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Abstract

Background: Conventional epidemiologic studies have evaluated associations between

circulating lipid levels and breast cancer risk, but results have been inconsistent.

As Mendelian randomization analyses may provide evidence for causal inference,
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we sought to evaluate potentially unbiased associations between breast cancer risk and

four genetically predicted lipid traits.

Methods: Previous genome-wide association studies (GWAS) have identified 164 dis-

crete variants associated with high density lipoprotein-cholesterol (HDL-C), low density

lipoprotein-cholesterol (LDL-C), triglycerides and total cholesterol. We used 162 of these

unique variants to construct weighted genetic scores (wGSs) for a total of 101 424 breast

cancer cases and 80 253 controls of European ancestry from the Breast Cancer

Association Consortium (BCAC). Unconditional logistic regression was used to estimate

odds ratios (OR) and 95% confidence intervals (CI) for associations between per standard

deviation increase in genetically predicted lipid traits and breast cancer risk. Additional

Mendelian randomization analysis approaches and sensitivity analyses were conducted

to assess pleiotropy and instrument validity.

Results: Corresponding to approximately 15 mg/dL, one standard deviation increase in

genetically predicted HDL-C was associated with a 12% increased breast cancer risk (OR:

1.12, 95% CI: 1.08–1.16). Findings were consistent after adjustment for breast cancer risk

factors and were robust in several sensitivity analyses. Associations with genetically pre-

dicted triglycerides and total cholesterol were inconsistent, and no association for geneti-

cally predicted LDL-C was observed.

Conclusions: This study provides strong evidence that circulating HDL-C may be associ-

ated with an increased risk of breast cancer, whereas LDL-C may not be related to breast

cancer risk.

Key words: Breast cancer, lipids, cholesterol, genetics, Mendelian randomization, instrumental variable,

epidemiology

Introduction

Circulating lipids, including high density lipoprotein-

cholesterol (HDL-C), low density lipoprotein-cholesterol

(LDL-C), triglycerides and total cholesterol, have long

been hypothesized to influence the risk of breast, colorectal

and other common cancers.1–4 Early prospective cohort

studies reported inverse associations for total cholesterol

and cancer risk.2–4 However, these findings could be due

to reverse causation, where disease development or pro-

gression leads to lower circulating cholesterol levels years

before disease diagnosis.5–7 It is also possible that con-

founding factors, such as smoking, alcohol consumption,

and socioeconomic status may have biased associations

reported in previous epidemiologic studies.8,9

The role of HDL-C in disease risk is controversial.

Although it is an established risk factor for coronary heart

disease,10 large Mendelian randomization analyses have

suggested that the association between low HDL-C and

heart disease may not be causal.11,12 Furthermore, clinical

trials designed to increase circulating HDL-C levels phar-

macologically have not demonstrated overall benefits in

heart disease prevention.13,14 With regard to breast cancer,

multiple studies have found inverse associations between

HDL-C and risk.15,16 Contrary to these findings, HDL-C

Key Messages

• We conducted a large Mendelian randomization analysis to provide unbiased estimates of association with breast

cancer risk for four lipid traits among 181 677 European-ancestry women from the Breast Cancer Association

Consortium.

• One standard deviation increase (representing approximately 15 mg/dL) increase in genetically predicted high density

lipoprotein-cholesterol (HDL-C) was associated with a 12% increased risk of breast cancer, whereas no consistent

associations were found with low density lipoprotein-cholesterol, triglycerides or total cholesterol.

