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Abstract

Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex

gene families that detect environmental chemical cues and larger-scale sensory structures that

process these cues. While there is a general conception that olfactory receptor (OR) genes evolve

rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear.

The supposed correlation between molecular rates of chemosensory evolution and phenotypic

diversity of chemosensory systems is largely untested. We combine comparative genomics and

sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates

than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including

amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of

orthologous non-OR protein-coding genes. We found that, for all clades investigated, most

OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many

OR genes showing signatures of diversifying selection across nearly all taxa in this study.

This rapid rate of evolution suggests that chemoreceptor genes are in “evolutionary overdrive,”

perhaps evolving in response to the ever-changing chemical space of the environment. To obtain

complementary morphological data, we stained whole fixed specimens with iodine, mCT-scanned

the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We

then estimated phenotypic variation within traits and among tetrapods. While we found considerable

variation in chemosensory structures, they were no more diverse than nonchemosensory regions.

We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space,

whereas chemosensory phenotypes and processing regions are more conserved because they use a

standardized or constrained architecture to receive and process a range of chemical cues.
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Every organism must preserve its existence and improve its fitness

by first perceiving and then reacting to its surroundings. Natural se-

lection fine-tunes sensory systems to identify relevant cues for sur-

vival and reproduction, and to ignore other signals that may

interfere. No array of environmental signals is more “tangled” than

the chemical landscape of the natural world. Chemical signals are

affected by numerous biotic and abiotic factors (Rouyar et al. 2011;

Yohe and Brand 2018). The vast diversity of odorant molecules on
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the planet explains why chemosensation is so ubiquitous and so im-

portant to animals (indeed, to all life forms). However, the over-

whelming complexity of chemical backgrounds, chemical signals,

and chemoreceptors causes olfaction to remain one of the most

poorly understood senses (Hayden and Teeling 2014). Detecting

adaptive signatures and gaining a functional understanding of the

molecular and phenotypic basis of chemosensation are monumental

challenges in comparative biology. With the advent of improved

sequencing approaches and morphological imaging techniques, ex-

ploration of the convoluted “tangled bank” of chemosensory diver-

sity is becoming tractable.

Chemosensation in the tetrapod nose is performed by two sys-

tems: the main olfactory and the accessory vomeronasal. The main

olfactory system is considered to be devoted primarily to the detec-

tion of chemical cues related to diet and environment (Jørgensen

2000; Fleischer et al. 2018), while vomeronasal olfaction is associ-

ated with social chemical signaling (Liberles 2014; Stowers and Kuo

2015). The evidence for this distinction, however, comes over-

whelmingly from the mammalian literature (Van Valkenburgh et al.

2014). It has become increasingly clear that these systems are not

mutually exclusive (Suárez et al. 2012). The neural signaling detec-

tion mechanisms of both systems are similar: a chemical odorant

molecule binds to a single-receptor-expressing neuron, triggers de-

polarization, and sends a signal to converge with others in the olfac-

tory bulb, where integration and interpretation occur (Bear et al.

2016). The two systems mainly differ in the chemoreceptors they ex-

press. The primary receptors in the main olfaction are encoded by

genes within the Olfactory Receptor (OR) and trace-amine associ-

ated receptor (TAAR) gene families and those in vomeronasal olfac-

tion by vomeronasal-specific receptors (e.g., V1Rs or V2Rs) (Grus

2008; Brykczynska et al. 2013; Bear et al. 2016; Eyun et al. 2016).

The focus of this study is on OR genes, owing to their homology

across tetrapods (and beyond), but also because many of our find-

ings are relevant to all chemoreceptor families.

Irrespective of gene family, chemoreceptors are encoded by genes

that evolve via birth–death evolution (Nei and Rooney 2005). This

process is one in which genes are constantly tandemly duplicating

through time. Duplicate genes accumulate novel mutations that lead

either to pseudogenization (lost function) or neofunctionalization

(new function) (Pegueroles et al. 2013; Yohe, Liu, et al. 2019). In

the case of chemosensory receptor genes, many duplicated receptors

that accumulate neofunctional mutations evolve via diversifying se-

lection, in which new mutations lead to new odorant detection pro-

files (Nei et al. 2008). The birth–death process is exceptional in

ORs—duplications have led to hundreds, and sometimes thousands,

of accumulated copies (Niimura 2009, 2012; Niimura et al. 2014).

ORs are multigene family members that encode G-protein-coupled

receptors expressed in chemosensory epithelial tissue to detect odor-

ant molecules from the environment. ORs are short, intronless

�900 base pair (bp) genes that evolve primarily by tandem gene du-

plication (Young and Trask 2002; Young et al. 2002). They are the

largest gene family in the mammalian genome and compose �5% of

the protein-coding genes (Nei et al. 2008). While most OR work has

been performed on mammals (Hayden et al. 2010; Niimura et al.

2014), Classes I and II receptor genes are also present in reptiles

(Brykczynska et al. 2013), birds (Steiger et al. 2008; Khan et al.

