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ABSTRACT

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes are an established model for testing potential
chemical hazards. Interindividual variability in toxicodynamic sensitivity has also been demonstrated in vitro; however,
quantitative characterization of the population-wide variability has not been fully explored. We sought to develop a
method to address this gap by combining a population-based iPSC-derived cardiomyocyte model with Bayesian
concentration-response modeling. A total of 136 compounds, including 54 pharmaceuticals and 82 environmental
chemicals, were tested in iPSC-derived cardiomyocytes from 43 nondiseased humans. Hierarchical Bayesian population
concentration-response modeling was conducted for 5 phenotypes reflecting cardiomyocyte function or viability.
Toxicodynamic variability was quantified through the derivation of chemical- and phenotype-specific variability factors.
Toxicokinetic modeling was used for probabilistic in vitro-to-in vivo extrapolation to derive population-wide margins of
safety for pharmaceuticals and margins of exposure for environmental chemicals. Pharmaceuticals were found to be active
across all phenotypes. Over half of tested environmental chemicals showed activity in at least one phenotype, most
commonly positive chronotropy. Toxicodynamic variability factor estimates for the functional phenotypes were greater
than those for cell viability, usually exceeding the generally assumed default of approximately 3. Population variability-
based margins of safety for pharmaceuticals were correctly predicted to be relatively narrow, including some below 10;
however, margins of exposure for environmental chemicals, based on population exposure estimates, generally exceeded
1000, suggesting they pose little risk at current general population exposures even to sensitive subpopulations. Overall, this
study demonstrates how a high-throughput, human population-based, in vitro-in silico model can be used to characterize
toxicodynamic population variability in cardiotoxic risk.
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Current risk assessments address population variation in sus-
ceptibility by the use of a default uncertainty factor (UF) of 10
for human variability. This factor is divided equally into toxico-
kinetic (TK) and toxicodynamic (TD) variability components,
each having a value of 101/2 (Laverty et al., 2011; Meek et al., 2002;

WHO/IPCS, 2005). Although there is a long history of population
TK modeling driven by the needs of drug development
(Andersen and Dennison, 2002; Sun et al., 1999), only in recent
years has there been an increased effort to develop population-
based models that may provide valuable estimates of diversity
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in TD responses to chemicals (Abdo et al., 2015; Burnett et al.,
2019; Grimm et al., 2018). Specifically, several approaches aim to
quantify population variability in the form of a toxicodynamic
variability factor (TDVF), defined as the ratio between the effec-
tive concentration (EC) for the median individual and that for a
sensitive individual, such as the 5th or 1st percentile of the pop-
ulation (Chiu et al., 2017). The resulting TDVF values can then be
used as a chemical-specific adjustment factor to derive risk-
based estimates for that compound through the replacement of
the default UF (WHO/IPCS, 2005).

An emerging in vitro model for testing both hazard and risk
for cardiotoxicity in a population is human induced pluripotent
stem cell (iPSC)-derived cardiomyocytes (Burridge et al., 2016;
Karakikes et al., 2015; Sharma et al., 2018). A number of studies
have used patient-derived iPSC cardiomyocytes to replicate
congenital cardiac abnormalities and interindividual variability
in drug toxicity (Kilpinen et al., 2017; Magdy et al., 2018). Grimm
et al. (2018) established that a compendium of iPSC-derived car-
diomyocytes from nondiseased individuals can reliably repro-
duce both baseline and chemical-induced interindividual
variability; this study found that observed variability was pri-
marily driven by intrinsic factors specific to each donor, rather
than experimental factors. Burnett et al. (2019) recently showed
how this model can be used as a screening tool for hazard as-
sessment of environmental chemicals and drugs, examining
the population variability with iPSC cardiomyocytes from 43
nondiseased donors. By combining this in vitro model with in sil-
ico Bayesian concentration-response modeling, we have previ-
ously shown that accurate prediction of in vivo concentration-
QTc relationships for 13 pharmaceuticals can be achieved
(Blanchette et al., 2019). Furthermore, we demonstrated how
this approach could serve as an alternative to the human
Thorough QT/QTc test (Blanchette et al., 2019; E14
Implementation Working Group, 2015).