• This study suggests that circulating HDL-C levels may influence breast cancer susceptibility.
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was associated with increased breast cancer risk when re-

peated serum lipid measures were evaluated.17 Given the

current controversy regarding the association between cir-

culating lipid traits and cancer in general, and with breast

cancer in particular, this finding has faced scepticism.18

Due to methodological limitations such as reverse cau-

sation and confounding, it is unlikely that conventional ob-

servational studies can resolve the longstanding debate

about the role of circulating lipids in breast cancer develop-

ment. Mendelian randomization analyses can potentially

overcome some of the limitations inherent in conventional

epidemiologic studies. Taking advantage of the random as-

sortment of alleles which occurs during gametogenesis,

thereby resembling randomized clinical trials, Mendelian

randomization analysis uses genetic data (i.e. single nucleo-

tide polymorphisms, or SNPs) as genetic instruments to

estimate exposures of interest for association analyses with

disease outcomes. Results from a Mendelian randomiza-

tion analysis may provide strong evidence for causality, if

the genetic instruments used are associated with the expo-

sure, only affect the outcome via the exposure and are not

associated with any of the confounders of the exposure-

outcome relationship.19 To date, genome-wide association

studies (GWAS) have linked circulating lipid traits to at

least 157 genetic loci.20,21 A recent Mendelian randomiza-

tion analysis used only summary statistics approaches

and reported that genetically increased LDL-C and HDL-C

were associated with increased estrogen receptor (ER)-

positive breast cancer risk.22 We independently conducted

a Mendelian randomization analysis that leveraged both

individual-level and summary statistics data for lipid-

associated variants, and created instrumental variables to

evaluate shared genetic components and associations be-

tween four circulating lipid traits and breast cancer risk.

Methods

Study population

The Breast Cancer Association Consortium (BCAC) is an in-

ternational collaboration initiated in 2005 to study genetic

susceptibility to breast cancer. First, we included individual-

level epidemiologic and genetic data from 62 846 breast can-

cer cases and 43 207 healthy controls of European ancestry

from 67 BCAC studies; genetic data included more than

500 000 variants from a custom OncoArray platform that

was designed to provide dense coverage across known cancer

susceptibility loci as well as common variants.23 Second, we

included independent data from 38 578 cases and 37 046

BCAC controls that were genotyped on the Illumina iSelect

genotyping Collaborative Oncological Gene-Environment

Study (iCOGS) array [http://ccge.medschl.cam.ac.uk/re

search/consortia/icogs/].24 Demographic and select patient

characteristics were harmonized across BCAC studies

according to a standardized protocol. All BCAC studies

were approved by relevant institutional review boards, and

all participants provided written informed consent.

Variant genotyping, imputation, and selection

Genetic variants associated with lipid traits were selected

from the Global Lipids Genetics Consortium. The first lipid-

trait GWAS included approximately 100 000 subjects of

European ancestry and identified 102 genetic variants in 95

loci.20 The second GWAS, conducted among 188 577 sub-

jects predominantly of European ancestry, identified 83 addi-

tional variants in 62 loci, resulting in a total of 185 lipid-

associated variants in 157 loci.21 However, among the 83

variants, 21 were associated with more than one lipid trait

and were not discrete. Thus, we identified a total of 164

unique lipid trait associated variants, of which 87 were geno-

typed by OncoArray and 75 were imputed with high infor-

mation quality scores (mean r2 ¼ 0.98, range¼0.86–0.99).

In iCOGS data, 39 selected variants were genotyped, and

123 were successfully imputed (mean r2 ¼ 0.82,

range¼ 0.35–0.99). Two variants (rs2247056 and

rs3177928) were not imputed in either dataset, providing a

total of 162 in our analysis (Supplementary Table S1,

available as Supplementary data at IJE online). Except for

two variants (rs2814982 and rs2814944) in moderate link-

age disequilibrium (LD; r2 ¼ 0.51), all included variants

were independent (r2 < 0.1). Because rs2814982 was associ-

ated with total cholesterol and rs2814944 was associated

with HDL-C, both were retained in our analysis, as no in-

strumental variable included both SNPs. Thus, based on in-

formation available from published GWAS, our instrumental

variables for HDL-C, LDL-C, triglycerides and total choles-

terol included 74, 57, 43 and 74 variants, respectively.

