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Abstract

Summary: Summary statistics from a meta-analysis of genome-wide association studies (meta-GWAS) can be
used for many follow-up analyses. One valuable application is the creation of polygenic scores. However, if
polygenic scores are calculated in a validation cohort that was part of the meta-GWAS consortium, this cohort
is not independent and analyses will therefore yield inflated results. The R package ‘MetaSubtract’ was devel-
oped to subtract the results of the validation cohort from meta-GWAS summary statistics analytically. The
statistical formulas for a meta-analysis were inverted to compute corrected summary statistics of a meta-
GWAS leaving one (or more) cohort(s) out. These formulas have been implemented in MetaSubtract for dif-
ferent meta-analyses methods (fixed effects inverse variance or square root sample size weighted z-score)
accounting for no, single or double genomic control correction. Results obtained by MetaSubtract correlate
very well to those calculated using the traditional way, i.e. by performing a meta-analysis leaving out the val-
idation cohort. In conclusion, MetaSubtract allows researchers to compute meta-GWAS summary statistics
that are independent of the GWAS results of the validation cohort without requiring access to the cohort level
GWAS results of the corresponding meta-GWAS consortium.

Availability and implementation: https://cran.r-project.org/web/packages/MetaSubtract.

Contact: i.m.nolte@umcg.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Summary statistics from meta-analyses of genome-wide associ-
ation studies (meta-GWAS) have been made freely available by
many consortia. These meta-GWAS summary statistics can, for
instance, be used to construct polygenic scores. However, if the
summary statistics are used for validation in one of the cohorts
that was included in the meta-analysis, the polygenic score ana-
lysis will yield inflated results (Wray et al., 2013). For unbiased
results, the validation cohort needs to be independent from the
meta-GWAS results. It is common practice to contact the consor-
tium and ask them to rerun the meta-analysis with the validation
cohort left out. As this could be time inefficient, I developed the
R package ‘MetaSubtract’ to subtract the results of the validation
cohort from the meta-GWAS results analytically. For this pack-
age, it is sufficient to have the meta-GWAS results and the
cohort’s GWAS results that have been contributed. The statistical
formulas for a meta-analysis were inverted to compute corrected
summary statistics of a meta-GWAS leaving one cohort out.
These formulas have been implemented in MetaSubtract for dif-
ferent meta-analyses methods [fixed effects inverse variance or

square root (sqrt) sample size weighted z-score]. It can take into
account results from single or double genomic control correction.
Finally, it can be used for an entire GWAS, but also for a lim-
ited set of genetic markers, e.g. only the tophits from a meta-
GWAS.

2 Materials and methods

MetaSubtract was built as a package for R (R Development Core
Team, 2012). The R platform was chosen because it is operating-
system independent, commonly used, freely available, can handle
large datasets and is flexible regarding input file format. The main
function is meta.subtract(. . .) with arguments for the filename
of the meta-GWAS summary statistics, the filename(s) of the
cohort(s) results, the meta-analysis method and the genomic control
lambdas for the meta-analysis and the cohorts or whether these
should be calculated from the data. The workflow diagram with re-
spect to the genomic control correction is explained in
Supplementary Figure S1.
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2.1 Statistics
In a meta-GWAS results from N different cohorts are combined
using meta-analysis. The formulas for a meta-analysis can be
inverted to get the meta-GWAS summary statistics of all but one co-
hort. For example for a fixed effects inverse variance meta-analysis,
the effect size of a genetic marker of N-1 cohorts, bN�1, can be com-
puted as
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where bN and SEN
��� are the effect size and corresponding standard

error (SE), respectively, of the marker from the meta-GWAS, and b1

and SE1 those from the validation cohort. The derivation of this for-
mula and for the SE, the allele frequency and the heterogeneity Q
value for a fixed effect inverse variance are given in Supplementary
Appendix SA in Supplementary Material. In Supplementary
Appendix SB the corresponding formulas are given for a sqrt(sample
size) weighted z-score meta-analysis. The package also automatical-
ly corrects the P-values, z-scores, sample size, number of studies,

direction of effects, P-value of Q and the I2 heterogeneity value if
available in the meta-GWAS summary statistics.

2.2 Validation
To validate the package data from the VgHRV consortium were
used (Nolte et al., 2017; Supplementary Table S1). One phenotype
was analyzed by the inverse variance meta-analysis using data of 13
cohorts and another by the sqrt(sample size) weighted meta-analysis
of z-scores using data from 15 cohorts. Here the GWAS results of
the contributing cohorts were meta-analyzed with METAL (Willer
et al., 2010). Cohort results were next excluded from the meta-
analysis in alphabetical order by METAL or subtracted from the
meta-GWAS results using MetaSubtract. METAL and MetaSubtract
results of genetic markers that were present in every cohort were
compared for the corrected effect size, SE, z-score, -log(P-value), al-
lele frequency and Q statistic using two-way mixed ANOVA intra-
class correlation (ICC) coefficients with absolute agreement. The
polygenic score calculated from uncorrected and corrected meta-
GWAS summary statistics by both MetaSubtract and METAL were
associated using linear regression in the TRAILS population cohort.

3 Results

Results of MetaSubtract correlated very well with those of METAL
for all statistical parameters, for all ranges of effect allele frequen-
cies, and both for the inverse variance and sqrt(sample size)
weighted z-score meta-analysis (Fig. 1; Supplementary Figs S2–S7).
Even when almost all cohorts were left out, the correlations were
mostly still >0.95. Only for the SE in the inverse variance weighted
meta-analysis (Fig. 1c), the correlation dropped to 0.7, which is like-
ly caused by the small SE and METAL rounding it to four decimals.
The latter also explains the decreasing correlation with increasing
minor allele frequencies because for such genetic markers the SE
becomes even smaller. Corrected polygenic scores applied in
TRAILS showed similar results (Supplementary Fig. S8).

4 Discussion

The R package MetaSubtract is an efficient and convenient alterna-
tive to the leave-one-out meta-GWAS traditionally used to get meta-
GWAS summary statistics that are independent from those of a val-
idation cohort. The results of both methods correlate very highly.
However, MetaSubtract has the distinct advantage of not requiring
access to the cohort level GWAS results of the meta-GWAS
consortium.
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Fig. 1. Intraclass correlation coefficients (ICCs) between the meta-GWAS results cal-

culated with METAL and MetaSubtract for an inverse variance meta-analysis (a–e)

and a sqrt(sample size) weighted z-score meta-analysis (f–h) both using double gen-

omic control correction. The percentage of remaining samples after exclusion of 1

to 10 (a–e) or 12 (f–h) cohorts is shown on the x-axis. Different forms of the dots in-

dicate different minor allele frequency ranges

4522 I.M.Nolte et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa570#supplementary-data