2015), and amphibians (Ji et al. 2009), as well as some fish (Zhang

and Firestein 2009; Bear et al. 2016). Identifying the ligand of recep-

tors is notoriously difficult, as the relationship of odorant to recep-

tor is not one-to-one, and activation of odor recognition is

combinatorial (Malnic et al. 1999). As a result, only a handful of

receptors have had their ligands identified, and evidence is almost

exclusive to model organisms (Nara et al. 2011).

The morphological structure devoted to making sense of the

labyrinth of thousands of the OR-expressing sensory neurons is the

olfactory bulb. It does so with astounding precision (Zou et al.

2009). In the rostral most portion of the forebrain, the olfactory

bulb is organized into spheroid synaptic concentrations called glo-

meruli. All neurons expressing the same OR (Monahan and

Lomvardas 2015), no matter the distances among them in the epi-

thelia, will coalesce into the same glomerulus (Zou et al. 2009). In

other words, hundreds of thousands of neurons deliver their sensory

input into mere hundreds of cells. The number of glomeruli is corre-

lated with the number of distinct receptors (Bressel et al. 2016), and

their expression varies synchronously throughout ontogeny (Hinds

and McNelly 1981). The parallels are even documented in bone,

such that the number of foramina through which these bundles of

olfactory sensory neurons are threaded correlate with OR repertoire

size in mammals (Bird et al. 2018).

Both the molecular and morphological effectors of olfactory de-

tection are observed from cyclostomes to mammals (Baier and

Korsching 1994; Saraiva et al. 2015), suggesting over 450 million

years of evolutionary conservation. Simultaneously, the individual

OR genes are some of the fastest evolving within the genome.

However, because the number of odor-encoding cells in the olfac-

tory bulb is inherently governed by the receptors that their receiving

sensory neurons express, we might expect synchronous patterns of

evolution throughout tetrapod diversification. Here we compare the

rates of evolution of OR gene repertoires and the morphological dis-

parity of different brain regions in every major tetrapod clade. We

aim in particular to quantify evolutionary rates of OR genes beyond

mammals to test whether rapid evolution of OR genes is a ubiqui-

tous tetrapod phenomenon. We compare these results to phenotypic

evolution of sensory brain regions to test whether olfactory bulb

morphology is evolving differently from that of other brain regions

and whether olfactory bulb disparity is greater than that expected

under Brownian motion. Given the tight link between OR gene rep-

ertoire and cellular morphology of the olfactory bulb, it might be

predicted that rates of OR gene evolution will show significantly

higher diversity than non-OR genes, and morphological disparity of

the olfactory bulb should be significantly greater than that of other

brain regions throughout tetrapod evolution.

Materials and Methods

Approach
We compared the ORs from 21 taxa for which genomes and soft-

tissue mCT-scans were available. From the genomes, we identified

ORs and chemosensory-related genes. To test whether OR genes

were evolving faster than nonolfactory genes on the one hand and

simulated genes on the other, we inferred gene trees and estimated

rates of evolution for (1) each subfamily of ORs across species

including all duplicate copies; (2) orthologs of non-OR genes; and

(3) simulated genes evolved under different selection pressures

across the tetrapod tree. We then used soft tissue mCT-scans of com-

plementary specimens and reconstructed brain regions associated

with sensory and nonsensory function. We modeled the disparity of

the structures through time to observe whether their patterns of

change were significantly different from those expected under

Brownian motion.
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Genome data
The following genomes were sampled: axolotl (Ambystoma mexica-

num: GCA_002915635.2), 2-lined caecilian (Rhinatrema bivitta-

tum: GCF_901001135.1), common snapping turtle (Chelydra

serpentina: GCA_007922165.1), American alligator (Alligator mis-

sissippiensis: GCF_000281125.3_ASM28112v4), saltwater croco-

dile (Crocodylus porosus: GCF_001723895.1), Chilean tinamou

(Nothoprocta perdicaria: GCF_003342845.1), greater rhea

(Rhea americana: GCA_003343005.1), red jungle fowl (Gallus

gallus: GCF_000002315.6), Japanese quail (Coturnix japonica:

GCF_001577835.1), great cormorant (Phalacrocorax carbo:

GCF_000708925.1_ASM70892v1), Okinawa rail (Gallirallus oki-

nawae: GCA_002003005.1), zebra finch (Taeniopygia guttata:

GCF_003957565.1), tuatara (Sphenodon punctatus:

GCA_003113815.1_ASM311381v1), red corn snake (Pantherophis

guttatus: GCA_001185365.1), green anole (Anolis carolinensis:

GCF_000090745.1), ocelot gecko (Paroedura picta:

GCA_003118565.1), platypus (Ornithorhynchus anatinus:

GCF_004115215.1), gray short-tailed opossum (Monodelphis

domestica: GCF_000002295.2), house mouse (Mus musculus:

GCF_000001635.26), and common vampire bat (Desmodus rotun-

dus: GCA_002940915.2).