Mendelian randomization analyses

Our primary analysis used individual-level data from BCAC

iCOGS and OncoArray to generate weighted-genetic scores

(wGSs) for four lipid traits (HDL-C, LDL-C, triglycerides

and total cholesterol). For each lipid trait, we constructed

instrumental variables as follows: wGS¼
Pn

i¼1 bgx�ai, where

bgx represents the effect for the genetic variant (g) associated

with an increase in lipid levels (x) and ai is effect allele dos-

age for each genetic variant (ranging from 0 to 2 for each in-

dividual), for n genetic variants from the Global Lipids

Genetics Consortium GWAS.20,21

Associations between lipid trait wGRs and breast can-

cer risk factors (conducted separately for iCOGS and

OncoArray datasets) were assessed with linear or
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logistic regression for continuous or categorical variables, re-

spectively (Supplementary Table S2, available as

Supplementary data at IJE online). Associations between

lipid trait wGSs and breast cancer risk were estimated by

odds ratios (ORs) and 95% confidence intervals (95% CIs)

from unconditional logistic regression using individual-level

data. Analyses were conducted separately for BCAC partici-

pants with iCOGS and OncoArray data (Supplementary

Table S3, available as Supplementary data at IJE online), and

then combined by random-effects or fixed-effects meta-analy-

sis (Supplementary Table S4, available as Supplementary

data at IJE online); Cochran’s Q statistic was used to evalu-

ate heterogeneity. Models were adjusted for age, principal

components (PCs) for European ancestry (iCOGS: six PCs;

OncoArray: 10 PCs), and either study site (iCOGS) or coun-

try (OncoArray), as previously described.23,25 Additional ad-

justment included breast cancer risk factors that were

associated with lipid trait wGSs. We assessed effect measure

modification by menopausal status, age (dichotomized at

50 years) and body mass index (dichotomized at 30 kg/m2)

using likelihood ratio tests (LRT) for multiplicative interac-

tion terms in nested models. Polytomous regression was

employed to evaluate associations with estrogen receptor

(ER) positive (þ) and ER negative (-) breast cancer subtypes;

tests of equivalence of beta coefficients across subtypes were

used to evaluate heterogeneity.

To reduce correlation between instrumental variables,

we also constructed amended wGSs that included only ge-

netic variants that were exclusively associated with HDL-C

(55 variants), LDL-C (44 variants) or triglycerides (20 var-

iants) at a genome-wide significance level (Supplementary

Table S5, available as Supplementary data at IJE online)

and then re-evaluated associations with breast cancer risk

(Supplementary Table S6, available as Supplementary data

at IJE online). Because total cholesterol includes other lipid

traits, no such amended wGS was created. Analyses were

completed using SAS (version 9.4) and Stata (version 12.1).

Sensitivity analyses

In addition to individual-level analyses, we also conducted

Mendelian randomization analysis using inverse-variance

weighted summary statistics (Supplementary Table S7, avail-

able as Supplementary data at IJE online).26 Four additional

sensitivity analyses were used to assess the influence of ge-

netic pleiotropy and validity of our genetic instruments. First,

Mendelian randomization Egger (MR Egger) regression was

employed to evaluate the presence of directional pleiotropy

by testing whether the intercept was statistically different

from zero, and to estimate a bias-reduced Mendelian ran-

domization estimate from the regression slope.27 Second, a

weighted multivariable regression-based approach was used

to assess the influence of potential pleiotropic effects of ge-

netic variants included in each instrument on other lipid

traits; specifically, we regressed beta-coefficients for associ-

ations between genetic variants and breast cancer risk (bBC)

