Table 1.
Task | Model | P | R | F (%) |
---|---|---|---|---|
CG | TEES-CNN (Björne and Salakoski, 2018) | 66.55 | 50.77 | 57.60 |
DeepEventMine (single) | 69.54 | 54.24 | 60.94 | |
DeepEventMine (ensemble) | 72.23 | 53.92 | 61.74 | |
| ||||
EPI | EventMine (Miwa et al., 2013b) | 54.42 | 54.28 | 54.35 |
TEES-CNN (Björne and Salakoski, 2018) | 64.93 | 50.00 | 56.50 | |
DeepEventMine (single) | 73.73 | 55.95 | 63.62 | |
DeepEventMine (ensemble) | 78.34 | 56.39 | 65.57 | |
| ||||
GE11 | EventMine (Miwa et al., 2012) | 63.48 | 53.35 | 57.98 |
BioMLN (Venugopal et al., 2014) | 63.61 | 53.42 | 58.07 | |
TEES-CNN (Björne and Salakoski, 2018) | 69.45 | 49.94 | 58.10 | |
DeepEventMine (single) | 71.71 | 56.20 | 63.02 | |
DeepEventMine (ensemble) | 76.28 | 55.06 | 63.96 | |
| ||||
GE13 | TEES-CNN (Björne and Salakoski, 2018) | 65.78 | 44.38 | 53.00 |
BioMLN (Venugopal et al., 2014) |
59.24 |
48.95 |
53.61 |
|
DeepEventMine (single) | 60.98 | 49.80 | 54.83 | |
DeepEventMine (ensemble) | 67.08 | 49.14 | 56.72 | |
| ||||
ID | TEES-CNN (Björne and Salakoski, 2018) | 66.48 | 50.66 | 57.50 |
EventMine (Miwa et al., 2013b) | 61.33 | 58.96 | 60.12 | |
DeepEventMine (single) | 63.56 | 57.30 | 60.27 | |
DeepEventMine (ensemble) | 68.51 | 55.99 | 61.62 | |
| ||||
PC | EventMine (Miwa and Ananiadou, 2013) | 53.48 | 52.23 | 52.84 |
TEES-CNN (Björne and Salakoski, 2018) | 62.16 | 50.34 | 55.62 | |
DeepEventMine (single) | 64.12 | 49.19 | 55.67 | |
DeepEventMine (ensemble) | 68.13 | 50.07 | 57.72 | |
| ||||
MLEE | MultiRep-CNN (Wang et al., 2017) | 60.56 | 56.23 | 58.31 |
PMCNN (Li et al., 2020) | 67.23 | 53.61 | 59.65 | |
BLSTM (He et al., 2019) | — | — | 59.61 | |
DeepEventMine (single) | 67.39 | 56.35 | 61.38 | |
DeepEventMine (ensemble) | 69.91 | 55.49 | 61.87 |
Notes: The highest scores are shown in bold.