OR identification
While there are several chemosensory gene families present in the gen-

ome, the OR Classes I and II genes are well known to be shared across

vertebrates (Young and Trask 2002; Hayden et al. 2010) and are the

focus of this study. Protein sequences of ORs from mammals (Hayden

et al. 2010), as well as published sequences from squamates and birds

(Steiger et al. 2008, 2009; Khan et al. 2015) were used as queries and

were blasted using the protein query-translated subject BLAST version

2.10.0þ (tblastn) program (Altschul et al. 1990; Gerts et al. 2006).

Hits >100 bps and a score of at least 0.2 were converted to a gff for-

mat using the blast2gff.py script within the genomeGTFtools toolkit

(Mills et al. 2018). Hits were then pulled out of the genome using the

getfasta program within bedtools version 2.29.2 (Quinlan 2014).

Duplicate hits and containments were removed using the dedupe.sh

script within BBTools bioinformatics suite (https://sourceforge.net/

projects/bbmap/). Identified receptor genes were then annotated

according to previously published methodology (Yohe et al. 2019).

Genes with <650 bp open reading frames or genes with premature

stop codons were filtered as pseudogenes. Within each of these two

families are several subfamilies that receptors are binned in based on

their conserved motifs of their protein-coding regions. Class I genes

can be classified as either OR51, OR52, OR55, or OR56, and Class

II genes can be classified as either OR1/3/7, OR2/13, OR4, OR5/8/9,

OR6, OR10, OR11, OR12, or OR14. In brief, receptors were identi-

fied using the ORA version 1.9.1 (Hayden et al. 2010), a Bioperl (ver-

sion 1.6.924) program that makes profile motifs of aligned amino

acid sequences collected from previously published ORs. It imple-

ments HMMER version 3.1b (Eddy 2011), which uses hidden

Markov models to identify and classify the gene sequences with sig-

nificant hits to the sequence motif profiles. This pipeline is one of the

2 major ways that OR sequences are identified in the genome, has

been used in many studies, and has been shown to be robust against

false positives (Hayden et al. 2010).

Non-olfactory gene identification
To compare rates of evolution of other parts of the protein-coding

genome to those of ORs, we selected 50 random loci to identify

across our targeted set of species. Random genes were selected from

the random gene set generator of the M. musculus genome (http://

www.molbiotools.com/randomgenesetgenerator.html). If the gene

was present as an ortholog in amphibians, birds, and reptiles, then

we identified the corresponding RefSeq from the NCBI Ortholog

catalog. Non-OR genes included a selection of kinases, opsins, tran-

scription factors, among others. A list of the selected gene subset is

listed in the Supplementary Table S1. Open reading frames were

identified using the getorf function of EMBOSS version 6.6.0.0

(Rice et al. 2000).

Alignment and phylogenetic inference
For each olfactory subfamily and non-OR gene set, genes were

aligned using transAlign (Bininda-Emonds 2005) that implements

the FFT-NS-2 algorithm MAFFT version 7.388 for the protein align-

ments (Katoh and Standley 2013). A BLOSUM62 matrix was used

with a gap open penalty of 1.53 and an offset value of 0.123.

Sequences were inspected for misalignment and stop codons

were removed from the OR alignments. ModelOMatic version

1.01 (Whelan et al. 2015) was used to estimate the best-fit codon

model and nucleotide model. Gene trees were inferred using

IQ-TREE version 1.6.11 (Nguyen et al. 2015).

Species tree
An ultrametric species tree was essential for the molecular evolution

simulations and for the phenotype analyses. A species tree was

grafted from several published phylogenetic trees. Using first a gen-

eral vertebrate tree (Uyeda et al. 2017) as a backbone, an amphibian

tree (Jetz and Pyron 2018), a squamate tree (Tonini et al. 2016), a

turtle tree (Pereira et al. 2017) that contained a grafted bird tree

(Kimball et al. 2019) and both A. mississippiensis and C. porosus

binded on at divergence times from timetree.org (Kumar et al.

2017), and a mammal tree (Upham et al. 2019) were carefully

grafted using the ape version 5.3 (Paradis et al. 2004) package in R

version 3.6.1 (Team RC 2016). The sumtrees.py script implemented

through DendroPy version 4.0.3 (Sukumaran and Holder 2010)

was used to summarize the distribution of trees from vertlife.org.

The tree was trimmed to match the data using the treedata() func-

tion in geiger version 2.0.6.2 (Harmon et al. 2008).

Molecular simulations
To make predictions for genes evolving under purifying or diversify-

ing selection for this set of taxa, we simulated genes mimicking the

codon frequencies and sequence length of ORs. In molecular evolu-

tion at the species level (i.e., assuming the substitution is fixed with-

in the lineage), the strength of selection is characterized by the x

statistic, representing the ratio of rates of codon substitutions to

nonamino acid-changing nucleotide substitutions (Mugal et al.

2014). Because codon substitutions change the amino acid and may

have functional implications to protein function, under purifying se-

lection, the rate of codon substitution is expected to be low (x� 1)

relative to nucleotide substitutions that do not change the protein.