Here, we sought to conduct a quantitative evaluation of the
population-wide TD variability in potential cardiotoxicity haz-
ards for a wide array of pharmaceuticals and environmental
chemicals (Figure 1). Specifically, we apply the Bayesian
concentration-response (C-R) modeling approach from
Blanchette et al. (2019) to a recently published dataset from a
large population of iPSC cardiomyocytes derived from 43 indi-
viduals that were treated with 136 compounds (Burnett et al.,
2019). In addition to deriving statistically rigorous estimates of
bioactivity and potency, Bayesian population modeling enables
quantification of TD variability through the derivation of chemi-
cal- and endpoint-specific TDVF. In addition, we demonstrate
how probabilistic in vitro-to-in vivo extrapolation (IVIVE) can be
used to derive margins of safety (MOS) for pharmaceuticals and
margins of exposure (MOE) for environmental chemicals, while
accounting for population variability (Figure 1).

MATERIALS AND METHODS

In vitro Experimental Data
The chemicals, iPSC-derived cardiomyocyte lines, Ca2þ flux as-
say, and high-content imaging assays were previously de-
scribed in Burnett et al. (2019). Briefly, a panel of 136 test
chemicals (Supplementary Table 1), including compounds iden-
tified as part of the Comprehensive In Vitro Pro-Arrhythmia
Assay (CiPA) initiative, was provided by the U.S. Environmental
Protection Agency, National Center for Computational
Toxicology (Research Triangle Park, North Carolina).
Deidentified iPSC-derived cardiomyocytes from 43 donors with

no known cardiovascular disease or familial history of cardio-
vascular disease were obtained from Fujifilm Cellular Dynamics
(Madison, Wisconsin). The methods for in vitro testing of cardio-
myocytes were previously reported (Burnett et al., 2019). The do-
nor population (Supplementary Table 2) was representative of
the U.S. population, consisting of 52% male and 48% female
donors representing White (69%), Hispanic or Latino (5%),
African-American (24%), and Asian (2%) ancestry (Burnett et al.,
2019) as identified using the Infinium 147 Global Screening
Array-24 v2.0 Kit (Cat. No. 20024444, Illumina, San Diego,
California). Catalog numbers and demographic information for
the donors was previously reported (Burnett et al., 2019). The
iPSC cardiomyocytes were treated with chemicals, and analyzed
with both a Ca2þ flux assay and high content imaging to evalu-
ate both functional performance and viability following a 90-
min treatment. Ca2þ flux data were imported in RStudio (ver-
sion 1.2.1335, R version 3.6.0) and analyzed with a peak process-
ing algorithm previously described (Blanchette et al., 2019).
High-content cell imaging was performed using an established
protocol in the ImageXpress Micro Confocal Cellular Imaging
System (Molecular 183 Devices) as described previously (Burnett
et al., 2019; Grimm et al., 2015, 2018; Sirenko et al., 2017). Image
processing and quantification were performed using the
multi192 wavelength cell scoring module in the instrument-
specific MetaXpress software package. All experiments included
testing in C-R format, with both positive and negative intraplate
controls (Burnett et al., 2019).

Statistical Analysis: Bayesian Population Concentration-response
Modeling of In Vitro Data
Data on total cell count (cytotoxicity), peak frequency, and
decay-rise ratio (defined as the ratio of the time from peak max-
imum to baseline and the time from baseline to peak maxi-
mum) were used in these analyses (Blanchette et al., 2019;
Burnett et al., 2019; Grimm et al., 2018; Sirenko et al., 2017). A to-
tal of 5 phenotypes (Table 1) were used to derive points of de-
parture (PODs) as follows. Positive and negative chronotropy
were defined as a 5% increase or decrease relative to controls in
peak frequency, with PODs represented by the EC at the 5%
change. Asystole was defined as a 95% decrease in peak fre-
quency, and its POD represented by the EC95. The POD for
delayed action potential leading to QT prolongation was repre-
sented by the EC05 for the decay-rise ratio, which was demon-
strated in Blanchette et al. (2019) to be an accurate in vitro
surrogate for in vivo QTc increases. Cytotoxicity is represented
by the EC10 for Total Cells (cytotoxicity), indicating a decrease in
10% in viability from its control value, consistent with previ-
ously published methods (Abdo et al., 2015; Chiu et al., 2017).

