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MEASURES OF THE DEGREE OF DEPARTURE FROM
IGNORABLE SAMPLE SELECTION

RODERICK J. A. LITTLE*
BRADY T. WEST

PHILIP S. BOONSTRA
JINGWEI HU

With the current focus of survey researchers on “big data” that are not
selected by probability sampling, measures of the degree of potential
sampling bias arising from this nonrandom selection are sorely needed.
Existing indices of this degree of departure from probability sampling,
like the R-indicator, are based on functions of the propensity of inclusion
in the sample, estimated by modeling the inclusion probability as a func-
tion of auxiliary variables. These methods are agnostic about the rela-
tionship between the inclusion probability and survey outcomes, which
is a crucial feature of the problem. We propose a simple index of degree
of departure from ignorable sample selection that corrects this
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deficiency, which we call the standardized measure of unadjusted bias
(SMUB). The index is based on normal pattern-mixture models for non-
response applied to this sample selection problem and is grounded in the
model-based framework of nonignorable selection first proposed in the
context of nonresponse by Don Rubin in 1976. The index depends on an
inestimable parameter that measures the deviation from selection at ran-
dom, which ranges between the values zero and one. We propose the use
of a central value of this parameter, 0.5, for computing a point index,
and computing the values of SMUB at zero and one to provide a range
of the index in a sensitivity analysis. We also provide a fully Bayesian
approach for computing credible intervals for the SMUB, reflecting un-
certainty in the values of all of the input parameters. The proposed meth-
ods have been implemented in R and are illustrated using real data from
the National Survey of Family Growth.

KEYWORDS: Measures of selection bias; National Survey of Family
Growth; Nonignorable sample selection; Nonprobability sampling;
Sampling bias.

1. INTRODUCTION

Classical methods of scientific probability sampling and corresponding
“design-based” frameworks for making statistical inferences about populations
have long been used to advance knowledge about populations. The random se-
lection of elements from a population of interest into a probability sample,
where all population elements have a known nonzero probability of selection,
ensures that the elements included in the sample are representative of the larger
population, mirroring the population in expectation. Random sampling is an
example of an ignorable selection mechanism under the theoretical framework
for missing data mechanisms originally introduced by Rubin (1976), provided
that design variables are appropriately incorporated in the analysis.
Unfortunately, the modern survey research environment has had a severe nega-
tive impact on these “tried and true” methods of survey research: it has become
harder and harder to contact sampled units, survey response rates continue to
decline in all modes of administration (face-to-face, telephone, etc.; Brick and
Williams 2013; Williams and Brick 2018), and the costs of collecting and
maintaining scientific probability samples are steadily rising (Presser and
McCulloch 2011). These problems raise a significant question: to what extent
can samples be treated like probability samples when only a small fraction of
the original sample has responded, and the response mechanism may in fact
not be ignorable?

Because of the problems and costs associated with classical probability sam-
ples, researchers in the health sciences and other fields are turning to the “big
data” generated from nonprobability samples of population elements
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(Eysenbach and Wyatt 2002; Braithwaite, Emery, de Lusignan, and Sutton
2003; Bowen, Bradford, and Powers 2007; Miller, Johnston, Dunn, Fry, and
Degenhardt 2010; Brooks-Pollock, Tilston, Edmunds, and Eames 2011;
Heiervang and Goodman 2011; Shlomo and Goldstein 2015; Wang,
Rothschild, Goel, and Gelman 2015). These “infodemiology” data might be
scraped from social media platforms such as Twitter (Chew and Eysenbach
2010; McNeil, Brna, and Gordon 2012; Bosley, Zhao, Hill, Shofer, Asch, et al.
2013; Myslin, Zhu, Chapman, and Conway 2013; Thackeray, Burton, Giraud-
Carrier, Rollins, Draper 2013; Thackeray, Neiger, Burton, Thackeray 2013;
Zhang, Campo, Janz, Eckler, Yang, et al. 2013; Aslam, Tsou, Spitzberg, An,
Gawron, et al. 2014; Gabarron, Serrano, Wynn, and Lau 2014; Harris,
Moreland-Russell, Choucair, Mansour, Staub, et al. 2014; Lee, DeCamp,
Dredze, Chisolm, and Berger 2014; Mishori, Singh, Levy, and Newport 2014;
Nagar, Yuan, Freifeld, Santillana, Nojima, et al. 2014; Nascimento,
DosSantos, Danciu, DeBoer, van Holsbeeck, et al. 2014; O’Connor, Jackson,
Goldsmith, and Skirton 2014; Reavley and Pilkington 2014; Nwosu,
Debattista, Rooney, and Mason 2015; McCormick, Lee, Cesare, Shojaie, and
Spiro 2017) or collected from commercial databases and online searches (to
name a few potential sources; Shlomo and Goldstein 2015; DiGrazia 2017).
Online surveys are other common sources of “big data” (Eysenbach and Wyatt
2002; Braithwaite et al. 2003; Evans, Wiggins, Mercer, Bolding, and Elford
2007; Brooks-Pollock et al. 2011; Heiervang and Goodman 2011), and annual
academic conferences on survey research are currently dedicating entire ses-
sions to research on online surveys of nonprobability samples (e.g., a session
at the 2015 Annual Conference of the European Survey Research Association
titled “Representativeness of Surveys Using Internet-Based Data Collection”).

Researchers have started to use these data sources and tools to collect infor-
mation about underlying populations (Koh and Ross 2006; Evans et al. 2007;
Myslin et al. 2013; Zhang et al. 2013; Nascimento et al. 2014), given that these
data are inexpensive, and a researcher can easily collect large quantities of in-
formation from existing data sources or online data collection. However, these
are ultimately nonprobability samples, and classical design-based methods of
inference have at best questionable validity when applied to data from these
samples. The protection of ignorable selection conveyed by probability sam-
pling no longer applies; nonprobability samples may lead to estimates that are
substantially biased, depending on the features of the population elements that
self-select into the sample (Pasek and Krosnick 2011; Yeager, Krosnick,
Chang, Javitz, Levendusky, et al. 2011).