Under diversifying or positive selection, selectively advantageous

protein-coding changes may rapidly fix (x>1). Using the

evolverNSbranchsites evolver program in paml version 4.8 (Yang

2007), we simulated 100 alignments of 900 bp each and “evolved”

each sequence along the grafted species tree using codon frequencies

and the estimated transition/transversion ratio (2.74592) observed

from the OR56 gene family. Three evolutionary scenarios were

modeled: (1) genes under strong purifying selection, in which the
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entire alignment (i.e., single-site class) is evolving at a rate of

x¼0.01, where the rates of codon-changing substitutions are much

lower than synonymous substitutions; (2) genes under weak purify-

ing selection, in which the entire alignment is evolving at a rate of

x¼0.1, where the rates of codon-changing substitutions are an

order of magnitude higher than Scenario 1; and genes evolving

under diversifying selection (i.e., positive selection), in which the

99% of the alignment evolves under strong purifying selection

(x¼0.01), and 1% of the codon sites are under positive selection

(x¼2.5). x is a useful statistic at long time scales, but as divergence

time approaches 1, x values approach zero (Mugal et al. 2014).

Thus, at our long time scales (�400 million years), we inferred the

branch lengths of a codon substitution gene tree and compared these

lengths to those of a nucleotide substitution gene tree, which con-

tains both codon and non amino acid-changing substitutions. These

values were calculated for both simulations and empirical data to

provide comparable measures of evolutionary change for both simu-

lations and observed data. A codon substitution gene tree and a nu-

cleotide substitution gene tree were estimated using IQ-TREE under

CodonþF3X4 and GTRþgamma models, respectively, for all simu-

lations. Cumulative branch lengths were read into R and plotted

with the empirical data.

Comparisons of rates of molecular evolution
To determine whether ORs were evolving at faster rates than non-

OR genes and to gauge the comparable strength of selection

observed from the simulations, we compared rates of nucleotide

substitution to rates of codon substitution. To quantify the rates of

nucleotide and codon substitution, we measured the total amount of

accumulated change per gene for each of the 2 tree types by quanti-

fying the cumulative branch lengths of each gene. To calculate the

cumulative branch lengths, the diagonals of the eigenvectors of the

variance–covariance matrix of each tree were quantified, which

measures the height of each node (i.e., gene) that represents the rate

of substitution per gene (Yohe and Dávalos 2018). These values

were extracted for all observed genes and gene trees inferred from

the simulated alignments. To understand the strength of selection

for each of the observed groups, we tested whether slopes differed

among the observed ORs (Classes I and II), non-OR genes, and the

three simulation scenarios. If the slopes did not significantly differ,

then that particular evolutionary scenario was determined to be a

good fit for a majority of the genes within that class. To quantify dif-

ferences among rates observed for we used a linear regression for-

mula to quantify the slope of the following model:

codoni � nucleotidei�classj

where codon is the codon gene tree branch length and nucleotide is

the nucleotide gene tree branch length for each gene (or simulated

gene) i. We tested for whether there was a difference in slopes

among j “classes” using class as the interaction term. Classes

included Class I ORs, Class II ORs, non-OR genes, simulated genes

under strong purifying selection, weak purifying selection, and

diversifying selection (j¼6). Models were implemented using the

lsmeans package in R (Lenth 2016). P-values were adjusted for mul-

tiple comparisons using the Tukey test. Candidate genes under

diversifying selection were determined if the ratio of the branch

lengths of the codon gene trees to the branch lengths of the nucleo-

tide gene trees fell within 1 standard deviation of the mean of the

ratios obtained from the gene trees inferred from diversifying selec-

tion simulations.

Specimen staining and soft tissue mCT-scanning
Most taxa in our dataset were museum specimens fixed in 10% for-

malin and stored in 70% ethanol. For new soft-tissue data generated

within this study, specimens were stained in solutions of either 5%

phosphomolybdic acid (H3PMo12O40, a.k.a., “PMA”) or 10% I2KI

(Lugol’s Iodine) for 2–52weeks, depending on the stain and specimen

size. Specimens were scanned using the ultra-high-resolution Nikon

H225 ST mCT-scanner at Yale University or the X-Tek HMXST

Micro-CT imaging system at Harvard University. Additional mCT-

scans of soft tissue were obtained from MorphoSource or from previ-

ously published studies (Fabbri et al. 2017). Supplementary Table

S2 lists all specimens, details for each specimen, stains used for the

respective specimen, and parameters under which the specimen was

scanned. Exact species matches to their respective genome were

available for each taxon, with the exception of the Okinawa rail,

tinamou, and the great cormorant. As substitutes, we used

Nothoprocta pentlandii (Andean tinamou), Porzana carolina (sora),

and Phalacrocorax auritus (double-crested cormorant), respectively.

