Skip to main content
. 2020 Jun 17;36(19):4910–4917. doi: 10.1093/bioinformatics/btaa540

Table 1.

Results of event extraction on the test sets given gold entities

Task Model P R F (%)
CG TEES-CNN (Björne and Salakoski, 2018) 66.55 50.77 57.60
DeepEventMine (single) 69.54 54.24 60.94
DeepEventMine (ensemble) 72.23 53.92 61.74

EPI EventMine (Miwa et al., 2013b) 54.42 54.28 54.35
TEES-CNN (Björne and Salakoski, 2018) 64.93 50.00 56.50
DeepEventMine (single) 73.73 55.95 63.62
DeepEventMine (ensemble) 78.34 56.39 65.57

GE11 EventMine (Miwa et al., 2012) 63.48 53.35 57.98
BioMLN (Venugopal et al., 2014) 63.61 53.42 58.07
TEES-CNN (Björne and Salakoski, 2018) 69.45 49.94 58.10
DeepEventMine (single) 71.71 56.20 63.02
DeepEventMine (ensemble) 76.28 55.06 63.96

GE13 TEES-CNN (Björne and Salakoski, 2018) 65.78 44.38 53.00

BioMLN (Venugopal et al., 2014)

59.24

48.95

53.61
DeepEventMine (single) 60.98 49.80 54.83
DeepEventMine (ensemble) 67.08 49.14 56.72

ID TEES-CNN (Björne and Salakoski, 2018) 66.48 50.66 57.50
EventMine (Miwa et al., 2013b) 61.33 58.96 60.12
DeepEventMine (single) 63.56 57.30 60.27
DeepEventMine (ensemble) 68.51 55.99 61.62

PC EventMine (Miwa and Ananiadou, 2013) 53.48 52.23 52.84
TEES-CNN (Björne and Salakoski, 2018) 62.16 50.34 55.62
DeepEventMine (single) 64.12 49.19 55.67
DeepEventMine (ensemble) 68.13 50.07 57.72

MLEE MultiRep-CNN (Wang et al., 2017) 60.56 56.23 58.31
PMCNN (Li et al., 2020) 67.23 53.61 59.65
BLSTM (He et al., 2019) 59.61
DeepEventMine (single) 67.39 56.35 61.38
DeepEventMine (ensemble) 69.91 55.49 61.87

Notes: The highest scores are shown in bold.