Rubin (1976) originally described the key theoretical notion of the ignora-
bility of a missing data mechanism. The key aspect of nonignorability is that
the probability of missingness does depend on missing data, even after condi-
tioning on observed data. This definition can also be applied to sample selec-
tion (Rubin 1978; Little 2003). Probability sampling ensures that the sample
selection mechanism is ignorable; but ignorability of nonprobability samples is
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a strong assumption that is often invalid. Inferences based on nonignorable
samples paint a potentially biased picture of the target population, so survey
researchers need theoretically sound measures of how far nonprobability se-
lection mechanisms deviate from ignorability. A 2013 task force on
nonprobability sampling from the American Association for Public Opinion
Research (AAPOR) called for more research into appropriate models for
data collected from nonprobability samples (Baker, Brick, Bates, Battaglia,
Couper, et al. 2013). More recently, Pasek (2016) proposed general
approaches using existing methods for empirically assessing whether a
given nonprobability sample will mirror a probability sample (i.e., is the
nonprobability sample selection ignorable?). We build on this recent work
by using Rubin’s framework to develop a principled, easy-to-use index of
nonignorable selection bias and methods of adjusting population inferences
for this bias.

Our proposed index is based on work by Andridge and Little (2009, 2011),
who developed proxy pattern-mixture models (PMMSs) for nonignorable non-
response in surveys. These authors used a model-based approach to develop
adjusted estimators of means when nonresponse is potentially nonignorable
and proposed sensitivity analysis to examine the sensitivity of inferences to the
extent that survey nonresponse is nonignorable. West and Little (2013) adapted
this approach in evaluating the ability of PMMs to repair the nonresponse bias
in survey estimates when missingness depends on the true value of an unob-
served auxiliary variable U, but a variable Z is fully observed and serves as a
noisy proxy for U. West, Wagner, Gu, and Hubbard (2015) also discussed this
approach in the context of “big” data sets obtained from commercial vendors.
In this article, we adapt PMMs to the selection bias problem in nonprobability
samples, where the missing data problem arises from the fact that not everyone
in a population of interest self-selects into a given nonprobability sample.
These methods provide a bias correction for estimates of survey means as a
function of a parameter measuring the degree of deviation from ignorability;
see (9) below.

One widely considered alternative measure of survey representativeness in
surveys subject to nonresponse is the “R-indicator” (Schouten, Cobben, and
Bethlehem 2009; Schouten, Bethlehem, Beullens, Kleven, Loosveldt, et al.
2012), which measures the variability in the probability of responding to a sur-
vey as a function of auxiliary covariates available for an entire sample. Low
variability in response propensities as a function of the auxiliary covariates
suggests more balance (in terms of the covariates used) in the final set of
respondents. Sarndal and Lundstrom (Sarndal and Lundstrom 2010; Sarndal
2011) proposed variants of the R-indicator, including the coefficient of varia-
tion of nonresponse adjustment factors applied to existing sampling weights
based on a calibration adjustment. In this case, if there is greater variability in
the adjustments, there is a higher risk of selection bias due to nonresponse.
While these indicators have attractive properties and can be applied to the
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problems of sample selection as well as nonresponse, they require a
well-specified model for selection, and most importantly, they are agnostic
with regard to specific survey variables of interest, failing to reflect the fact
that selection bias depends on the strength of the relationship of selection with
the survey variable.

Another major limitation of measures using the R-indicator is that their vari-
ability depends on response across values of the available auxiliary variables
and therefore does not reflect nonignorable selection. The measure H; in
Sarndal and Lundstrom (2010), unlike the R-indicator, is tailored to each sur-
vey variable Y and, like our proposed measure, is based on a regression of each
survey variable Y on the auxiliary variables. However, unlike our approach, it
assumes that the regression equation estimated on the selected cases applies to
the nonselected cases and, as such, assumes that the selection mechanism is ig-
norable. This measure also relies on survey weights accounting for unequal
probabilities of selection and nonresponse adjustment, which is not the context
considered for this study. For these reasons, we did not evaluate this measure
in this study.

In simulation experiments, Nishimura et al. found that the R-indicator was
not an effective indicator of nonresponse bias when the missing data mecha-
nism was nonignorable (Nishimura, Wagner, and Elliott 2016). These authors
did find that when the estimated fraction of missing information (or FMI;
Wagner 2010), which is an outcome-specific measure that is a byproduct of a
model-based multiple imputation analysis, is greater than the nonresponse rate
associated with a given estimate, this may indicate potential nonignorable non-
response bias (Nishimura et al. 2016). Their results suggested that the FMI
may be worthy of additional consideration but that additional indicators of po-
tential selection bias are still needed (especially for nonignorable mechanisms).
Our proposed indices fill this need since they focus on nonignorable selection
bias and are based on models for the selection mechanism and the survey vari-
able(s) of interest and as such reflect differential effects of selection for differ-
ent substantive variables.

The remainder of the article is organized as follows: In section 2, we review
Rubin’s (1976) framework for ignorable and nonignorable nonresponse, relat-
ing it to sample selection and probability sampling. In section 3, we present
our proposed index for measuring departures from ignorable selection for a
continuous survey variable and discuss associated sensitivity analyses to assess
the impact of deviations from ignorable selection. In section 4, we apply our
index and other alternatives (like the FMI) to real data from the National
Survey of Family Growth (NSFG), treating the full NSFG sample as a hypo-
thetical population and smartphone users in the NSFG as a nonprobability
sample. We conclude in section 5 with a summary of our proposed approach,
and we outline possible future extensions to non-normal survey variables and
estimands other than means.
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2. RUBIN’S MISSING DATA FRAMEWORK APPLIED
TO SAMPLE SELECTION

In a landmark article for the modeling of data with missing values, Rubin
(1976) defined joint models for the data and the missingness mechanism and
defined sufficient conditions under which the missingness mechanism can be
ignored for likelihood and frequentist inference. This framework is applied to
sample selection in Rubin (1978), the first chapter of Rubin (1987), and Little
(2003), with the indicator for response being replaced by the indicator for se-
lection into the sample.

We define the following notation, with vectors or matrices of values of vari-
ables in boldface:

Y = (y,...,yn), yi =value of a particular survey variable

Y for population unit i,i=1,...,N

Z = (Z,,...,Z,)= vector or matrix of fully
— observed auxiliary and/or design variables Z

0 = O(Y,Z) =finite population quantity

S =(Sy,...,Sy) =vector of sample inclusion indicators, with
1, y; sampled
S =

0, otherwise

Y = (Yine, Yexe); Yine = {¥i} for units i included in the sample,

Yexc={y;} for units i not included in the sample

We initially adopt a model-based (more specifically, Bayesian) framework and
assume a model for the joint distribution of the survey variables Y and the sam-
ple inclusion indicator S. We assume a selection model, where this joint distri-
bution is factored into the marginal distribution of Y and the conditional
distribution of S given Y, that is,

fYS(Y7 S|Z7 07 d)) :fY(Y‘Za 9)f5|Y(S|Ya Za (rb) (1)