Raw scan data were reconstructed using on-site Nikon reconstruc-

tion software and imported into VGStudio Max version 3.3 for seg-

mentation (Volume Graphics GmbH 2014). For each scan, the

following brain and sensory structures were segmented (Figure 1):

olfactory bulb, optic nerves, labyrinth/semicircular canal, thalamus,

cerebrum, medulla, midbrain, and cerebellum. We binned the fol-

lowing structures into “sensory” structures: olfactory bulb, optic

nerves, and semicircular canal as these structures receive primary

sensory input. The remaining segmented structures were considered

“nonsensory” as they are either not involved in sensory processing

or are involved at a secondary stage. Brain regions were segmented

following best practices previously established by the field (Balanoff

et al. 2016). Segmented regions of interest were converted into sur-

face files and volumes of each surface were extracted within

VGStudio. While the absolute values of the volumes may be suscep-

tible to segmenting error and tissue defects (e.g., shrinkage Hedrick

et al. 2018), biases should be similar across specimens. Moreover,

we visually confirmed that brains in the specimens used filled the

expected amount of the endocranial space.

Phenotypic statistical analyses
To infer the phenotypic disparity of different brain regions through

time, we used the extracted volumes of each segmented brain region

per species and scaled it by the total volume of all segmented brain

regions for size. We calculated the disparity of the entire brain, each

brain region scaled by total brain volume, and each sensory and

nonsensory module using the dtt() function in the geiger package in

R. The calculated morphological disparity index (MDI) is a measure

computed from the average squared Euclidean pairwise distances

between species (Harmon et al. 2003; Slater et al. 2010). Values less

than zero indicate lower trait disparity within clades than expected

under Brownian motion, and vice versa for positive MDI values. We

performed 10,000 simulations to represent a null distribution of dis-

parity of a trait evolving via Brownian motion for this group of taxa

(Slater et al. 2010). Coturnix japonica and C. serpentina were

removed from the morphological analyses, as these specimens were

too young to reliably infer comparative volumes. We also estimated

rates of trait evolution and tested whether a Brownian motion model

of evolution or a model incorporating Pagel’s k was a better fit for

each respective trait using the momot package in R (Puttick et al.

2020). Pagel’s k is a measure of phylogenetic signal that falls be-

tween 0 and 1; when k is 1, the trait evolving under Brownian mo-

tion and when k is 0, there is no phylogenetic signal and the trait
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may be evolving under a different process than expected under

Brownian motion.

Results

OR identification
We observed substantial variation in the number of intact ORs

across tetrapods (Figure 1). Numbers of copies for both Classes I

and II ORs varied by orders of magnitude, with the snapping turtle

having the largest number of Class I ORs (n¼789) and the anole

having only a single intact copy. For Class II ORs, the caecilian

(n¼1,552) had the largest number, while the zebra finch had the

smallest (n¼7). Average GC content for alignment of different OR

subfamilies ranged from 44.7 to 55.9%. Average GC content for

non-OR genes ranged from 41.0 to 64.5%. Supplementary Table S3

shows the results for number of recovered genes per subfamily,

alignment statistics, GC-content, and estimated best-fit models of

evolution.

Rates of molecular evolution
Class II OR genes evolve at order of magnitude higher rates than

non-OR genes, and both Classes I and II OR genes have numerous

genes that overlap with the predicted scenarios consistent with

diversifying selection (Figure 2). Figure 2A shows the outcomes of

the three simulated evolutionary scenarios compared to those esti-

mated for both ORs and non-OR genes. The linear model resulted

in an intercept of 1.31 (standard error: 0.37). For the simulated

evolutionary scenarios diversifying selection yielded the steepest

slope (mean: 18.81; 95% confidence intervals: [18.57–19.05]),

strong purifying selection (2.58 [2.41–2.76]) the lowest, and weak

purifying selection in between (4.09 [3.83–4.35]). All three slopes

differed from each other significantly (Figure 2B and Table 1), con-

firming that diversifying selection correctly simulates high rates of

codon substitution relative to nucleotide substitution and can be

used for comparisons to empirical data. Among the classes of genes

in the genome, Class II ORs had the highest slope (4.1 [3.85–4.35])

and differed significantly from Class I and non-OR genes (Table 1).

The slope of Class I genes (1.92 [1.11–2.74]) did not differ from

that of non-OR genes (2.12 [1.45–2.78]; Table 1), but some outliers

still reflect rates of diversifying selection. Figure 2B compares the

slopes of different observed scenarios to the slopes of the simulated

scenarios. For Class II OR genes (interaction term: 0.01; t-

ratio¼0.032; P-value¼1; Table 1), the slope did not significantly

differ from that of simulated weak purifying selection (x¼0.1). For

both Class I OR and non-OR genes, strong purifying selection

(x¼0.01) was the best fit for each class.

