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Abstract

A series of hitherto unknown 3′-α-[1,2,3]-substituted triazolo-2′,3′-dideoxypyrimidine 

nucleoside analogues of the anti-HIV 3′-azido-3′-deoxythymidine (AZT) were synthesized 

through catalyzed alkyne-azide 1,3-dipolar cycloaddition (Huisgen reaction). Those 3′-[1,2,3]-

triazolo analogues bearing an azido alkyl chain were evaluated for their anti-HIV activity against 

HIV-1 in primary human lymphocytes as well as for their cytotoxicity in different cells. None of 

them inhibit HIV replication (EC50 > 20 μM); two of them were converted to their triphosphate 

form to evaluate their HIV-RT inhibition.
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Pharmacomodulation has become central to drug discovery and has played a major role in 

the research of new treatments for viral infectious diseases. However, the discovery and 

process optimization of potential agents is often slow, expensive and often involves complex 

synthesis. The “click chemistry” proposed by Sharpless et al.[1] has emerged as a fast and 

efficient approach to simplify compound synthesis. The Huisgen 1,3-dipolar cycloaddition 

of azides and terminal alkynes is one of the best known and powerful click reactions.[2] This 

highly specific, irreversible, and chemo-selective reaction is also termed the copper(I)-

catalyzed azide-alkyne cycloaddition (CuAAC), which offers exclusively the 1,4-isomer if 

catalyzed by copper (I).[3] Recently, several research teams have also explored some 

experiments that afford the selective 1,5-regioisomer 1,2,3-triazol via the use of azides and 

1-bromomagnesium acetylenes[4] or 1-trimethylsilyl acetylenes[5] and palladium[6] or 

ruthenium[7] as catalyst. The use of 1,3-dipolar cycloaddition has been recently reviewed by 
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Amblard et al.[8] to enhance the discovery of new nucleoside analogues. Several teams have 

reported the synthesis and HIV evaluation of 3′-heterocyclic[9] 9 and 3′-C-branched-azido-

chain[10] 10 substituted 3′-deoxythimidines, with no antiviral activity. Thus, as part of our 

drug discovery program on nucleosides containing a 1,2,3-triazolo moiety,[11] we report 

herein a full account of a new generation of 3′-substituted-2′,3′-dideoxy-nucleoside 

analogues bearing an azido-alkyl-chain functionalized-[1,2,3]-triazolo moiety at the 3′-
position (Figure 1) through a CuAAC or trimethylsilyl-directed cyclo-addition reactions.

In this work, we tried to study the influence of the length of the azido-alkyl-chain 

functionalized heterocycle ring and its effect on the regioselectivity (1,4 and 1,5). All 

synthesized compounds were evaluated for their anti-HIV activity and their cytotoxicities.

The synthesis of 3′-substituted deoxynucleosides substituted at the 3′-position with an 

functionalized 1,2,3-triazol, is summarized in Scheme 1. Starting from the known 5′-
benzoyl-AZT[12] or 5′-silylated-3′-azido-2′,3′-dideoxyuridine[13] and commercial alkynes, 

the 1,3-dipolar cyclo-addition was catalyzed by sodium ascorbate/CuSO4
[14] in a 1/1 

mixture water/tBuOH at room temperature, to afford the regioselectivity (1,4) 2 and 2′a,b,c 
with no contamination by the 1,5-regioisomer. Reaction of 1′ with N,O-bis(trimethylsilyl) 

acetamide in toluene was stirred at room temperature, then addition of 3-

(trimethylsilyl)propargyl alcohol (110°C, 16 hours) gave the 1,4,5-trisubstituted-[1,2,3]-

triazole. Cleavage of trimethylsilyl (TMS) group via with aqueous HF (48%) for 3 hours, 

provide the 1,5-substituted triazole 7′a in 26% yield. The regioselectivity of the ligation 

leading to 1,5 or 1,4-disubstitued-[1,2,3]-triazole moiety was confirmed by 1H, 13C NMR 

long range correlation spectra (HMBC). Mesylation of free hydroxyl group followed by 

treatment with NaN3 afforded azide derivatives 3, 3′a,b,c and 7′a, respectively.