In (1), fy(Y|Z, 0) is the density for Y given Z indexed by unknown parameters
0, and f5y (S|Y, Z, ¢) is the density for S, given Z and Y, indexed by unknown
parameters ¢. The full likelihood based on the joint model for ¥ and S is then
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L(0, $Z, Yine, S) o fys(Yine: SIZ, 0, ) = ny(YIZ, 0)fsy (SIY. Z, $)dY exc.
2)

The corresponding posterior distributions for 0, ¢ and Yy, given the full like-
lihood in (2), are then

p(97 ¢|Z7 S7 Yinc) o8 P(Ha ¢|Z)L(0|Za Sa Yinc)

3
p(Yexc|Z7 S, Yinc) X Ip(Yexclza S, Yine, 0, ¢)p(97 ¢|Z, S, Yinc)d9d¢7 @
where p(0, $|Z) is a prior distribution for the parameters. In many models,
P(Yexc|Z, S, Yine, 0, ¢) = p(Yexc|Z, S, 0, ¢), so the posterior distribution of
the nonsampled data depends on S and Yj;,. only through the parameters.
The specification of the model for the inclusion indicators S is difficult because
the mechanisms leading to inclusion are often not well understood. The likeli-
hood ignoring the selection mechanism is based on a model for Y given Z and is

Lign(0|YiHC7 Z) X pY(YinC|Z7 0) = JPY(Y|Za H)dYexm (4)

which does not require a model for S. The corresponding posterior distribu-
tions for 6 and Yy, given the likelihood in (4), are then

P(0|Yine, Z) o< p(0]Z)Lign(0[Yinc, Z)

5
p(Yexc|Yinca Z) 08 Ip(Yexc|Yin07 Z, 9)p(9|Yin07 Z)d@ ( )
When the full posterior distributions (3) reduce to these simpler posterior dis-
tributions (5), the selection mechanism is called ignorable for Bayesian infer-
ence about 0 and Yex..
Two general and simple sufficient conditions for ignoring the data collection
mechanism are

Selection at Random (SAR): f5y(S|Y,Z, ¢) = fs)y(S|Yinc, Z, ¢) for all Ye.

Bayesian Distinctness : p(60, ¢|Z) = p(0|Z)p(d|Z).

The parameters ¢ that control selection into the sample are typically assumed

to be unrelated to the parameters 0 of the model for Y, so it is reasonable to as-

sign 0 and ¢ independent prior distributions, as Bayesian Distinctness implies.
It is easy to show that these conditions together imply that

P(97 YexclYinm Z) = P(97 Yexc|YinCa Z, S),

so the model for the data collection mechanism does not affect inferences
about the parameter 6 or the finite population quantities Q.
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A special form of SAR is probability sampling, where the probability of se-
lection is known and does not depend on the survey outcomes:

Probability Sampling : fsy(S|Y,Z, ) = fy(S|Z) for all Yexe.  (6)

Note that the right side of (6) does not include an unknown parameter ¢, since
the selection mechanism in probability sampling is known and under the control
of the sampler. Probability sampling is stronger than SAR in three important
respects: first, it is automatically valid (in terms of guaranteeing ignorability),
and not an assumption, if probability sampling is used to select the sample and
there is complete response; second, it implies that, conditional on Z, inclusion is
independent of Y and also any other unobserved variables that might be in-
cluded in a model, such as latent variables in a factor analysis; third, probability
sampling implies that selection is independent of the observed values of Y, Yiyc,
whereas SAR only requires independence of S and Y. after conditioning on
Yin. and Z, which is a weaker condition. Also, ignorability is specific to the par-
ticular survey variable Y, unlike probability sampling, which guarantees ignora-
bility for any variable, whether or not observed.

These facts imply that probability sampling is highly desirable. However, as
indicated in the Introduction, it is an ideal that is rarely attained. The weaker
SAR condition is more relevant to nonrandom selection mechanisms and is the
basis for our adjusted indices of nonignorable selection, which we describe in
the next section.

3. AN INDEX OF SELECTION BIAS FOR THE MEAN OF
A CONTINUOUS VARIABLE

We assume that the nonprobability sample has data D = {y;,z;,i = 1,...,n},
where i is the unit of analysis, the sample is of size n, z; is a vector of auxiliary
variables for which summary statistics are available for the population (from
administrative data or some other external source, denoted by A), and y; is a
continuous variable of interest. In general, subject matter considerations should
be employed to “design” the best vector of auxiliary variables given the varia-
bles of primary interest (Sarndal and Lundstrém 2010). To be useful, this vec-
tor should be predictive of the variables of interest, and summary information
for these variables needs to be available at the population level (from A). In the
absence of good auxiliary variables in a given nonprobability sample, one
could use data fusion techniques to link auxiliary variables with these required
properties from another independent sample (Kamakura and Wedel 1997;
Saporta 2002; Van Der Puttan, Kok, and Gupta 2002; ZuWallack, Dayton,
Freedner-Maguire, Karriker-Jaffe, and Greenfield 2015).

We consider first the development of an index of bias for the mean of a con-
tinuous survey variable Y. First, we regress Y on the auxiliary variables
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Z, using the data in the nonprobability sample. Let X be the best predictor of Y
from a multiple regression of Y on all the auxiliary variables Z. In particular, X
could be the linear predictor of Y based on the additive linear regression of ¥
on Z. X is scaled as discussed below (7). We assume that one is able to com-
pute asymptotically unbiased summary measures of X at the population level
from A, regardless of its form. As is the case with all model-based methods,
the use of X as the “best” predictor of Y requires careful diagnostic assessment
of the regression of Y on Z to assess the model fit and make sure that there is
not strong evidence of model misspecification. We rescale X to

X =X\/oyy /0%y, ©)
(1) (1)

where oyy and oyy are respectively the variances of Y and X for the selected
cases, S = 1; then X* and Y have the same variance given S = 1. We call X* the
auxiliary proxy for Y.

Our proposed index is based on maximum likelihood (ML) estimates for a
normal proxy pattern-mixture model (PMM) (Little 1994; Andridge and Little
2011) relating Y and X. Suppose that S=1 for units in the sample, S=0 for
units not in the sample, and for j=0or 1,

0 )
o g
X YIS =j) ~No | (u), -
(X, Y[S=j) ~Nao| (1x' 1ty ) ,
QM 0) ®)
Oxy Oyy

Pr(S=1]X,Y) = g(V), where V= (1 — @)X* + ¢Y,

where N,() is a bivariate normal distribution, ¢ is unknown scalar parameter, g
is an unknown function, and X* is the rescaled best predictor of Y, as in (7).
Here, “nonselection” (S = 0) corresponds to “missing” (M = 1) in the nonres-
ponse setting of Andridge and Little (2011), and that article uses the alternative
parameterization A = ¢/(1 — ¢) rather than ¢. Since X* is a proxy for ¥, we
assume here that 0 < ¢ < 1. The parameter ¢ is a measure of the “degree of
nonrandom selection,” after conditioning on X*.

