ROIs can be taken only from meta-analyses 
in older children and adults, but not infants, as quantitative 
meta-analytic techniques such as Activation Likelihood Estimation 
(Turkeltaub et al., 2002) are not possible without a standard coordinate 
system (or known conversions to such; Oishi et al., 2018). 

4.4. Smoothing 

Spatial smoothing, also considered blurring, is the process of aver
aging (weighted) intensities from nearby voxels. Smoothing increases 
SNR, but simultaneously decreases spatial specificity. The extent of the 
smoothing depends on the size of the smoothing kernel such that larger 
kernels increase SNR and decrease spatial specificity more than smaller 
kernels. As infant brains are considerably smaller than the brains of 
older children and adults (Groeschel et al., 2010), using kernels 
commonly used for older populations, such as 8 mm full width at half 
maximum (e.g., Yu et al., 2018), the default in SPM, could be prob
lematic for localizing structures that are especially small in infants, such 
as the amygdala (Graham et al., 2015b). A recent study in infants 
younger than 10 days observed that the optimal compromise between 
SNR and spatial specificity occurred when using a smoothing kernel size 
of 3 mm full width at half maximum (Baxter et al., 2019); many infant 
studies have used a smoothing kernel size of 4 mm (Ferradal et al., 2018; 
Howell et al., 2019), 5 mm (Gabard-Durnam et al., 2018), or 6 mm 
(Fransson et al., 2007; Pruett et al., 2015; Merhar et al., 2016; Smyser 
et al., 2016; Mitra et al., 2017; Turesky et al., 2019). For developmental 
studies, use of smaller kernels for earlier developmental stages could 
standardize spatial specificity relative to brain size across stages. For 
instance, Gao and colleagues (2015) used increasing kernel sizes for 
increasing ages and head sizes, ranging from 4 mm for 1-month-old to 
8.2 mm for 12-month-old infants (Gao et al., 2015a). While this adaptive 
approach may increase SNR in later compared with earlier develop
mental stages, it can also reduce differences in relative spatial specificity 
across developmental stages (Graham et al., 2015b). Accordingly, an 
adaptive approach to spatial smoothing may represent the best 
compromise if one selects kernel sizes that are considered to optimally 
balance SNR and spatial specificity for each developmental stage. 

4.5. Head motion QC 

Despite attempts during data acquisition to minimize participant 
motion, functional runs inevitably comprise head motion and the 
magnitude of this head motion can vary considerably, especially across 
developmental stages. Furthermore, for a given estimate of motion, 
relative to head size, this estimate would be greater for infants compared 
with later developmental stages. Head motion has been of major concern 
in developmental literature in children over five years of age, such that 
findings previously attributed to developmental changes (Fair et al., 
2007, 2009; Dosenbach et al., 2010) were mitigated upon reanalysis 
with stricter motion criteria (Satterthwaite et al., 2012). The criteria for 
head motion have become extremely stringent in resting-state functional 
connectivity studies in infants, by comparison with early reports (Doria 

et al., 2010; Fransson et al., 2013). For instance, many studies now 
remove from functional time series data points in which the brain has 
moved from one volume to the next (i.e., framewise displacement) > 0.5 
mm (Gao et al., 2015a, 2015b), > 0.3 mm (Graham et al., 2015a, 2015b; 
Graham et al., 2016; Rudolph et al., 2018), > 0.25 mm (Smyser et al., 
2016) or > 0.2 mm (Pruett et al., 2015), sometimes along with addi
tional data points that are temporally adjacent to the motion spike. A full 
run is often removed when the number of these artifactual volumes 
exceeds a particular threshold (e.g., 22.5 %;Graham et al., 2015a) or 
does not provide sufficient remaining data (e.g., five minutes of 
continuous data; Smyser et al., 2016). Importanty, the thresholds used 
for examination of functional connectivity are generally much more 
strict than for task-evoked activation. Lastly, some studies performing 
group comparisons have additionally ensured that the numbers of arti
factual volumes removed do not differ between groups; otherwise, dif
ferences due to head motion could be mistakenly attributed to neuronal 
effects (Van Dijk et al., 2012). Although developmental neuroimaging 
practices in the 0− 5 year age range might potentially benefit from this 
practice, further research is required to investigate the delicate trade-off 
between artifact removal and rejection of data that is extremely chal
lenging to acquire in this population. 

