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Abstract

Summary: PRANC computes the Probabilities of RANked gene tree topologies under the multispecies coalescent. A
ranked gene tree is a gene tree accounting for the temporal ordering of internal nodes. PRANC can also estimate the
maximum likelihood (ML) species tree from a sample of ranked or unranked gene tree topologies. It estimates the
ML tree with estimated branch lengths in coalescent units.

Availability and implementation: PRANC is written in Cþþ and freely available at github.com/anastasiiakim/PRANC.

Contact: anastasiia.kim@protonmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A species (respectively, gene) tree represents the evolutionary
relationships among a set of species (respectively, genes).
Discordance between species trees and gene trees is often mod-
eled by the multispecies coalescent (MSC). The MSC is widely
used to infer species trees directly from sequence data (Bryant
et al., 2012; Chifman and Kubatko, 2014; Heled and
Drummond, 2010; Ronquist et al., 2012; Yang, 2015), from
unrooted gene tree topologies (Larget et al., 2010; Liu and Yu,
2011; Mirarab et al., 2014), or from rooted unranked gene tree
topologies (Liu et al., 2009; 2010; Pei and Wu, 2017; Wu,
2012), or from the gene trees with branch lengths (Kubatko
et al., 2009; Liu et al., 2009).

We introduce PRANC, which computes the probabilities of
ranked gene tree topologies under the MSC (Degnan et al., 2012;
Stadler and Degnan, 2012). We use ranked gene trees, which de-
scribe both the topological relationships among gene lineages and
the order in which gene lineages coalesce. For example, the trees
((A:0.1, B:0.1):1.0,(C:1.0, D:1.0):0.1) and ((A:0.5,
B:0.5):0.5,(C:0.1, D:0.1):0.9) are converted to ranked trees ((A,
B)3,(C, D)2)1 and ((A, B)2,(C, D)3)1, respectively, where the sub-
scripted number is the rank of the internal node starting from most
ancient (the root) to most recent. Ranked trees preserve some branch
length information, giving the potential to improve species tree in-
ference. PRANC is the first method we are aware of that uses
ranked gene trees to infer species trees.

PRANC takes a set of ranked gene tree topologies and
searches for the maximum likelihood (ML) species tree. We
evaluate the performance of PRANC in comparison with
STELLS2 and ASTRAL using a gibbon dataset (Carbone et al.,
2014; Shi and Yang, 2018).

2 Description

Let T be an n-taxon rooted species tree with branch lengths.
Assuming that we have observed a collection of N independent
ranked gene trees Gi; i ¼ 1; 2; . . . ;N, the ML species tree is

T ML ¼ argmaxT P½G1; . . . ;GN jT � ¼ argmaxT
YN

i¼1

P½GijT �: (1)

The probability of the ranked gene tree PðGjT Þ is described else-
where (Degnan et al., 2012; Kim et al., 2020; Stadler and Degnan,
2012).

PRANC seeks to find a species tree with branch lengths in co-
alescent units T that maximizes the likelihood given by Equation
(1). Supplementary Table S1 shows some available options.

To estimate the ML species tree, PRANC uses the following
steps:

1. Process the initial species tree. If the tree has the branch lengths

specified in coalescent units, treat the tree as a ranked tree. Find

a set of speciation interval lengths that maximizes the likelihood.

If the branch lengths are not specified in the tree, generate all

possible rankings. Randomly select a subset of ranked trees (by

default, all rankings will be considered but a subset of rankings

can be considered, 2n rankings work well). Define the speciation

interval length between the ði� 1Þth and ith speciation events as

ti ¼ si�1 � si, where si is the time of the interior node of rank i.

For each of these trees, initialize each interval length ti to 1.0

and find a set of speciation interval lengths that maximizes the

likelihood. Pick the tree T with the highest likelihood.
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2. Obtain all trees that are one nearest-neighbor interchange (NNI)

away from T . For each of these unranked trees, generate all pos-

sible ranked trees. Randomly select a subset of ranked trees (by

default, 2n rankings). Find the speciation interval lengths that

maximizes the likelihood of the ranked gene trees and pick the

one with the highest likelihood. If this tree has a larger likeli-

hood, then set T to this tree.