One can extend the missingness mechanism in (8) to a more general form.
First, write Z = (X, U), where U is the set of available auxiliary variables
other than X. Without loss of generality, we can transform U to be orthogo-
nal to X for selected cases, S = 1. Since X is the best linear predictor of Y, the
mean of Y does not depend on U for S=1. In Andridge and Little (2011),
the exclusion of U from the proxy pattern-mixture model in (8) was rational-
ized informally. In Appendix 1, we show more formally that if, for
nonselected cases S =0, X is also the best predictor of ¥, and U is orthogonal
to X, then maximum likelihood (ML) or Bayes for the normal PMM (8) are
also valid under a more general mechanism:
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Pr(S = 1X,Y,U) = g(U, V), where V = (1 — $)X* + oY,  (9)

where g is an arbitrary function of its two arguments. This more general form
in (9) increases the realism of the model by allowing the selection mechanism
to depend on U and V.

Following Andridge and Little (2011), the ML estimate of the population
mean of Y for a given ¢ for the model (8) is

L‘M ﬂ(xfx(”) (10)
(,ZSVXY (1 - d)) X) 7

Where X is the mean of X in the whole population, and for units in the sample
(s=1),x! (y ) are the means of X and Y, s§})§ and sg,ly) are the variances of X
and Y, and ryy is the correlation of X and Y. Because X is the best predictor of
Y, we can deﬁne it in such a way that it has a positive correlation with Y; conse-

quently, we restrict r)(fly) to be greater than 0. We note that the term 55/1)2 / sE}Q

fiy($) = y

arises from the rescaling of the proxy X to have the same variance as Y in the
sample. A useful feature of ML estimation for the model defined in (8) is that the
ML estimates are valid for all functions g, so a specific form for g does not need
to be specified; see Andridge and Little (2011) for more discussion of this point.

It follows from (10) that a measure of unadjusted bias (MUB) of the sample
mean y'!) is

m |
MUB 50 _ P+ =P)ryy |5y 0 _ %), 1
(¢) ﬂY(¢) (]5}’)((1)2 n (1 — ¢) sg}z(x ) (11)

The bias measure in (11) is dependent on the scale of Y and does not readily al-
low comparisons of the size of bias between Y variables. Scaling the measure
to increase comparability is useful. For positive variables, one approach is to
express MUB as a fraction of the mean. A more broadly useful approach is to
standardize the bias by dividing MUB(¢) by the standard deviation of ¥ in the

sample, s<yy) This leads to a standardized measure of unadjusted bias

(SMUB):

¢+ (1 ¢)ryy G —X)
drig+(1—¢) [

Sxx

SMUB(¢) = (12)

To define a single index of selection bias, we need to choose a value of the un-
known ¢. As seen in (8), when ¢ = 0, selection depends on X and Y only
through X, and since X is fully observed, the data are SAR. At the other
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extreme, when ¢ = 1, selection depends on X and Y only through the survey
variable Y. In the absence of knowledge about the value of ¢, we suggest de-
fining the index at ¢ = 0.5, which is an intermediate value of ¢ that corre-
sponds to selection depending on X* + Y. This leads to a very simple
standardized measure:

(
SMUB(0.5) = -~ (13)

To reflect sensitivity to the choice of ¢, a simple approach is to compute the in-
terval (SMUBI[0], SMUB(1]), where

) _x | G0 _x
SMUB(0) = ) & =% L asmus(1) = - & ) s
(1) i) (1)
Sxx Xy Sxx

from substituting ¢ = 0 and ¢ = 1 in (12). All three measures can be easily
computed using the R function nisb (), which is available in the supple-
mentary materials online or via the GitHub repository located at github.com/
bradytwest/IndicesOfNISB.

We make nine remarks regarding the measures in (13) and (14). First, we
note that SMUB(0), SMUB(0.5), and SMUB(1) do not require the presence of
microdata for the population elements not included in the nonprobability sam-
ple. Part of the appeal of these indices is that they only require knowledge of
the aggregate population mean for X. This in turn requires knowledge of the
population means of the auxiliary variables Z.

Second, the three bias measures SMUB(0), SMUB(0.5), and SMUB(1) cor-
respond to the sensitivity analysis for nonresponse proposed by Andridge and
Little (2011).

Third, the expression

(1 —ry’) G -X)

(1) _ 1
¢rXY + (1 ¢) S;&

SMAB(¢) = SMUB(¢) — SMUB(0) = (15)

measures the difference in the mean of ¥ when ¢ ## 0 from the adjusted mean
obtained when ¢ = 0 and is thus a standardized measure of adjusted bias
(SMAB). That is, it measures the potential bias of the adjusted mean of Y that
accounts for the known auxiliary variables and is caused by deviations from
SAR. Such a measure is clearly desirable, but we caution that it is strongly de-
pendent on the assumptions underlying the model (8); without some such
model assumptions, there is no way of predicting the bias due to deviations
from SAR. As per (15), SMUB(¢) can be rewritten as SMUB(0) + SMAB(¢),
which means that SMAB captures the portion of the overall bias in an
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unadjusted estimate that exists affer adjustment for the known auxiliary varia-
bles (given a choice of ¢), assuming that selection is only a function of X (or
SAR). In this sense, the ability of SMAB to indicate this “residual” selection
bias due to deviations from SAR strongly depends on the auxiliary variables
used to make the initial adjustment. This result shows how our general ap-
proach is less restrictive than existing measures that assume SAR and
essentially set ¢ to 0, including the R-indicator or the measure H; in Sarndal
and Lundstrom (2010). Therefore, SMUB(¢) serves as a more robust overall
indicator of the selection bias in an unadjusted estimate computed from a given
nonprobability sample and should be used to identify variables that would
likely benefit from adjustment procedures.

Fourth, SMUB(1) is unstable when r)((ly) is close to zero; that is, the proxy
variable X is not a good predictor of Y. The bias in such cases cannot be reli-
ably estimated from the sample.