on beta-coefficients between genetic variants and lipid traits

(HDL-C: bHDL-C, LDL-C: bLDL-C, triglycerides: bTG, and

total cholesterol: bTC), thereby adjusting for the associa-

tions between genetic variants and other lipid traits.28,29

Third, we estimated associations using a weighted-median

Mendelian randomization approach where we assumed

that 50% of the variants included in each genetic instru-

ment were invalid instruments (i.e. did not meet at least one

of the three assumptions necessary for a valid instrumental

variable); standard errors were estimated by bootstrapping

and were subsequently used to calculate 95% CIs.30

Fourth, we conducted a leave-one-out analysis where the

Mendelian randomization association was re-estimated af-

ter removing the strongest SNP (as determined by the larg-

est change in magnitude in comparison with results from

instruments with all variants). Sensitivity analyses were

conducted using the ‘TwoSampleMR’ package curated by

MR-Base31 using R version 3.5.1, R Foundation for

Statistical Computing [https://www.r-project.org/]. Finally,

visual representations of the IVW, MR Egger, and

weighted-median approaches were created for comparison

(Supplementary Figures S1–S4, available as Supplementary

data at IJE online), and funnel plots for individual SNP MR

estimates in relation to the inverse of the standard errors

(Supplementary Figures S5–S8, available as Supplementary

data at IJE online) were inspected for symmetry to indicate

validity of our Mendelian randomization analysis.

Results

One genetically predicted standard deviation increase in

HDL-C, LDL-C, triglycerides and total cholesterol was cal-

culated to correspond to approximately 15, 37, 43 and

42 mg/dL increases, respectively. Associations between

breast cancer risk factors and lipid trait wGSs were evalu-

ated among all BCAC participants and among only con-

trols (Supplementary Table S2). Several associations were

identified; however, the only consistent association across

the two populations and genotyping platforms was be-

tween increasing age and lower total cholesterol (iCOGS

P¼ 4.0 � 10�4 and OncoArray P¼ 0.01). Similarly, the

only consistent association among controls was between

increasing age and lower triglycerides (iCOGs P¼0.04

and OncoArray P¼0.03).

Associations for each standard deviation increase in ge-

netically predicted lipid trait from iCOGS and OncoArray

genotyped BCAC participants (Supplementary Table S3)

were combined by random-effects meta-analysis (Table 1).
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Among all women, increased HDL-C levels were associ-

ated with increased breast cancer risk (OR: 1.12, 95% CI:

1.08–1.16) in models that included adjustment for age,

study site or country and principal components for

European ancestry. We found no association for LDL-C

(OR: 1.00, 95% CI: 0.96–1.04) modest risk reduction was

suggested for increasing triglycerides (OR: 0.93, 95% CI:

0.85–1.01) and a modest increase in risk was suggested for

increasing total cholesterol levels (OR: 1.05, 95% CI:

0.99–1.11). Further, we found no significant interactions

by menopausal status, age or body mass index (BMI)

among either iCOGS or Oncoarray genotyped participants

for any lipid trait. For the HDL-C wGS, increased breast

cancer risk was observed per one standard deviation in-

crease among postmenopausal women (1.11, 95% CI:

1.05–1.17), women less than 50 years of age (1.17, 95%

CI: 1.01–1.34), women age 50 or greater (1.11, 95% CI:

1.06–1.16) and non-obese (BMI< 30 kg/m2) women (1.14,

95% CI: 1.08–1.20). Associations were also observed for

both ER- (1.10, 95% CI: 1.03–1.18) and ERþ (1.11, 95%

CI: 1.07–1.16) breast cancers. On the contrary, one stan-

dard deviation increase in triglycerides was associated with

reduced breast cancer risk among postmenopausal women

(OR: 0.93, 95% CI: 0.88–0.99), women age 50 or greater

(OR: 0.93, 95% CI: 0.89–0.98) and non-obese women

(OR: 0.90, 95% CI: 0.83–0.98); the association was also

observed for ERþ breast cancer (OR: 0.91, 95% CI: 0.85–

0.91). In these stratified analyses, total cholesterol was as-

sociated with breast cancer risk only among premeno-

pausal women (OR: 1.08, 95% CI: 1.00–1.17). Results

were materially unaltered when fixed-effect meta-analyses

were conducted (Supplementary Table S4).

In addition, we constructed amended instruments with

reduced correlation by including only 55, 44 or 20 genetic

variants that were exclusively associated with either HDL-

C, LDL-C, or triglycerides (Supplementary Table S5); the

amended HDL-C wGS was associated with increased

breast cancer risk (OR: 1.14, 95% CI: 1.07–1.22) whereas

the amended triglyceride wGS was not (OR: 1.00, 95% CI:

0.86–1.16) (Supplementary Table S6). Regardless of ad-

justment, or whether initial or exclusive variants were in-

cluded, the LDL-C wGS was not associated with breast

cancer risk in our analyses.