For C-R modeling, additional preprocessing was performed
depending on the phenotype. For the positive chronotropy, neg-
ative chronotropy, and QT prolongation phenotypes, any con-
centrations with no beating cells were omitted to avoid
confounding or nonmonotonicity caused by asystole or cytotox-
icity. In addition, for QT prolongation, any concentrations above
the development of a “notch” phenotype were also removed, as
described by Blanchette et al. (2019). This is done because
“notch” formation always occurs at concentrations above the
EC05 for decay-rise ratio, and because responses often become
nonmonotonic (eg, decrease in amplitude and decay-rise ratio
and increase in peak frequency) or irregular. For asystole and
cytotoxicity, no preprocessing was performed.

Population concentration-response modeling was conducted
in an R (version 3.5.0) module on the Texas A&M High
Performance Research Computing Core. For each compound,
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concentration-response data for all phenotypes was fit using hi-
erarchical Bayesian random-effects Hill models as described in
Chiu et al. (2017). An “upward” Hill model, was used for positive
chronotropy and QT prolongation, and reparametrized as fol-
lows at the donor level:

y ¼ y0 1þ
x
x0

� �n

1þ x
x0

� �n
1

Emax

0
B@

1
CAþ �: (1)

The variable y is the calculated response, y0 is the baseline
value, x is the nominal treatment concentration, x0 is the con-
centration at half the maximal response, Emax is the maximal

fractional change from baseline, n is the Hill coefficient, and e is
the residual error. All model parameters are held to be strictly
positive and as such were natural-log transformed for analysis.
A “downward” version of this model was used for negative chro-
notropy. Parameterization was changed as follows:

y ¼ y0 1�
x
x0
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0
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To avoid pathological parameter values and improve conver-
gence, the model hyperparameter natural log-transformed pop-
ulation mean of Emax (m_Emax) was restricted to be > �3, and

Figure 1. Workflow for data collection, Bayesian modeling, and hazard and risk characterization.
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that for the natural log-transformed hill parameter (m_n) was
restricted within the range between �2 and 2. Finally, for asys-
tole and cytotoxicity, a further simplified “zero” version of the
model was used that does not include Emax, under the assump-
tion that responses will eventually to go to zero. Here, the
model was parameterized as follows using the same restrictions
to m_n as the “downward” model:

y ¼ y0 1�
x
x0

� �n

1þ x
x0

� �n

0
B@

1
CAþ �: (3)

For all models, the natural log-transformed parameters were
assumed to have normal random effects; ie, that individuals in
the population were distributed normally given population
mean and standard deviation hyperparameters. Prior distribu-
tions for hyperparameters were normal for population means
and half-normal for population standard deviations. The error e

was assumed to follow a scaled Student’s t distribution with
scale parameter r, where (e/r) has a standard Student’s t distri-
bution, with � ¼ five degrees of freedom, to be robust for outliers
(Chiu et al., 2017).

Posterior distribution sampling was conducted using the
Markov chain Monte Carlo algorithm through R (version 3.5.0)
interfaced with the STAN software package (version 2.17.3) on the
Texas A&M Univeristy High Performance Research Computing
Core. Simulations consisted of 4 chains of 8000–36 000 iterations
each, the first half of which being warm-up iterations that were
subsequently discarded. Depending on what was required for
convergence, chemicals and endpoints varied in the number of
iterations used (Supplementary Table 3). For the “upward” and
“downward” models, the tuning parameters adapt_delta (step
size) and max_treedepth (number of steps taken in the random
walk) were increased from their default values of 0.8 and 10 to
0.99 and 15, respectively to improve the efficiency of the modeling
and prevent the occurrence of divergent transitions. For each pa-
rameter, both interchain and intrachain variability was assessed
to determine convergence, with the potential scale reduction fac-
tor bR� 1.2 considered converged (Gelman and Rubin, 1992). If con-
vergence was not reached for a given chemical and endpoint, the
iterations of the simulation were increased up to 36 000 per chain.
Should convergence still not be reached for a given chemical and
endpoint, it was not used in subsequent data analysis. A total of
1,000 posterior samples (4 chains, 250 random samples/chain)
were saved for further analysis.