3. Repeat step 2 until convergence or until all trees within k (by de-

fault, k ¼ 5) NNI steps are explored.

4. Calculate the branch lengths of the inferred tree. PRANC pri-

marily estimates interval lengths and then calculates internal

branch lengths from them. For convenience, the time of the most

recent clade is set to 0.1 but could be set to any other value be-

cause it does not affect the probabilities.

The starting tree can be computed using PRANC using greedy
consensus (i.e. extended majority rule) (Bryant, 2003) or some other
options (see software). Faster species tree methods, such as
ASTRAL, can also be used to supply the starting tree, which
PRANC can then improve upon (see Supplementary Material). A
list of starting trees can be provided by the user in a single file.
PRANC then applies step 1 to each of these and finds the highest
likelihood among the starting trees before proceeding to step 2.

PRANC optimizes the interval lengths using Brent’s method
(Brent, 1973) and L-BFGS: limited memory algorithm for bound
constrained optimization method (Byrd et al., 1995). We compute
the initial likelihood for the tree obtained in step 1. Then, we opti-
mize each length one at a time using Brent’s method, fixing the other
lengths. We randomly pick interval orders for optimization. After m
rounds of such optimizations (by default, m is set to the number of
taxa n), the optimal tree is reported. We allow the length to be in
the interval ½0:001; 6�. As an alternative, we propose to use L-BFGS
method for the interval lengths optimization. It is well suited for the
negative log likelihood minimization because it can minimize across
multiple variables at the same time and the boundaries for the
allowed values that parameters can take can be defined in L-BFGS
method. We found that for the small-scale simulation L-BFGS
method runs faster than Brent’s method.

For balanced topologies, far more rankings exist than for less-
balanced topologies. Computing the likelihood of gene trees for
every possible ranked topology is not efficient for n>7-taxon trees.
We observed that in most cases, the values of likelihoods for differ-
ent rankings of the same unranked species tree are close to each
other. Therefore, in step 2, we compute likelihoods of a randomly
chosen small subset of rankings (by default, n rankings). If at least
one of the obtained n likelihoods is larger than the threshold, then
PRANC computes the likelihoods for a larger subset of rankings (by
default, up to 2n rankings). The user can change PRANC’s settings,
such as the method for branch length optimization, the number of
rankings to consider for each unranked species tree candidate, the
number of NNI moves and the allowed length for each speciation
interval.

3 Example

We used PRANC to infer the species tree for a genome-scale dataset
consisting of 5 gibbons species with 12 413 non-coding loci, each of
length 1000 bp. (Carbone et al., 2014; Veeramah et al., 2015). We
used IQ-TREE (Nguyen et al., 2015) to estimate 6-taxon unrooted
gene trees from DNA sequences under the GTRþ C model. We
rooted these trees on the outgroup, and then dropped it to get 5-
taxon rooted gene trees and made them ultrametric. We obtained a
subset of 10 706 5-taxon rooted ultrametric gene trees that passed a
molecular clock test (Felsenstein, 2004) running all 12 413 trees
through Dnaml and Dnamlk (Felsenstein, 2013).

BPP (Yang, 2015), ASTRAL (Mirarab et al., 2014), STELLS2
(Pei and Wu, 2017) and PRANC were used to estimate species trees
from DNA sequences, a sample of unrooted, unranked and ranked
gene tree topologies, respectively. We observed that all three

methods converge as the number of genes increases to the species
tree topology obtained by Shi and Yang (2018) using BPP (Fig. 1)
using all loci. The results shown in Figure 1 are intuitive. Unrooted,
unranked and ranked trees preserve increasing amounts of informa-
tion about the rooted trees with specified branch lengths, respective-
ly. As expected, for a small number of genes, the Bayesian BPP that
calculates the posterior probabilities of different species trees from
DNA sequences was more likely to estimate a tree that matched the
species tree obtained from larger samples.