We also conducted Mendelian randomization analysis

using summary statistics data and included several sensitiv-

ity analyses to assess the validity of our instrumental varia-

bles (Supplementary Table S7). The inverse-variance

weighted Mendelian randomization estimate using sum-

mary statistics26 per standard deviation (SD) increase in

circulating lipids confirmed our initial findings: increased

HDL-C was associated with increased breast cancer risk

(ORIVW: 1.12, 95% CI: 1.08–1.17) whereas increased

LDL-C was not associated with breast cancer risk (ORIVW:

0.99, 95% CI: 0.96–1.03). These associations were consistent

for HDL-C and LDL-C regardless of dataset. On the con-

trary, triglycerides were associated with reduced breast can-

cer risk only in OncoArray data (ORIVW: 0.88, 95% CI:

0.83–0.92) and total cholesterol was associated with in-

creased risk only in iCOGS data (ORIVW: 1.06, 95% CI:

1.01–1.12). The MR Egger regression intercept indicated that

the IVW estimate for total cholesterol was potentially biased

due to directional pleiotropy (iCOGS: bintercept ¼ 0.0105,

P-value¼ 7.3 � 10�2; OncoArray: bintercept¼ 0.0053,

P value¼ 7.3 � 10�2). The bias-reduced estimate, derived

from MR Egger regression, indicated a potential risk reduc-

tion for total cholesterol (ORMR Egger: 0.92, 95% CI: 0.85–

1.00). We also conducted weighted multivariable regression

with mutual adjustment for other lipid traits.28,29 Increasing

HDL-C was associated with increased breast cancer risk in

iCOGS data (ORweighted-regression: 1.16, 95% CI: 1.08–1.25),

and higher triglycerides were associated with decreased breast

cancer risk in OncoArray data (ORweighted-regression: 0.88,

95% CI: 0.81–0.95). Using a weighted-median approach,

which assumes that half of included variants are invalid,27

only HDL-C was associated with increased breast cancer risk

after meta-analysis across our data sources (ORweighted-median:

1.08, 95% CI: 1.02–1.14). Results from our leave-one-out

analysis also yielded an association for HDL-C and breast

cancer risk (ORLeave-one-out: 1.13, 95% CI: 1.06–1.20).

Finally, associations across approaches were compared visu-

ally (Supplementary Figures S1–S4), and symmetry of funnel

plots supported the validity of our Mendelian randomization

analysis (Supplementary Figures S5–S8).

Discussion

In this large-scale Mendelian randomization study using

162 lipid-associated GWAS variants, we found that higher

levels of genetically predicted HDL-C were associated with

an increased risk of breast cancer. This finding was robust

and consistent across a variety of analytical approaches.

Genetically predicted triglyceride and total cholesterol levels

were also associated with breast cancer risk in some analy-

ses, but these findings were not consistent and varied by

data source and statistical adjustment. Genetically predicted

LDL-C was not associated with breast cancer risk in any

analyses. Traditional epidemiologic studies that have mea-

sured circulating lipids and evaluated breast cancer risk

have had conflicting results, likely due to reverse causation,

confounding and selection bias. By using a Mendelian ran-

domization approach, we aimed to overcome limitations in-

herent in traditional studies and to provide strong evidence

supporting a possibly causal association between high

HDL-C levels and increased breast cancer risk.
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Another Mendelian randomization analysis on lipids

and breast cancer risk with BCAC data was recently pub-

lished; their primary findings include an increased risk of

ER-positive breast cancer risk per standard deviation of ge-

netically raised HDL-C (OR: 1.13, 95% CI: 1.01–1.26) or

LDL-C (OR: 1.14, 95% CI: 1.05–1.24).22 Several method-

ological differences may explain why these results differ

from ours, most notably for LDL-C. First, in addition to

using summary statistics approaches, our analysis included

individual-level BCAC data, which enabled us to control

for potential confounding by breast cancer risk factors and

to conduct stratified analyses. Second, we selected GWAS-

significant variants from primary tables in published

GWAS, which had slight differences in information avail-

able from the Global Lipids Genetics Consortium.21 Third,

although we both started with 185 variants in 157 loci, the

number of SNPs included in the final genetic instruments

differed considerably. Rather than a subset, we included all

available independent variants in our primary instruments:

for example, 57 versus 44 SNPs for LDL-C.