Additionally, in the calculation of framewise displacement (i.e., 
combined translation and rotation movement of the brain between 
contiguous volumes), an estimate of brain radius is often needed to 
convert rotational measures of degrees or radians to millimeters. Power 
and colleagues (2012) estimate 50 mm (Power et al., 2012); but this is 
presumably for the brain of an older child or adult, rather than an infant, 
which is considerably smaller (please see above and Table 1 for size 
comparisons). Apart from the question of consistent motion thresholds 
across ages, the field needs to establish whether an average head size 
estimate or different estimates for different ages should be used for the 
calculation of framewise displacement. Otherwise, framewise displace
ment could be assessed separately for translation and rotation, as is also 
fairly common in the literature (e.g., Yu et al., 2018), thereby obviating 
the need for conversion to millimeters using an estimate of head size. 
Though avoiding the concerns over head radius, this scenario would still 
be subject to the challenges described at the beginning of this 
subsection. 

Head motion also hampers diffusion pipelines. Age-independent 
tools such as the FMRIB Software Library’s eddy tool (https://fsl.fm 
rib.ox.ac.uk/fsl/fslwiki/eddy) and DTIPrep (Oguz et al., 2014; https:// 
www.nitrc.org/projects/dtiprepare) are often used in infants (Geng 
et al., 2012; Langer et al., 2017; Bastiani et al., 2019). Recently, a new 
motion correction tool called Spherical Harmonics and Radial Decom
position (SHARD; Christiaens et al., 2020; pre-print) was introduced for 
multi-shell high angular resolution diffusion imaging (HARDI) data, 
which carries more fine-grained microstructural information compared 
with classical diffusion imaging. Using a data-driven representation of 
multi-shell HARDI data, SHARD avoids imposing a model with 
numerous assumptions, and germane to the present review, has 
demonstrated efficacy for the challenging motion correction in infant 
datasets. However, this tool can be applied only when HARDI data are 
available. Ultimately, to control for motion across the 0− 5 year age 
range, the field of developmental cognitive neuroscience will need to 
determine whether head motion thresholds should be the same or 
differentially strict across developmental stages. 

4.6. fMRI specification 

As described in the Data acquisition section above (please see Con
ditions for fMRI subsection), fMRI captures brain responses over time, 
most frequently through the BOLD signal. The BOLD signal, like other 
types of signals, can be decomposed (via a Fourier transform) and 
characterized by the frequencies that constitute it, with some fre
quencies constituting more of the signal than others. The degree to 
which a particular frequency constitutes a signal can be computed with 
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power spectra analyses. Biases may also be introduced in the context of 
BOLD signal frequency. Power spectra analyses have revealed that the 
BOLD signal is dominated by different frequencies at different ages, with 
greatest representation for neonates at 0.0056 Hz compared with 0.028 
Hz for one- and two-year-olds (Alcauter et al., 2015), likely with some 
variation depending on the number of points specified in the discrete 
Fourier transform. This has implications for resting-state, functional 
connectivity studies in infants, which often use band-pass filters with a 
lower threshold of roughly 0.008/9 Hz to remove artifacts or 
non-neurophysiological signal thought to manifest at these lower fre
quencies in adults. As such, these studies effectively remove the domi
nant signal for the neonate datasets (Gao et al., 2015a, 2015b;Graham 
et al., 2015a, 2015b; Pruett et al., 2015; Rudolph et al., 2018; Turesky 
et al., 2019). In a rare deviation, Graham et al. (2016) used a low-pass 
filter (< 0.1 Hz), which presumably would have retained these low 
frequencies (Graham et al., 2016), but perhaps low frequency artifacts, 
too. Future work needs to determine whether low frequency artifacts are 
present in infants as they are in older children, and if they are, whether 
their removal can be performed without removing potentially useful 
information from the lower frequencies of the BOLD signal. Lastly, heart 
rate and respiration rate are higher at younger ages, which should be 
considered when deciding on low-pass filters for removal of 
non-neurophysiological noise functional connectivity studies (Monger
son et al., 2017). 

Developmental changes in vasculature (please see above) may also 
introduce age-related differences in neurovascular coupling (Arichi 
et al., 2012; Hagmann et al., 2012; Cusack et al., 2015; Grayson and Fair, 
2017; Baxter et al., 2019), as has been investigated for children over five 
years of age and adults (Thomason et al., 2005). For instance, the he
modynamic response function (HRF), which characterizes changes in 
BOLD signal over time, was attenuated and exhibited a longer 
latency-to-peak in infants compared with adults for passive somato
sensory responses (Arichi et al., 2012). Convolution of an 
age-appropriate HRF into the general linear model revealed activation 
in the somatosensory cortex that was not identified when convolving 
with the canonical adult HRF. Indeed, that HRF morphology and fit to 
stimulus-evoked responses affects the sensitivity of first-level modeling 
in infants (Baxter et al., 2019) and could generate false-positive effects 
in developmental comparisons of young children versus infants in 
task-evoked activation analyses. In other words, a poorly fit HRF would 
miss activation in the infants; then, when comparing to older children, it 
would appear as though only the older children exhibited activation in 
response to the stimulus, whereas the infants did not. Also, deactivation 
in infant primary sensory cortices has been observed in passive re
sponses to auditory (Anderson et al., 2001) and visual stimuli (Born 
et al., 1998; Martin et al., 1999), suggesting that neurovascular coupling 
may be quantitatively and qualitatively different in infants compared 
with older ages. In addition, scanner background noise may have a 
bearing on infants’ auditory (and potentially visual) responses, as the 
neural processes underlying inhibition of scanner background noise may 
differ between infants and older children. Several approaches have been 
suggested to mitigate differences in hemodynamic responses between 
older children (age range: 7–12 years) and adults (Thomason et al., 
2005), which broadly focus on ways to account for increased signal 
noise in children, and it is possible that some of these approaches can be 
applied to the early developmental age range as well. 