Fifth, intuitively, the measures in (13)—(14) capture relevant features of the

sample selection problem: r)((l}z measures the strength of the best proxy as a pre-

dictor of Y (larger being better), and (X(‘) -X ) measures how much the sam-

ple deviates from the population on the mean of X, which is the best proxy for
Y (smaller being better). Also,

#0 X = (1 - —x9),

where X() is the mean of X for the nonselected part of the population and £ is
the fraction of the population sampled. Our measures, therefore, also reflect the
fraction f of the population included in the sample, with a higher fleading to a
smaller value of the measure, other factors being equal. A nonprobability sam-
ple would be considered “good” in a loose sense if X and Y are strongly corre-
lated and x'") is close to X, meaning that the sample is “representative” on a
variable X that is a good proxy for Y. A nonprobability sample is “bad” if X
and Y are weakly correlated, and x(!) is far from X, meaning that the sample is
not representative with respect to X, and the ability to adjust for the bias is
weak. There are intermediate cases, but in short, good samples will have lower
absolute values on these indices, and bad samples will have higher absolute
values on these indices.

Sixth, the central measure SMUB(0.5) is closely related to the Bias Effect
Size proposed by Biemer and Peytchev (2011), when applied to the best pre-
dictor of the survey variable Y. The difference is that their numerator is the dif-
ference in the means of X for selected and nonselected units, whereas the
numerator in (15) is this difference multiplied by (1- f) and, as such, incorpo-
rates the impact of the nonselection rate (see the fifth point mentioned pre-
viously). Our indices have a more formal justification in terms of bias under
the normal pattern-mixture model, and they are defined for choices of ¢ other
than 0.5.
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Seventh, the strengths of SMUB(¢) are that it is relatively simple, and unlike
previous proposals, it does not assume SAR. However, there is no perfect mea-
sure, and our measure has limitations. It is founded on the normal model in (8)
and in particular on the assumption that selection depends on X* and Y only
through the linear combination (1 — ¢)X* + ¢¥, for 0 < ¢ < 1. The bivari-
ate normality assumption for the variables of interest leads to the straightforward
result in (10) and provides a clear theoretical basis for development and evalua-
tion of the indices proposed here. Because SMUB(¢) is founded on a normal
model, it is less suitable for nonnormal outcomes. Extensions of the pattern-
mixture model to nonnormal outcomes are possible (Andridge and Little 2009,
2018), but resulting measures are less straightforward, and our application later
on suggests that SMUB(¢) still has value for nonnormal variables. Negative
values of ¢ are not considered, although they are technically possible, and SMUB
(¢) is close to zero when the sample and population means of X are close, even
though selection bias is clearly still possible in that situation. In particular, the aux-
iliary variables cannot include variables used for stratification in sample selection,
since these have the same means in the sample and population by design.

Eighth, if the sample with S =1 is the responding component of a probabil-
ity sample of the population subject to frame errors and nonresponse, then the
component of the model for nonselected cases, S =0, should more realistically
be confined to the subpopulation of nonrespondents and individuals outside
the sampling frame. It can be shown, however, that the resulting ML estimate
of the bias for that model is similar to the estimate from the model (7), at least
when the sample design is with equal probability.

Ninth, a refinement of our measures is to incorporate measures of sampling
uncertainty. This is possible if we have the sample mean and variance of X for
the nonsampled population, which in turn requires the sample mean and co-
variance matrix of Z in the nonsampled population. If only the means of Z are
available, as would often be the case, we need to assume that the population
covariance matrix of Z is the same for sampled and nonsampled units, allowing
this matrix to be estimated from the sampled cases. As in Andridge and Little
(2011), one approach to incorporating parameter uncertainty is to assign the
parameters of the pattern-mixture model (8) a prior distribution and compute
the posterior distribution of the bias of )7(1) and, hence, of the SMUB. The in-
terval [SMUB(0), SMUB(1)] can then be replaced by a credible interval
from the posterior distribution of SMUB. If desired, a formal test of the null
hypothesis of no selection bias is obtained by checking whether this interval
includes zero. Appendix 2 outlines how to compute draws from the posterior
distribution of SMUB when ¢ is assigned a beta prior distribution,

p(¢lo, ) = ¢* (1 — ¢)" " /B(a, B,

where B(o, ) is the incomplete beta function, and other parameters in the
model (8) are assigned relatively noninformative Jeffreys’ prior distributions.
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The choice oo = f§ = 1 yields a uniform prior distribution for ¢, which reflects
limited knowledge about this parameter. We have developed an R function,
nisb bayes (), that implements this Bayesian approach. This function can
also be found in the supplementary materials online or via the GitHub reposi-
tory located at github.com/bradytwest/IndicesOfNISB.

4. APPLICATION: SMARTPHONE USERS IN THE NSFG

To illustrate the utility of our proposed index in practice, we applied the index
to real data from the NSFG. The NSFG is an ongoing national probability sur-
vey of women and men age 15-49, using a continuous cross-sectional sample
design. We analyzed sixteen quarters (four years) of NSFG data, collected
from September 2012 to August 2016. During this time period, two questions
(on internet access and smartphone ownership) were added to the NSFG.
Specifically, the NSFG recorded an indicator of whether the randomly selected
individual responding to the survey in a sample household currently owned a
smartphone (Couper, Gremel, Axinn, Guyer, Wagner, et al. 2018). For pur-
poses of this illustration, we treated the full set of NSFG respondents in this
data set as a hypothetical “population,” enabling the calculation of “true” val-
ues of selected population parameters (means and proportions) describing the
distributions of key NSFG variables. We analyzed males and females separate-
ly and considered smartphone (SPH) users as a nonprobability sample arising
from the larger NSFG “population.” We note that the selection fractions for
this hypothetical illustration were quite different from zero; the typical selec-
tion fraction for most nonprobability samples selected from large populations
would be a number close to zero. For variables measured on males, the selec-
tion fraction was 0.788 (6,942 smartphone users out of 8,809 males), and for
variables measured on females, the selection fraction was 0.817 (8,981 smart-
phone users out of 10,991 females).

For each of several NSFG variables important to data users, we then identi-
fied all males or females in the NSFG “population” (defined by both SPH and
non-SPH cases) with complete data on both the variable of interest and several
auxiliary variables. We selected auxiliary variables Z that 1) may be available
in aggregate (at the population level) or for each unit in a given population in
other nonprobability surveys and 2) could be used to predict each variable of
interest in the NSFG. These auxiliary variables included age, race/ethnicity,
marital status, education, household income, region of the United States (based
on definitions from the US Census Bureau), current employment status, and
presence of children under the age of 16 in the household. Specifically, we
computed our proposed index of selection bias for the following survey varia-
bles Y, which we again assumed to be measured for the SPH sample only: life-
time parity, or number of live births (females only); age at first sex (males and
females); number of sexual partners in the past year (first analyzed “as is” for
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both males and females and then top-coded at seven for females) and number
of sexual partners in the lifetime (males and females, again both “as-is” and
top-coded at seven); and number of months worked in the past year (males and
females).