Several methods have been reported for the conversion of uracil to cytosine analogues[15] 

and are based on (1) a first activation of the 4-carbonyl moiety either (mainly by heating 

with P2S5,[15a] by tris-(1,2,4-triazolyl)phosphate,[15b] as o-nitrophenol derivative,[15c] with 

SOCl2,[15d] or 2,4,6-triisopropylbenzensulfonic chloride[15e]) then (2) a subsequent 

treatment with ammonia, primary or secondary amine to give the desired N4-modified 

cytosine analogues. Thus, uridines 4c and 4′a-c, were reacted with 2,4,6-

triisopropylbenzenesulfonyl chloride, Et3N, and DMAP in CH2Cl2, then treated by a 

solution of NH4OH. The desired cytidines 5c and 5-methylcytidines 5′a-c were isolated in 

good yields.

The standard deprotection of benzoyl group with NH3/MeOH and silyl group with a solution 

of TBAF/THF, led to the free 3′-substituted-2′,3′-dideoxynucleoside analogues[16–20] 4a, 

4′a, 6c, 6′c, and 8′a.

All final compounds were screened against HIV-1 for their biological activity. The 

antiviral[21] assay was performed in peripheral blood mononuclear (PBM) cells and 

compared to AZT activity. None of the synthesized compounds showed significant activities 

and displayed toxic effects on un-infected PHA-stimulated primary human peripheral blood 

mononuclear (PBM), CEM (T-lymphoblastoid cell line), or Vero (African green monkey 

kidney) cells.[22]
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In order to measure the inhibitory activity of those compounds on HIV-1 RT DNA 

polymerase, compounds 4′a and 8′a were converted to their corresponding triphosphates.
[23] The HIV-1 RT inhibition mediated DNA polymerization on a DNA/DNA T/P is reported 

in Figure 2. In this experiment, 3′-azido-3′-deoxy-thymidine triphosphate (AZT-TP) was 

included as a control.[24,25] Unlike AZT-TP, no 3′-triazole-thymidine triphosphate analogues 

were incorporated into the nascent DNA chain by wildtype (WT) HIV-1 RT up to 50 μM. 

Accordingly, chain-termination and inhibition of HIV-1 RT were not observed. Those 

analogues do not inhibit the HIV-1 RT. The large 3′-triazole group may prevent proper 

positioning in the HIV-1 RT nucleotide binding site, thus preventing efficient incorporation.

In conclusion, we have synthesized several hitherto unknown 3′-[1,2,3]-triazolo 

substituted-2′,3′-dideoxy-nucleosides via catalyzed regioselective azide-alkyne 1,3-dipolar 

Huisgen’s cycloaddition. Two compounds were converted to their triphosphate analogues 

and the HIV-1 RT inhibition mediated DNA polymerization on a DNA/DNA T/P realized. 

The synthesized compounds were evaluated in human PBM cells infected by HIV-1 and 

none of them showed significant activities.
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FIGURE 1. 
Some 3′-triazolo- or 3′-azidomethyl nucleosides and target compounds.
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FIGURE 2. 
HIV-1 RT inhibition mediated DNA polymerization on a DNA/DNA T/P.
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SCHEME 1. 
Reagents and conditions: (i) sodium ascorbate, CuSO4, alkyne, tert-Butanol/H2O; (ii) a) 

MsCl, Et3N, CH2Cl2, 0°C to room temperature, b) NaN3, DMF; (iii) a) 2,4,6-

Triisopropylbenzenesulfonyl chloride, DMAP, Et3N, CH2Cl2, b) NH4OH; (iv) NH3/MeOH, 

3°C for benzoyl group; TBAF/THF for silyl group; (v) a) BSA, 3-(trimethylsilyl)propargyl 

alcohol, toluene, 110°C, b) 48% HF(aq), 26% for two steps; (vi) a) MsCl, pyridine, room 

temperature, 2 hours, b) NaN3, DMF, 85°C, 3 hours, c) NH3/CH3OH, 49%.
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