Hazard Characterization
Phenotype- and chemical-specific activity calls. All subsequent data
processing and analysis were conducted in R (3.6.0). For each

compound-endpoint combination, the results were evaluated
using the following criteria: (1) convergence was reached as in-
dicated by bR�1.2; (2) model scale parameter for the error (r)
across the 4 chains was less than or equal to 0.1, indicating less
than about 10% typical error in concentration-response fit; and
(3) the median estimate for the median individual POD was be-
low the top concentration tested, so that the POD is not extrapo-
lated beyond the range of the data. Compounds that fulfilled
the criteria for convergence, C-R fit, and POD < top tested con-
centration were considered “active” in terms of their cardiotox-
icity hazard at the population median level for that endpoint.
Inactivity, then, may reflect either inadequate convergence, in-
adequate concentration-response fits, or inadequate potency
(POD above the tested concentration range).

To be considered sufficient for population variability analy-
sis, compounds had to satisfy the following criteria in addition
to the aforementioned criteria for activity: (1) dose-response
data after any preprocessing were available for at least 20 indi-
viduals for at least 3 concentrations above the control, so there
were sufficient individuals with adequate data to estimate pop-
ulation variability; and (2) the quotient of the 95th and 5th per-
centile estimates for the median individual POD was under 100,
so that chemicals/endpoints for which concentration-response
fits had more than two orders of magnitude uncertainty are
dropped.

Compounds therefore can be considered active but insuffi-
cient for population variability analysis. Due to these criteria, 2
endpoints, positive chronotropy and cytotoxicity, have 2 posi-
tive controls for their effects. Although both isoproterenol and
tetraoctyl ammonium bromide were used as positive controls in
previous studies (Grimm et al., 2018; Sirenko et al., 2017) for
these phenotypes, these compounds had maximal effects at the
lowest tested concentration above controls (isoproterenol) or
were not tested in C-R (tetraoctyl ammonium bromide). Thus,
these compounds were found to be insufficient for population
variability analysis, as isoproterenol had a high levels of median
individual POD uncertainty and tetraoctyl ammonium bromide
had a lack of dose response data. Therefore, nifedipine (positive
chronotropy) and terfenadine (cytotoxicity) were also used as
positive controls due to both having well-established activity
for these phenotypes and being testing in C-R (O’Brien, 2014;
Sato et al. 2001; Snider and Veverka, 2008; Woosley et al., 1993).

Chemical-specific critical phenotype determination. For each com-
pound that was active for at least one endpoint, a critical phe-
notype (PCrit) was determined as follows. For each iteration out
of the 1000 samples saved for analysis, a POD based on the pop-
ulation median and a POD estimate derived from a simulated
“random” individual (ie, using simulated Z-scores to account for

Table 1. Phenotypes Examined in This Study, Their Abbreviation, the In Vivo Equivalent, and Description of Data Preprocessing Conducted, If
Any

In Vivo Phenotype In Vitro Endpoint Positive Control Data Preprocessing

Cytotoxicity 10% decrease in total cells • Tetraoctyl ammonium bromide
• Terfenadine

None

QT prolongation 5% increase in decay/rise ratio • Cisapride Data with amplitude ¼ 0
dropped; concentrations above
notch dropped

Positive [þ] chronotrope 5% increase in peak frequency • Isoproterenol
• Nifedipine

Data with amplitude ¼ 0 dropped

Negative [�] chronotrope 5% decrease in peak frequency • Propranolol Data with amplitude ¼ 0 dropped
Asystole 95% decrease in peak frequency • Propranolol (high doses) None
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interindividual variability) were taken, and the lowest POD
across all active phenotypes is considered the PCrit for that itera-
tion. This process was repeated for each of the iterations and
the phenotype most commonly found to be the most sensitive
was determined to be the chemical-specific PCrit.