In resting-state studies, the relationship between spontaneous fluc
tuations in hemodynamic signal and neural activity has also been 
investigated in adult mice (Mateo et al., 2017; Winder et al., 2017); but 
to our knowledge, this relationship remains to be characterized in young 
pups. Therefore, it is not entirely clear whether estimates of functional 
connectivity can similarly (as with estimates of fit in task-evoked de
signs) be affected by developmental differences in neurovascular 
coupling. Overall, neurovascular coupling across the 0− 5 age range 
needs further elucidation (Hagmann et al., 2012) and quantification. 

4.7. Controlling for age variance 

When performing categorical comparisons between or among 
developmental stages, within-group variance in age also merits consid
eration. Specifically, the rapid neuroanatomical and neurophysiological 
changes early in development (Gilmore et al., 2018) can cause compa
rable age-related variances at early and late developmental stages to 
have markedly different consequences; e.g., ± two months when the 
child is four months represents greater relative variance compared with 
± two months when the child is four years. Adjusting variables of in
terest (e.g., tissue volumes, functional connectivity estimates) for 
within-group variance in age, therefore, may improve second-level 
models. 

5. Decisions for the field 

Rapid changes to brain anatomy and physiology between birth and 
age five pose dozens of challenges for developmental MRI studies 
(Fig. 2). Acquisition and processing for children of different ages are 
often optimized using different tools, techniques, and parameters, which 
can lead to bias when conducting developmental comparisons. Broadly, 
this review has underscored and described the acquisition, processing, 
and analysis steps where these biases may emerge. For each step, the 
field must decide whether to optimize methods for the age-specific 
neurobiology, preserve methods across developmental stages, or 
employ an intermediate of these options. 

Specific to data acquisition, we encourage the field to recognize that 
different states of consciousness can bias data interpretation. We urge 
the field to recommend whether voxel sizes should scale up with age 
and, for structural scans, whether infants should be scanned with T2 
parameters while older children undergo T1 imaging, or whether we 
should use identical sequence parameters for all children. We urge the 
field to recommend how to account for differences in head coil fit and 
scanner and equipment upgrades during longitudinal studies, especailly 
since upgrades can improve image quality. For fMRI, we must address 
age-appropriatness of scanner tasks, including switches from passive to 
active tasks and difficulty levels. For determinations of sample size 
calculations, we need to take into account that higher attrition and data 
loss are likely for children 0− 5 years of age, compared with develop
mental stages beyond five years. 

Specific to data processing and analysis, the field needs to recom
mend whether to perform segmentation and image registration using 
age-appropriate tools, templates, tissue priors, and intensity in
homogeneity correction, or using age-independent practices. Notwith
standing, we encourage the field to acknowledge that tissue 
misclassifications and image misalignments will occur more frequently 
in earlier developmental stages and developmental stages scanned with 
age-inappropriate acquisition practices. The field also needs to recom
mend whether to use age-specific ROIs and parcellations, which capture 
age-specific structural and functional architecture, or a standard set of 
ROIs and parcellations that are subsequently registered to each devel
opmental stage. Additionally, the field needs to recommend whether to 
smooth brain images with kernels that optimize SNR, spatial specificity, 
or the compromise between SNR and spatial specificity for each age 
group, or to smooth with identically sized kernels regardless of the 
developmental stage. We also must decide whether to control for head 
motion using thresholds that are commensurate with the degree of head 
motion, head size, and age of the child, or use identical thresholds across 
developmental stages. For fMRI, the field needs to recommend whether 
to employ age-appropriate frequency filters and HRFs. For statistical 
models, we should adjust variables of interest for within-group variance 
in age when performing comparisons across developmental stages. 