Other relevant publications include a study of serum

lipids found that higher HDL-C was associated with in-

creased breast cancer risk when serial measurements were

assessed, but not when only one baseline measure was eval-

uated.17 This contrasts with a meta-analysis of prospective

studies that found modest inverse associations with breast

cancer risk for both total cholesterol and HDL-C.15 Given

that circulating cholesterol levels are often decreased sev-

eral years before cancer diagnosis, inverse associations for

this trait could be attributable to bias from reverse causa-

tion. In addition, residual confounding from factors such

as mammographic breast density or alcohol intake, and ef-

fect modification by menopausal status, may also likely in-

fluence associations between circulating lipids and breast

cancer risk.18

Plasma lipoproteins transport triglycerides and choles-

terol between the liver and tissues. HDL-C is the smallest

and most dense lipoprotein, and accounts for approxi-

mately 30% of total cholesterol, with levels ranging be-

tween 40–60 mg/dL. Higher HDL-C concentrations are

associated with better cardiovascular health and lower cor-

onary heart disease risk.10 However, recent Mendelian

randomization analyses have suggested that high HDL-C

may not be causally related to reduced coronary heart dis-

ease risk.11,12 Furthermore, pharmacological interventions

to increase HDL-C levels have not consistently translated

to improved health outcomes,13,14 and a consensus state-

ment from the National Lipid Association concluded that

HDL-C is not currently a therapeutic target.10 Instead,

measures of HDL functionality may be more important

than absolute levels, as not all HDL-C functions the same

way.10 For example, oxidized HDL-C and HDL-C from

patients with type 2 diabetes had greater capacity to pro-

mote proliferation, migration and metastasis of breast can-

cer cells.32 Thus, in addition to a major role in reverse

cholesterol transport and anti-atherogenic effects, HDL-C

also seems to have other functions, including the potential

to enhance proliferation of breast cancer cells.32,33 These

data provide possible biological mechanisms supporting

the increased breast cancer risk seen with increasing levels

of genetically predicted HDL-C in our study.

In the current study, associations for triglycerides and

total cholesterol in relation to breast cancer risk were in-

consistent. The total cholesterol wGS was associated with

breast cancer risk only among iCOGS genotyped partici-

pants, and multivariate adjustment attenuated this associa-

tion. Similarly, genetically predicted triglycerides were

associated with reduced breast cancer risk only among

OncoArray genotyped participants, and the exclusive vari-

ant instrument did not influence breast cancer risk. This

suggests that some previously reported associations may be

due to residual confounding, and that additional evalua-

tion to understand these discrepant findings may be

warranted.

Strengths of this study include a very large sample size,

strong instrumental variables for all four lipid traits (F-sta-

tistics all >10: HDL-C¼190, LDL-C¼266, TG ¼ 274

and TC ¼ 364),34 and multiple analytical approaches to

assess instrument validity. We included 162 variants

reported by the Global Lipids Genetics Consortium, which

account for approximately 13.7%, 14.6%, 11.7% and

15.0% of the variance in HDL-C, LDL-C, triglycerides

and total cholesterol, respectively.20,21 Given the large

number of variants used to construct our instruments, our

wGSs are likely to be most strongly associated with lipids,

and not as strongly associated with other traits, satisfying

one of the assumptions for a valid Mendelian randomiza-

tion analysis. Given that pleiotropy remains a concern for

Mendelian randomization analyses, we carefully evaluated

this possibility using several analytical approaches.27,28

Associations from exclusive variant wGS, inverse-variance

weighted Mendelian randomization and weighted-median

regression analysis were consistent, showing associations

between HDL-C and breast cancer risk. Furthermore, our

estimates were consistent after considering the potential in-

fluence of pleiotropy via MR Egger regression and multi-

variable weighted-regression. In addition, our results were

also unaltered whether fixed-effect or random-effect meta-

analysis was conducted.