For each of these survey variables (and separately for males and females),
we initially regressed the variable on all of the auxiliary variables Z described
previously (using the SPH respondents only), and we then used the estimated
coefficients to compute the linear predictor X for a given survey variable Y (for
both the SPH respondents only and all cases in the overall NSFG
“population”). For purposes of this illustration, we also treated recoded binary
indicators representing the auxiliary variables as additional survey variables of
interest (¥), assumed to be measured on SPH respondents only. In these analy-
ses, we only regressed the binary indicators on all other auxiliary variables
(i.e., excluding the auxiliary variable used to form the binary indicator from
the set of predictors) when computing the linear predictor X because the previ-
ously described survey variables Y (e.g., number of sexual partners in the life-
time) generally would not be available as auxiliary variables for a full
population. This allowed for multiple illustrations of the computation of our in-
dices and also allowed us to assess the ability of our index (and its proposed
“interval”) to reflect actual bias in a parameter estimate computed based on a
nonprobability sample when the variable of interest does not follow a normal
distribution.

Because the means of the Y variables were also available for the entire
NSFG “population,” we were able to assess how well our indices predicted the
actual bias in the estimates based on the SPH sample. For evaluation purposes,
we computed the standardized true estimated bias (STEB), defined as the dif-
ference between the SPH estimate and the true population parameter, scaled by
the standard deviation of the population measures. These bias measures were
used as benchmarks for our proposed index. Measures based on the R-indica-
tor would be of limited use here, since they do not vary with the survey vari-
able. An alternative variable-specific measure of selection bias is the fraction
of missing information (FMI), and we also assess how well this measure pre-
dicted STEB, compared with our proposed index. The FMI is a function of the
multiple R-squared of the regression of Y on Z, which is one of the elements
that affects our proposed index, but it does not reflect deviations from ignor-
able sample selection.

4.1 Results

Table 1 presents, for each of the survey means of interest (for males and
females), the computed values of the proposed SMUB(0.5) index, the corre-
sponding (SMUB[0], SMUB|1]) interval, and the 95 percent Bayesian credible
interval for SMUB based on a uniform prior distribution for ¢p. We also present
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O Standardized True Bias

STEB 03

® Standardized True Bias
(rho>0.4)

0.2

Linear (Correlation coefficient
0.76)

) Linear (rho>0.4)(Correlation
coefficient 0.85)

---- y=x

SMUB(0)

-0.2 -0.1 0.2 0.3

-0.2

Figure 1. Scatterplot of STEB Against SMUB(0), Including Measures of Linear
Association. NoTE: rho =r§3y.

values of r)((ly) based on the SPH sample and the STEB measures for each
mean. The estimates in table 1 are displayed in descending order by the esti-
mates of r)%} based on the SPH sample. We also display scatter plots of
SMUB(0), SMUB(0.5), SMUB(1), and FMI against the STEB in figures 1-4,
together with Pearson correlations. The dots in the scatter plots represent the
indices of all the survey variables of interest and the corresponding values of
the benchmarks. We fitted ordinary least squares regression lines to the data in
these plots, which are shown in red, and included 45-degree lines (y=x),
which are dashed and would represent perfect correspondence of the index val-
ues with the STEB measures. We also plot the indices against the benchmarks
restricting to those surve%/ variables where the best predictor has some predic-
tive power, defined as r)%, > 0.4 (see the shaded points and black fitted lines in
figure 1).

We make the following observations from table 1 and figures 1-4. First, for
survey variables with estimates of r)((lg greater than 0.4, our index does quite
well. All three SMUB indices had strong linear associations with the STEB
that we use as the benchmark. The particularly strong performance of
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03 - O Standardized True Bias
STEB

® Standardized True Bias
(rho>0.4)

Linear (Correlation coefficient
0.65)

Linear (rho>0.4)(Correlation
coefficient 0.86)

---- y=x

SMUB(0.5)
03

-0.2 -0.1 0.2

-0.2 -

Figure 2. Scatterplot of STEB Against SMUB(0.5), Including Measures of Linear
Association. Notk: rho =r§(ly.

SMUB(0) in this illustration when r}((ly) is greater than 0.4 likely reflects a selec-
tion mechanism for SPH respondents that is close to ignorable (i.e., SAR), but
our compromise choice, SMUB(0.5), also does well. The correlations of
SMUB with the STEB were much stronger than those found for the FMI (fig-
ure 4). Nine of the twelve intervals (SMUB[0], SMUBJ[1]) and nine of the
twelve Bayesian credible intervals covered the STEB.

Second, for survey variables with correlations less than 0.4, the index tends
to deviate more from STEB in these cases, and only five of the sixteen intervals
(SMUBI0], SMUB[1]) and eight of the sixteen Bayesian intervals covered the
STEB. We note that when the correlation is low, the Bayesian credible inter-
vals are considerably wider than the intervals (SMUB[0], SMUB[1]) that ig-
nore sampling variability and thus are more likely to include the STEB.
Whether 0.4 is a useful cutoff in general requires more study in other
applications.

Third, the Bayesian intervals for SMUB(0), which correspond to the SAR
case, performed poorly relative to the more general Bayesian intervals for
SMUB that incorporated random draws of ¢ from a Uniform(0, 1) distribution.
Only seven of the twenty-eight Bayesian intervals for SMUB(0) covered the
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0.3 - O  Standardized True Bias

STEB
® Standardized True Bias (rho>0.4)

0.2
Linear (Correlation coefficient 0.46)
// Linear (rho>0.4)(Correlation
J/ coefficient 0.82)
0.1 / ----y=x
// ~

SMUB(1)

-0.2

Figure 3. Scatterplot of STEB Against SMUB(1), Including Measures of Linear
Association. NotE: rho =r§:)2.

STEB, despite the relatively high correlation of SMUB(0) with STEB noted
previously. The Bayesian intervals based on a prior distribution for ¢ are wider
and have much better coverage of the STEB, particularly when X and Y have a
strong correlation. This suggests that making some allowance for uncertainty
in ¢, either by assigning ¢ a prior distribution or by a sensitivity analysis for
different values of ¢, is better than approaches that assume SAR (i.e., ¢ = 0).