Candidate genes under diversifying selection
Of the 11,164 genes observed in the genome (both OR and non-

OR), 1,158 of these genes had high enough ratio of rates of codon to

nucleotide substitutions to be classified as candidates for genes expe-

riencing diversifying selection (Figure 2C). Only two of these genes

were non-OR genes (Celf2 in M. musculus (NM_001110228.1) and

Tspan6 in O. anatinus (XM_029067969.1)). The remaining identi-

fied genes were ORs. With the exception of P. carolina and
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Figure 1. Phylogeny of taxa included in this analysis with respective total intact ORs. Note this does not include all chemoreceptors, but just those within the OR

Classes I and II multigene families. Numbers on the phylogeny correspond to a subset of the segmented brain and sensory regions from the soft tissue mCT-

scans. Silhouettes were obtained from phylopic.org. Silhouettes and 3D reconstructions are not to scale and are enlarged for clarity. *Exact species for both gen-

omic and phenotype data were not available. For Rallidae, G. okinawae was used for genomic data and P. carolina was used for the soft-tissue specimen. For

Phalacrocorax, P. carbo was used for genomic data and P. auritus was used for the soft-tissue specimen. For Nothoprocta, N. pentlandii was used for morph-

ology, and N. perdicaria was used for genomic data. Scale bars are 2 mm.
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M. domestica, diversifying selection in ORs was identified in every

taxon, though some taxa had higher proportions of OR genes under

diversifying versus purifying selection (Table 2 and Figure 2C).

Greater than 10% of the OR repertoires may be experiencing diversi-

fying selection in over half the taxa analyzed, with 4 taxa having

>20% of their repertoires experiencing diversifying selection

(Table 2). A total list of gene candidates is available as a

Supplementary File.

Phenotypic disparity
Brain volumes for total brain and brain regions are available in

Supplementary Table S4. For brain and brain region volumes, MDI

values did not differ significantly from what was expected under

Brownian motion evolution (Table 3). Disparity among total brain

volumes and associated nonsensory structures was greatest early in

diversification of tetrapods, while olfactory bulb disparity steadily

increased through time, though no trend was different than what

was observed in Brownian motion processes. Supplementary Figures

S1 and S2 show the outcomes for each brain region and associated

simulations. When estimating the rates of evolution, only total brain

volumes and the midbrain demonstrated significant differences from

Brownian motion (Table 3). The asterisk indicates estimates for

Pagel’s k were closer to 0 for total brain and the midbrain, while

they were close or at 1 for all other brain regions, including the ol-

factory bulb (Table 3).

Figure 2. (A) Simulated and observed gene tree branch lengths representing nucleotide substitutions per gene versus gene tree branch lengths representing

codon substitutions per gene. For clarity, simulated values that were outside of observable data limits were removed from the plot (codon branch lengths >15

and nucleotide branch lengths >3). (B) Slopes of simulated (dashed lines) scenarios and observed scenarios (solid lines). Simulated points were removed.

Slopes are plotted with observed points of Classes I and II ORs and non-OR genes. (C) Candidate genes under diversifying selection, determined from genes with

codon to nucleotide branch ratios within 1 standard deviation of the mean of diversifying selection simulations. Colored red and blue points represent taxonomic

group that genes belonged to, though diversifying selection was observed in all taxa. Only 2 non-OR genes fell within the cutoff. (D) Candidate genes under diver-

sifying selection separated by gene family. Six OR subfamilies did not exhibit rates within our threshold. Note the change of axes limits from (A) and (C), zoomed

in for clarity.
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Discussion

We investigated the extent to which diversifying evolution of the ol-

factory system occurs throughout Tetrapoda. We characterized both

the strength of selection in ORs—which constitute the largest gene

family in the genome—and the morphological disparity of sensory

and nonsensory brain regions to test whether OR genes and pheno-

types display similar evolutionary trends. Our research revealed

three key discoveries about olfactory systems: (1) OR genes are

evolving at some of the fastest rates in the tetrapod genome; (2) ol-

factory bulbs evolve at similar rates to other sensory and nonsensory

brain regions and do not differ from Brownian motion; and (3) ol-

factory bulb and OR gene evolution are decoupled.

We quantitatively demonstrate that most OR genes evolve at an

order of magnitude higher rate than non-OR genes (Table 1 and

Figure 2), and diversifying rates are observed ubiquitously across

taxa (Figure 2C) and across multiple OR subfamilies (Figure 2D).

Elevated rates of codon substitutions in chemosensory receptor

genes have been incidentally reported in various studies focused on

individual vertebrate genomes (e.g., Green et al. 2014; Lin et al.

2016; Mason et al. 2016; Li et al. 2018). High rates of evolution

have also been reported within focused studies of chemosensory re-

ceptor genes of a specific clade (e.g., Glusman et al. 2000; Young

et al. 2002; Niimura and Nei 2005; Yoder et al. 2014). However,

our analysis is the first large-scale study of major vertebrate clades.

We suggest the increased rate of evolution, especially in Class II

genes (Table 2, Figure 2B,C), is due to the birth–death processes

underlying OR gene evolution. Previous studies in mammals have

found that Class II genes are under weaker evolutionary constraint

and that this trend is attributed to increased rates of gene retention

after duplication (Niimura et al. 2014). We also specifically propose

that Class II OR subfamily 5/8/9 and OR 6 are evolving at particu-

larly high rates in a number of divergent taxa, not just in mammals

(Figure 2D). Novel duplications provide the substrate for the fix-

ation of functional mutations (Niimura 2012), and the high rate of

codon substitution relative to nucleotide substitution may indeed

promote diversification of potential to bind to new odorant ligands.

