Skip to main content
. 2020 Dec 21;21(Suppl 19):575. doi: 10.1186/s12859-020-03891-x

Table 2.

LOOCV performance of the individual models

Encoding ML algorithm Sensitivity Specificity Accuracy MCC
AAC OET-KNN 71.34 81.08 76.28 0.5271
KNN 75.72 74.87 75.29 0.5058
SVM 70.96 83.47 77.30 0.5492
GBM 71.86 83.75 77.89 0.5606
RF 68.11 85.13 76.73 0.5409
PseAAC OET-KNN 73.05 81.38 77.27 0.5465
KNN 74.24 79.38 76.84 0.5370
SVM 70.59 83.98 77.37 0.5511
GBM 74.99 86.07 80.60 0.6149
RF 68.84 84.86 76.95 0.5446
PAAC OET-KNN 68.94 72.09 70.53 0.4105
KNN 72.96 66.26 69.57 0.3930
SVM 76.15 84.22 80.24 0.6060
GBM 71.33 85.01 77.84 0.5661
RF 71.00 81.67 76.41 0.5301
SAAC OET-KNN 66.63 72.88 69.80 0.3960
KNN 69.75 68.81 69.28 0.3856
SVM 72.51 85.85 79.27 0.5895
GBM 73.90 85.95 80.00 0.6034
RF 67.82 87.02 77.54 0.5595
Pse-PSSM, λ=0 OET-KNN 86.57 92.75 89.70 0.7953
KNN 85.22 90.44 87.86 0.7580
SVM 83.23 90.05 86.68 0.7350
GBM 83.41 90.45 86.98 0.7409
RF 79.45 92.53 86.08 0.7269
Pse-PSSM, λ=1 OET-KNN 85.92 91.79 88.89 0.7788
KNN 85.89 89.06 87.50 0.7501
SVM 86.75 92.22 89.52 0.7912
GBM 85.00 92.19 88.64 0.7744
RF 79.86 93.66 86.85 0.7433
Pse-PSSM, λ=2 OET-KNN 85.51 91.90 88.75 0.7762
KNN 85.65 88.28 86.98 0.7397
SVM 86.83 92.06 89.48 0.7904
GBM 84.86 91.72 88.34 0.7682
RF 79.80 93.70 86.84 0.7432

This table shows microaverage LOOCV performance of the different protein encodings on different machine learning algorithms. The SAAC with SVM, highlighted in italics, reflects the LOOCV performance of the iMem-2LSAAC method [3] on DS-M. Only the Pse-PSSMs where λ(0,1,2) are shown here; the complete performance of all the Pse-PSSMs (λ(0,,49)) can be found in Additional file 1