For further insight on this performance, we note that our index does well
when the estimated bias SMUB(0) (which adjusts for the auxiliary variables)
has the same sign as the STEB and is smaller than the STEB in absolute value.
In such cases, fourteen of the sixteen intervals (SMUB[0], SMUBJ1]) cover
the STEB. In other cases, SMUB(0) and SMUB(1) fails to cover the STEB
since the interval extends in the wrong direction. We expect that adjustment of
the sample mean based on strong auxiliary predictors tends to reduce bias, and
this is the setting in which our approach does well. However, adjustment for
auxiliary predictors that are poor predictors of the outcome often does not re-
duce the bias, and in these cases, our indices are less effective.
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O Standardized True Bias
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Figure 4. Scatterplot of STEB Against FMI, Including Measures of Linear
Association. Notk: rho =r§(ly).

We note that two of the three intervals for correlations greater than 0.4 that do
not cover the STEB are for binary age indicators, perhaps reflecting the fact that
binary outcomes violate the normality assumption of the underlying PMM in (8).

We also present an illustration of our proposed Bayesian approach, assum-
ing that one is able to compute sufficient statistics for the Z variables for cases
not included in the nonprobability sample (as was the case in our NSFG exam-
ple). After executing the nisb bayes () code described in the online sup-
plementary materials, a plot similar to figure 5 will be generated automatically,
presenting draws of SMUB as a function of draws of the ¢ parameter, predic-
tions of SMUB as a function of the ¢ parameter, and 95 percent credible inter-
vals for these predictions. From the first row of table 1 (the mean number of
months worked in the past twelve months for females), the STEB associated
with selection into the SPH sample was 0.069 (multiplied by 1,000 in the ta-
ble), the 95 percent credible interval for SMUB based on the resulting posterior
draws of SMUB was (0.053, 0.091), and the median of the posterior draws
was 0.069. Figure 5 indicates that a choice of 0.5 for the ¢ parameter does a
good job of reflecting the STEB for this particular mean and that our


https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smz023#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smz023#supplementary-data

954 Little et al.

0.08-
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¢
Figure 5. Scatterplot of Drawn Values of SMUB Versus Drawn Values of the ¢
Parameter for the Mean of Number of Months Worked in the Past Twelve
Months (Females), Following Our Proposed Bayesian Approach in the Presence
of Sufficient Statistics on Z for Nonsampled Cases.

proposed interval clearly covers the STEB, allowing for uncertainty in the
value of the ¢ parameter.

Finally, we evaluate the performance of the proposed SMAB index in
table 2. The standardized adjusted bias (SAB) is computed as the difference be-
tween the adjusted mean and the true mean, divided by the standard deviation
of the true values for the “population.” Correlations of the SMAB(0.5) and
SMAB(1) values with SAB were poor (—0.057 and —0.110) and improved
substantially for cases with r)((l,z > 0.4 (0.462 and 0.484, respectively). This re-
sult underscores our earlier remark about the importance of the underlying
model used for the initial adjustment when using the SMAB index to indicate
selection bias in adjusted estimates; the index will perform poorly when the
initial adjustments assuming SAR are poor. The overall coverage of the SAB
values by the Bayesian intervals for SMAB is identical to the coverage of the
STEB values by the Bayesian intervals for SMUB in table 1. This suggests
that the SMAB index can still do reasonably well at capturing the SAB when
allowing for sampling variance in the input estimates.
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5. SUMMARY AND FUTURE WORK

We have proposed a variable-specific index of nonignorable selection bias for
nonprobability samples, namely the standardized measure of unadjusted bias
(SMUB). This model-based and variable-specific index is easy to compute and
allows for case-level or aggregate information for an entire population. The in-
dex is based on comparisons between the sample and population distributions
of auxiliary variables that have not been matched in the estimation, neither by
stratification or weighting. The proposed index is therefore suitable for
nonprobability samples, which seldom rely on stratified sampling and do not
permit the computation of weights based on known probabilities of selection.
Although the nonprobability sampling literature has proposed weighted esti-
mators based on pseudo-randomization approaches (Elliott and Valliant 2017),
these weights are generally global in nature and not variable-specific, meaning
that any bias correction engendered by these weights will not be tailored for
individual variables. We have also described a Bayesian approach for describ-
ing uncertainty in the index, given case-level information for an entire popula-
tion (or at least aggregate information for population members that are not
selected for a nonprobability sample). All methods have been implemented in
R, and these functions are available in the online supplementary materials.

Using real data from the NSFG, we have shown that the index is a good in-
dicator of the actual bias in estimates based on nonprobability samples when
the administrative proxy X is somewhat predictive of the survey variable of in-
terest Y, as measured in our application by a correlation greater than 0.4. In sit-
uations where this correlation is weak, we suggest that any approach based on
information in the auxiliary variables is likely to be ineffective because these
variables do not provide much pertinent information for that survey variable.
We emphasize that our proposed indices of selection bias are variable-specific,
and the NSFG illustration suggests that intervals based on SMUB can provide
a good sense of variables that may be particularly prone to selection bias.
Depending on the magnitude of the X-Y correlations and how far away the
intervals are from zero, our indices allow us to identify variables for which de-
scriptive estimates should be interpreted with caution because of the risk of po-
tential selection bias.

The proposed index is based on a normal pattern-mixture model (see [8]),
and its performance is dependent on the extent to which this model is realistic.
In particular, it is best suited to normal survey variables, although our illustra-
tion shows that it can still be useful qualitatively for nonnormal variables.
Andridge and Little (2009, 2018) develop proxy PMMs for nonignorable non-
response in binary survey variables, providing similar indices of nonignorable
selection bias for estimated proportions. Work in progress includes simulation
assessments of this method, and the development of indices of selection bias
for regression coefficients.


Deleted Text: S
Deleted Text: A
Deleted Text: F
Deleted Text: W
Deleted Text: non-i
Deleted Text: non-p
Deleted Text: non-p
Deleted Text: non-p
Deleted Text: ,
Deleted Text: non-p
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smz023#supplementary-data
Deleted Text: non-p
Deleted Text: ,
Deleted Text: since 
Deleted Text: [
Deleted Text:  Eq.
Deleted Text: )]
Deleted Text: non-
Deleted Text: non-i
Deleted Text: non-i

958 Little et al.

In forming our Bayesian credible intervals for the proposed index, we
used uniform priors for the parameter capturing dependence of sample se-
lection on X and Y; we feel that this is a reasonable choice in the absence of
any information about this parameter, but alternative priors may improve
the overall performance of these intervals in terms of coverage of the true
bias. Finally, since our setting is situations where the sample is not col-
lected by probability sampling and summary auxiliary data are available
for the population, complex design elements available for the sample, like
sampling weights, are not generally relevant. The situation where the auxil-
iary data X are available for a probability sample rather than the popula-
tion—and thus are subject to sampling error—will also be addressed in
future work.