Simultaneously, rapid evolution puts receptors in a rather precarious

position of loss of function. Previous studies have described chemo-

sensory receptor gene families “on the verge of a functional break-

down” (Yoder and Larsen 2014). The rates of evolution are so high

within these genes that if positive selection relaxes even slightly,

widespread pseudogenization may occur (Yoder and Larsen 2014;

Yoder et al. 2014; Hunnicutt et al. 2019). The order-of-magnitude

increases in rates of molecular evolution and rates equivalent to

diversifying selection of ORs that we found suggest ongoing turn-

over and rapid evolution over the course of 400 million years of

tetrapod diversification.

Our calculated rates of molecular OR evolution stand in stark

contrast to our results from olfactory morphology. Despite the allo-

metric independence of olfactory bulb evolution (Finlay and

Darlington 1995), we found that, relative to other brain regions, dis-

parity in olfactory bulb volume does not vary significantly on the

timescale of tetrapod diversification (Figure 3 and Table 3). The ol-

factory bulb has been shown to evolve differently within different

clades and is often correlated with “olfactory ability” or some other

physiological characteristic, yet the inferred patterns are inconsist-

ent. Olfactory bulb size is smaller in aquatic versus terrestrial mam-

mals (Gittleman 1991), but is larger in aquatic-foraging birds

(Corfield et al. 2015). Nocturnality in mammals seems to predict ol-

factory bulb size, but the direction of the trend depends on the

“ordinal-level” clade (Barton et al. 1995). There are also many

instances in which olfactory bulb morphology remains highly con-

served: the olfactory bulb and medulla, for example, showed among

the smallest amounts of evolutionary change in 40 million years of

anthropoid diversification (Smaers and Soligo 2013). With a few

minor exceptions, neural projections from the olfactory bulb are

highly conserved between turtles and pigeons (Reiner and Karten

1985). Indeed, the basic neural mechanism from receptor to

Table 1. Interaction term estimates and standard errors for each

pair of covariates are compared

Contrast Estimate SE t-ratio P-value

Interactions among observed genes

Classes I– II �2.17 0.43 �5.01 <0.001

Class I–Non-OR �0.19 0.54 �0.36 0.99

Class II–Non-OR 1.98 0.36 5.45 <0.001

Interactions among simulations

Purifyingx¼ 0.01 to Purifyingx¼ 0.1 �1.51 0.16 �9.40 <0.001

Purifyingx¼ 0.01 to Diversifyingx¼ 2.5 16.22 0.15 107.45 <0.001

Purifyingx¼ 0.1 to Diversifyingx¼ 2.5 14.72 0.18 81.27 <0.001

Interactions between observed genes and simulated scenarios

Class I—Purifyingx¼ 0.01 �0.66 0.42 �1.56 0.63

Class I—Purifyingx¼ 0.1 �2.17 0.43 �4.97 <0.001

Class I—Diversifyingx¼ 2.5 �16.89 0.43 �39.03 < 0.001

Class II—Purifyingx¼ 0.01 1.51 0.15 9.79 <0.001

Class II—Purifyingx¼ 0.1 0.01 0.18 0.03 1

Class II—Diversifyingx¼ 2.5 �14.71 0.18 �83.58 <0.001

Non-OR—Purifyingx¼ 0.01 �0.47 0.35 �1.33 0.77

Non-OR—Purifyingx¼ 0.1 �1.98 0.37 �5.40 <0.001

Non-OR—Diversifyingx¼ 2.5 16.70 0.36 46.85 <0.001

P-values were corrected for multiple comparisons. Purifyingx¼ 0.01 refers to

strong purifying selection, purifyingx¼ 0.1 is weak purifying selection, and

diversifyingx¼ 2.5 is diversifying or positive selection.

Table 2. Number of OR genes identified as candidates under diver-

sifying selection and the relative proportion to the total number of

intact OR genes in the respective genome

Species Total

diversifying

candidates

Total

intact

ORs

Proportion

Ambystoma mexicanum 3 47 0.06

Rhinatrema bivittatum 219 1,758 0.12

Ornithorhynchus anatinus 22 484 0.05

Monodelphis domestica 0 1,827 0

Desmodus rotundus 11 424 0.03

Mus musculus 43 1,762 0.02

Sphenodon punctatus 101 485 0.21

Paroedura picta 108 659 0.16

Pantherophis guttatus 55 439 0.13

Anolis carolinensis 15 117 0.13

Chelydra serpentina 360 1,621 0.22

Alligator mississippiensis 150 777 0.19

Crocodylus porosus 2 21 0.10

Rhea americana 19 89 0.21

Nothoprocta perdicaria 16 77 0.21

Coturnix japonica 2 36 0.06

Gallus gallus 7 69 0.10

Porzana carolina 0 74 0

Taeniopygia guttata 1 11 0.09

Phalacrocorax carbo 5 28 0.18

Gavia stellata 7 69 0.10
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olfactory bulb glomeruli has been maintained since the fish-mammal

common ancestor (Saraiva et al. 2015). Thus, we conclude evolu-

tionary change of brain sensory organization is consistent with that

expected under Brownian motion, especially compared to the excep-

tional rates of change of molecular OR repertoires. It is also import-

ant to note our dataset only contains extant taxa, which may lead to

some bias of the extremes observed in living taxa. We caution over-

ambitious interpretation of the results and look forward to future

analyses that incorporate fossil endocasts to further test our

hypothesis.