Importantly, considerable care needs to be taken if employing age- 
specific approaches, to ensure that they are optimized for the anatomy 
and physiology unique to the age. We suggest two main approaches. The 
first is to rely on independently tested and reported methods that have 
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been proven to be reliable for a particular age group. This approach 
could be useful for new investigators, who could follow the methodo
logical approaches carefully developed, tested, and evaluated by 
another lab. If no “best practices” exist for the age of interest, then in
vestigators need to adjust the parameters of their pipelines and carefully 
evaluate the fit and quality of the applied methods subject-by-subject. 
There are already a number of tools that can aid in determining suc
cess; e.g., Qoala-T rates tissue labelling from FreeSurfer segmentations 
(Klapwijk et al., 2019), though investigators may need to train its al
gorithms using a local dataset. In the absence of tools, independent 
raters can serve as an effective alternative. 

Overall, the field must decide on best practices to mitigate bias in 
developmental comparisons within individual studies. Standardizing 
these practices will also improve reproducibility across studies. Complex 
pipelines, such as those implemented in developmental studies, present 
investigators with acquisition, processing, analysis, and interpretation 
options at multiple stages, exponentially increasing the number of 
pipeline permutations (Fig. 3) and hindering reproducibility (Poldrack 
et al., 2017a, 2017b; Karayumak et al., 2019), which has become of 
major concern as part of the Open Science and Reproducibility move
ment (Poldrack et al., 2017a, 2017b; https://reproducibility.stanford. 
edu/about-us/). Importantly, these permutations may differ by study; 
therefore, the field must also clarify the contexts that would justify 
alternative pipelines (e.g., investigators may use smaller voxel sizes for 
younger compared with older children for structural, but not functional, 
pipelines). Ultimately, dissemination of guidelines should prune pipe
line permutations and hopefully increase reproducibility. 

One final consideration is that the large-scale, known neuroanatom
ical differences between early developmental stages (e.g., Matsuzawa 
et al., 2001; Knickmeyer et al., 2008; Groeschel et al., 2010; Sanchez 
et al., 2011; Geng et al., 2012; Gilmore et al., 2012; Li et al., 2013; 
Holland et al. 2014) underlie the utility of different methods to optimize 
images acquired in different developmental stages, and ultimately drive 
the trade-off between age-optimized methods and standardized methods 
across developmental stages. However, the experiments that demon
strate these large-scale neurodevelopmental changes were inevitably 
conducted in a manner that did not—and perhaps could 
not—completely eliminate bias, and it is unclear to what extent these 
biases may have affected reported results. Accordingly, circular 
reasoning emerges as our understanding of how to measure the brain 
accurately and unbiasedly has been based in part on results that were 
acquired with methods that also suffered from these biases. 

6. Conclusion 

The first years of life are marked by the most rapid and widespread 

changes in brain anatomy and physiology (Gilmore et al., 2018), with 
genetic or environmental experiences during this time shaping or 
altering typical developmental trajectories (Nelson and Gabard-durnam, 
2020). Several laboratories have begun to use MRI to elucidate these 
trajectories (e.g., Matsuzawa et al., 2001; Knickmeyer et al., 2008; Geng 
et al., 2012; Gilmore et al., 2012; Li et al., 2013; Holland et al., 2014), 
but the rapid growth during this period poses substantial challenges for 
future developmental studies with methodological bias emerging in 
several places throughout data acquisition, processing, and analysis. 
One consistent theme of these specific challenges relates to a trade-off 
between optimizing approaches for each developmental stage, which 
inherently requires that multiple methods be used, or maintaining the 
same approaches across stages, which would likely alter the accuracy 
and precision in the estimates of brain structure or function across 
developmental stages. While the present review focused on the evalua
tion of different challenges for the field of developmental neuroimaging, 
further research is required for the construction of guidelines and ap
proaches that are well-suited for the population of children ages 0− 5 
years. In addition, the utility of MRI in elucidating developmental tra
jectories is limited; consequently, there is a need for analogous de
scriptions of challenges for other modalities such as EEG, MEG, and 
fNIRS. We also encourage others to consider similar “calls to action” and 
to develop recommendations for the inchoate field of prenatal neuro
imaging (Van Den and Thomason, 2016) and for infants born preterm, 
whose brain structure has been shown to differ from infants born at term 
(Giménez et al., 2008). To conclude, this review aims to underscore the 
challenges of developmental MRI studies of early childhood and to 
inform subsequent resolutions to these challenges. 
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Fig. 3. Abbreviated hypothetical decision tree. For multiple 
stages of a developmental study, investigators must choose 
between age-appropriate methods (pink) or methods that are 
identical across developmental stages (blue), exponentially 
increasing the number of pipeline permutations. Please note 
that we have limited pipeline permutations here to four stages 
and binary options (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web 
version of this article).   
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