We also compared PRANC’s performance with ASTRAL and
STELLS2 on simulated data. We simulated 100 n ¼ 5�;6�; 7�; 8-
taxon species trees under the Yule model with speciation rates k ¼
0:5 and k¼1. We used TreeSim (Stadler, 2011) to generate species
trees and hybrid-lambda (Zhu et al., 2015) to simulate 100, 500 and
1000 gene trees for each species tree. The greedy consensus tree and
the trees estimated by ASTRAL and STELLS2 were used as starting
trees for PRANC. We ran PRANC under different settings. The
simulation results are shown in Supplementary Figures S1 and S2,
using true (not estimated) gene trees. In practice, users will need to
first provide estimates of the gene trees, including either divergence
times or ranking information. Under default settings described in
Section 2, on average, PRANC can estimate an n¼5-, 6-, 7-taxon
species tree from 100 and 1000 gene trees in seconds and in a few
minutes, respectively. On average, PRANC can estimate an n¼8-
taxon tree from 100 and 1000 gene trees in a few minutes and in
30–45 min, respectively. Both ASTRAL and STELLS2 are much
faster. ASTRAL runs in seconds to estimate an 8-taxon species tree
from 1000 gene trees. It usually takes several minutes for STELLS2
to estimate an 8-taxon species tree from 1000 gene trees.

To see how well PRANC can estimate branch lengths, we con-
sidered 100 estimated species trees by PRANC, STELLS2 and
ASTRAL. Note that, all 100 inferred trees had the same unranked
topologies as their corresponding species trees. In particular, we gen-
erated 100 5- and 8-taxon trees under the Yule model with the birth
rate k ¼ 0:5 and k¼1. In each case, 100 or 1000 gene trees were
generated from each species tree and were used to estimate the spe-
cies tree internal branch lengths. For each inferred tree, we calcu-
lated the mean squared error between true and estimated internal
branch lengths. On average, PRANC estimates branch lengths more
accurately than ASTRAL and STELLS2. As expected, using 1000

Fig. 1. The proportion of correct species trees in a gibbon dataset obtained by four

different methods plotted against the number of gene trees. Note that, the true tree

is unknown. We compared estimated unranked species tree topologies with that

obtained by BPP (Yang, 2015). The gene trees were considered as ranked for

PRANC, unranked for STELLS2 and unrooted for ASTRAL. The greedy consensus

tree was used as a starting tree for PRANC. To get an estimated rooted species tree

from ASTRAL, we added an outgroup to the 5-taxon unranked gene trees. Then the

estimated unrooted species tree by ASTRAL was rooted on the outgroup, and the

outgroup was dropped to get a rooted 5-taxon tree. DNA sequences and no trees

were used for BPP. The results for BPP were computed using up to 750 gene trees.

In terms of approximate computational time, it took a few hours for BPP to esti-

mate a 5-taxon species tree from 100 to 500 loci, whereas it took seconds to esti-

mate a 5-taxon species tree from 100 to 500 gene trees with the other three

programs
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gene trees instead of 100 trees resulted in more accurate estimates
for all three programs (Supplementary Table S2 and Figs S3–S5).

4 Conclusion

PRANC is a computational framework to work with the ranked gene
trees. PRANC performs a heuristic search from the initial trees to find
an ML species tree. There is a trade-off between PRANC’s estimation
accuracy and its computational time. The speed of the program mainly
depends on the choice of initial tree and the number of rankings consid-
ered for each unranked species tree candidate. We tested PRANC’s per-
formance under different settings. In general, it is sufficient to consider
2n rankings for each unranked n-taxon species tree candidate. More
rankings can be considered to improve accuracy at the expense of
speed. In a gibbon dataset and in simulations on 5-8–taxon trees,
PRANC outperformed STELLS2 and ASTRAL (Supplementary Fig.
S1). On average, PRANC estimated branch lengths more accurately
than ASTRAL and STELLS2 based on mean-squared error
(Supplementary Table S2 and Figs S3–S5).
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