The morphological and genomic disassociation of the ORs and

olfactory bulbs may be a unique phenomenon of chemosensation

relative to other sensory systems (Bear et al. 2016). Olfactory

neurons within the olfactory epithelium stochastically express a sin-

gle OR (Chess et al. 1994; Rodriguez 2013; Monahan and

Lomvardas 2015). These neurons repeatedly converge until they

are received by a subset of glomerular cells in the olfactory bulb

(Zou et al. 2009). The neuron-glomeruli input is a hardwired

neuroanatomical phenomenon that is conserved across vertebrates

(Saraiva et al. 2015). With this conserved neural mechanism in

place, it has been hypothesized that selection constraints on recep-

tors are relaxed (Bear et al. 2016). Previous studies have also found

the number of ORs is not necessarily connected with the number of

glomeruli in the olfactory bulb (Maresh et al. 2008). Receptors may

diversify and evolve independently from anatomy, as the actual

expressed receptor does not strongly affect the mechanisms of sen-

sory processing. We note, however, that there is evidence that some

olfactory chamber structures, such as mammalian turbinates and

cribriform plate foramina, do evolve in concert with the OR reper-

toire size (Garrett and Steiper 2014; Bird et al. 2018). Deeper con-

sideration of the innervation of the olfactory and vomeronasal

system with the olfactory bulb and accessory olfactory bulb is mer-

ited as recent evidence suggests a more complex and interdependent

role of the two systems (Huilgol et al. 2013; Weiss et al. 2020), and

this study is limited in understanding this through only studying the

volume of the olfactory bulb. Our study provides the first macro-

scale quantitative evidence for this hypothesis, demonstrating that

OR genes evolve at higher rates than other protein-coding genes

(Table 2), with some observed rates consistent with diversifying se-

lection (Figure 2B and C), while overall chemosensory phenotype

disparity remains unchanged (Figure 3).

In many ways, the signals for vision and sound (wave-forms) are

less complex than the innumerable combinations of chemical odor-

ants present in the environment (Yohe and Brand 2018), which may

in part explain why, for instance, there are many more chemorecep-

tors in the vertebrate genome than light receptors (Nei et al. 2008;

Bear et al. 2016). The impressive diversity of OR genes has evolved

to deal with a highly dynamic chemical space. We caution, however,

against interpreting the number of distinct intact OR genes as a dir-

ect reflection of the number of potential chemical ligands that an

animal can decipher (Meister 2015). We propose that, in verte-

brates, the elegant network of neurons that converges within the ol-

factory bulb has long worked well in making sense of a complicated

chemical background. Accelerated rates of evolution in OR genes

may be products of selection for increasing probability of binding af-

finity of relevant odorant cues, rather than for increasing the num-

ber of different potential ligands. In light of the “motor and brakes”

of evolution, we submit that ORs push the limits of how an animal

perceives its environment, while stable and reliable structures within

the brain make it possible to understand and react to those

perceptions.
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Table 3. Parameters of morphological evolution models

Brain region MDI P-

value

BMV Root

k
LRT P-

value

AICc

Total brain* 0.293 0.83 59,840 2,627 1e-8 0.03 7.18

Sensory �0.078 0.24 – – – – –

Non-sensory 0.036 0.50 – – – – –

Olfactory bulb 0.003 0.41 1.4e-5 0.11 1 1 �2.85

Semicircular

canal

�0.141 0.16 2.8e-5 0.14 1 1 �2.85

Optic nerves 0.303 0.84 1.7e-6 0.03 1 1 �2.85

Cerebrum 0.009 0.42 1.0e-4 0.37 0.73 0.38 �1.33

Thalamus 0.325 0.85 2.16e-6 0.05 0.33 0.21 0.32

Cerebellum �0.085 0.37 1.34e-5 0.07 0.85 0.55 �2.12

Midbrain* 0.206 0.73 1.7e-5 0.12 0.27 0.03 6.25

Medulla 0.047 0.49 8.8e-6 0.13 1 1 �2.85

The first 2 columns with continuous values correspond to the disparity

through time analyses., MDIs for each brain region or group of brain regions

and associated P-values that demonstrate differences from the mean of

10,000 simulations of Brownian motion trait evolution. BMV is the

Brownian motion covariance and root is the starting value of the trait before

any change.
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