SUPPLEMENTARY MATERIALS

Supplementary materials are available online at academic.oup.com/jssam.

Appendix 1: Refining the Proxy Pattern-Mixture Model of
Andridge and Little (2011)

As in section 3, write S = selection indicator; Y = survey variable, measured
only when S = 1; and Z = auxiliary variables, measured for S=0 and 1.
Assume E(Y|Z,S=1) = ﬁié?z + ﬁ;;)ZZ, so X = (B1)Z) = best predic-

yz:z

tor of Y for respondents. Let X* = X4/ o'_g) / a,(olc) = auxiliary proxy for Y, or X
scaled to have the same variance as Y given S = 1. Write Z = (X, U), U = aux-
iliary variables orthogonal to X, so ) — .

Xu-u
Assume that for nonselected cases S=0, X is also the best predictor of Y,
and U is also orthogonal to X. Then we show that ML or Bayes for the normal
PMM in (8) is also ML or Bayes under the more general bivariate normal

pattern-mixture model that conditions on U:

X B+ B, U\ (ot o,
U, S=s| ~N , (*)

Pr(S=1|X,Y,U) =g(U,V), where V = (1 — ¢)X* + ¢Y,

where g is an arbitrary function of its two arguments.
Assume that:
(a) E(Y|Z,§=0) = ﬁ(()) + ﬁi,g)zz, where ﬁ(g,)z = /1,852, that is, X = (B! Z)

0z yZ:Z
is the best predictor of Y for nonsampled as well as sampled units; and
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(b) U is orthogonal to X for nonsampled units, so ﬁ(s) =0 for s =0,1.

Xu-u
© pls)
_ n(r _pln) OyaulBaun
Then, 0 = ﬁﬁu),xu =g —‘Jm =f

NS ") forr=0, 1, so (*) reduces to

yu-u

X

(5) (s) (s)

X ﬁ U axx-u o .U
(( >|U,S> ~N () ). (%)

Y ﬂ }:0~14 a)g’?“ O—S;)“

Since (X, Y) do not depend on U given S, we can simplify the notation by

X
dropping the subscript « in the parameters, replacing (**) by << > |U, S)
Y

u(") 0(’) O'(})

X XX Xy . .

~ N , , which is the model of Eq. (8). So ML or
w)\ey o

Bayes under this model is the same as ML or Bayes under (*).

Appendix 2: Simulating the posterior distribution of the pop-
ulation mean of Y

A. Expressions for the posterior mean and variance of the
population mean of Y, assuming that the best predictor X is
known:

Pattern-mixture model: Transform Yto V = ¢Y + (1 — ¢)X*, X*=X a§;>/a§;>,
assuming ¢ > 0

X 1) o) gl
Model : 0,s=j|~N[{ " |, © "I
v W) \al) ol

where s = 1 for sampled cases, 0 for non-sampled cases, 0 = set of all
parameters

Pr(s = 1|x,v) = g(v) (xxx)

By properties of the normal distribution, the slope, intercept, and residual vari-
ance of the regression of X on V given s = j are:

B9 = o) /o) g9 =y — g9 L) g0 = 5l) _ g0240)

xv-v v xXv-v Xyt

Then (***) implies that S and X are conditionally independent given V, and
hence
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0 1
ﬁxvv - ﬁxv V) xOv - x(]v’ )(cx)v = O-J(rx-)v'
These constraints just identify the model, and imply that:

0 1 0 1
w 0 g M 60 gl 4 #
ﬁXV'V [ ] ﬁxV‘V

u = i +

XV-v

BO =60 /g O — ) _ pO) 0

VX-X pal XX v vxX-xi—x
For non-sampled values v; of V, and their average (0.

E(vixi,5i = 0,0) = Big), + pOx:
E("|data, 0) = Big, + FLE", Var(v|data, 0) = ol0),/n®

where 7 and x(©) are respectively the number and the mean of X for non-se-
lected cases.
Hence posterior mean and variance of v?) are:

E(v")|data) = E(Bg), + Bl x"|data)
Var(v%|data) = Var(glg, + 2,5 |data) + E(o(0)|data) /n

The corresponding posterior mean and variance of the overall mean v are:

E(v|data) = /s + (1 —)E(Bg, + B3 data)
Var(v|data) = (1 — f)*Var(v?)|data)

where n‘" is the number of selected cases, and f = n(!)/ (n(o) + n“)) is the
sampling fraction (assumed to be very close to zero in most cases).

B. Simulating draws of the mean of Y and SMUB from their
posterior distributions.

Draw (/3%?1, /35,)2) from posterior distribution of regression of Y on Z given

sample data
Define X4 = /3 +ﬁv, g
Draw db( from prior distribution of ¢
Replace X, ¢ in above by X9, ¢@
X(Sd) , Sc,(\fl) = sample means of X for selected and non-selected cases
D — sample covariance matrix of (XD, Y) for selected cases
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(xxol)\ﬁd) = sample variance of X for non-selected cases

SO G
xx X ~
Draw IW[S@ 1 — 1], IW = inverse Wishart
AV (@

() 5(1)(d)
oL x4 T Oy
o | N , /n
K ¥ 1)(d 1)(d
y Vg @ @)

(1/6Q@=x3 Www—w4ﬂwh

00 N (0,00 /v )
@M—@M/éwwwa

Xy y

(1— ¢y + (ﬁ(d)pg,)(d) @

@ — @Y, W@\ ? /51
gg{)(d) - “w(d) + <<f> +((d1) ¢ (dgpﬁ,)(d)> (ny ) (ag)(d) _ Gi}c)(d))’
» (1 — V) + &V py

w L P+ (1= D)@ O_(l)(d)(

GXX
@ 4 (] — ¢, D@ [@
S0 _ @ 4 P + (L= 0 o) @
x X (1_¢<d>)+ 6@ 0@ \ ;@\ xx
O = of910 /6010, U1 — o) g0 010

Positive definite covariance matrix check:

2
If g0 = g — (ﬁ;g?)gd)> (afcg)(d)) < 0 then discard and redraw.

PO = (/N5 + (1= n/N) (B + FOD)

SMUB = (30 = ¥ /3 /ol

Repeat for d = 1,...D to simulate posterior distribution of Y @ and SM UB(‘D,

hence estimate posterior mean and variance as sample mean and variance of
draws.
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