Limitations of our study include that we did not have

direct measurements of circulating lipid levels from our

study population to further confirm the validity of our in-

strumental variables. However, in Mendelian randomiza-

tion analyses, it is preferable to use externally-derived
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weights for constructing genetic scores rather than

internally-derived weights from the same study popula-

tion.35 We included external weights from a single large

GWAS that was conducted predominantly among

Europeans,20,21 and included only women of European de-

scent in the current analysis. Additional lipid trait genetic

variants have also been reported;36 however, weights from

this multi-ethnic GWAS would not be applicable to our

Caucasian study population. Additional limitations include

incomplete information on all confounding factors, and

that we could not evaluate or adjust for all such possible

covariates, so whether our findings were influenced by re-

sidual confounding or another potential source of system-

atic bias cannot be determined. However, when we

adjusted for known breast cancer risk factors that were as-

sociated with our lipid trait wGSs, our results for HDL-C

were unaltered. In addition, many of the variants included

in our analysis were not directly genotyped. However, we

used only imputed variants of high quality (iCOGS: mean

r2 ¼ 0.82, range¼ 0.35–0.99; OncoArray; mean r2 ¼ 0.98,

range¼ 0.86–0.99). Any misclassification of genetic var-

iants would be expected to be non-differential regarding

our outcome, which would be more likely to attenuate

rather than amplify an association. We also note that our

genetic instruments may still include correlated SNPs (with

r2 threshold <0.1), so future analyses may consider more

stringent LD thresholds or pruning methods. Finally, mul-

tiple comparisons were made in our analysis. When we

amended our significance threshold using a Bonferroni cor-

rection, our primary finding regarding HDL-C and in-

creased breast cancer risk remained unaltered.

As increasing levels of HDL-C are generally thought to

be healthier, an association with increased breast cancer

risk was somewhat surprising. Although we could identify

potential mechanisms in support of this finding from the

literature, additional research to elucidate underlying fac-

tors is needed. For example, if lipid trait associations vary

by sex, then using sex-specific weights would be preferable.

Similarly, associations with breast cancer risk may vary by

clinical characteristics, such as stage or grade of disease;

future studies should be undertaken to address these possi-

bilities. Additional future directions include a bidirectional

Mendelian randomization analysis to test whether breast

cancer risk GWAS variants are associated with lipid traits,

and mediation analysis to evaluate whether covariates such

as BMI or smoking are confounding or mediating factors

in the relationship between lipids and breast cancer risk.

Our results suggest that increased HDL-C levels are as-

sociated with a 12% increased risk of breast cancer. Given

contradictory evidence in terms of the beneficial effects of

modifying HDL-C to affect cardiovascular disease risk,

our findings provide some additional support against the

broad use of therapeutic approaches to increase HDL-C in

the general population. Instead, our results may be most

useful for precision medicine, such as identifying women at

increased risk of breast cancer as predicted by HDL-C-as-

sociated SNPs. In addition, although Mendelian randomi-

zation analysis may provide evidence for causality,

interpreting our results as causal is not recommended; it is

impossible to confirm that all three assumptions for

Mendelian randomization assumptions were met, or that

our findings were not influenced by pleiotropy.

In conclusion, our Mendelian randomization analysis of

circulating lipids demonstrated that genetically predicted

levels of increasing HDL-C were associated with increased

breast cancer risk. Given the strong methodology used in

this study, our results may help to clarify the inconsisten-

cies observed across previous conventional observational

studies and to support the hypothesis that circulating lipids

may influence breast cancer risk.

Supplementary data

Supplementary data are available at IJE online.
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Lothar Haeberle,11 Eric Hahnen,75–77 Christopher A Haiman,78
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