Population variation in TD sensitivity. If a compound was found to
be sufficient for population variability analysis for a given phe-
notype, population variability in the POD was estimated.
Specifically, for each phenotype, the toxicodynamic variability fac-
tor at 5% (TDVF05) as defined as the ratio of the POD for the me-
dian individual to the POD for the most sensitive 5th percentile
individual. For instance, for cytotoxicity, the POD we use at the
individual level is the EC10 corresponding to a 10% response
(Table 1). If we denote EC50

10 as the EC10 for the median individ-
ual, and EC05

10 as the EC10 for the 5th percentile individual, then
the TDVF05 ¼ EC50

10/EC05
10. The generally accepted default fixed UF

for TD variability was considered to be 101/2, or half an order of
magnitude, corresponding to TDVF ¼ 3.16 (WHO/IPCS, 2005).
Uncertainty in the POD estimates was also incorporated, so the
TDVF05 included a central tendency (median) estimate and 95%
CI, and was derived for all compounds that were found to be
sufficient for population variability analysis.

To estimate the chemical-to-chemical heterogeneity in
TDVF05 values for a given endpoint, a random-effects meta-
analysis approach was employed for all compounds sufficient
for population variability analysis for a given endpoint and
implemented using the R metafor package version 2.1
(Viechtbauer, 2010). Although a Bayesian method was consid-
ered for use to estimate chemical-to-chemical heterogeneity, a
traditional frequentist method was ultimately selected due to
the availability and general familiarity with standard meta-
analysis methods, especially methods to test for and estimate
heterogeneity. In addition, whereas it is possible, in principle, to
combine all the concentration-response analyses across all
chemicals in a single hierarchical analysis, we decided against
this approach because of the computational burden as well as
additional complexity in communicating the results. First,
TDVF05 values were converted to the natural log rH under the
assumption of a log-normal distribution for human population
variability: TDVF05¼exp(Z0.95�rH) where Z0.95¼1.645, the Z-score
for the 95th percentile. Log rH is related to another metric for
population variability, the geometric standard deviation for hu-
man variability GSDH¼exp(rH). The additional log transforma-
tion for rH was motivated by the observation by WHO/IPCS that
log rH is approximately normally distributed across chemicals,
as well as the fact that the posterior uncertainty distributions
for log rH are approximately symmetric. For each endpoint, the
log rH values were combined using standard random effects
meta-analysis, and chemical-specific best linear unbiased pre-
dictions (random effects shrunken estimates) were derived. We
then converted log rH back to TDVF05, and compared the results
from 2 previous studies of TD variability: (1) Chiu et al. (2017),
which reanalyzed data from Abdo et al. (2015) on in vitro cytotox-
icity screening of lymphoblastoid cells derived from > 1000 indi-
viduals tested with 179 chemicals; and (2) WHO/IPCS (2018),
which reanalyzed data from Hattis and Lynch (2006) on human
in vivo TD variability of 22 chemicals, some evaluated for multi-
ple endpoints. Because these previous studies derived TDVF01

values, they were converted to TDVF05 values with the conver-
sion formula TDVF05 ¼ TDVFz05=z01

01 where z01 and z05 are Z-
scores for the 1% and 5% individuals equaling about �2.32 and
�1.64 respectively.

Risk Characterization Using a Probabilistic IVIVE Analysis
Pharmaceuticals. For pharmaceuticals with at least one active
phenotype and available human pharmacokinetic data, poten-
tial risk was characterized by comparing sampled in vitro PCrit

POD values across 1000 iterations with Cmax values similarly
sampled from a pool of values sourced from the
PharmaPendium database (with replacement and excluding
outliers), to derive a MOS. The MOS is a risk indicator of the de-
gree of possible overlap between maximum blood concentra-
tions of a drug when administered as intended and the
estimated PCrit POD. The risk characterization was carried out in
a probabilistic context which allows for a capture of uncertainty
and variability in both exposure and TD. Thus, POD values and
in vivo blood concentrations were sampled from statistical dis-
tributions. For each pharmaceutical and in vitro phenotype, sep-
arate distributions were sampled for the population median
POD and a “random” individual POD (generated by randomly
sampling the population medians and variances as well as gen-
erating random Z-scores for each parameter). From each type of
POD, 2 MOS calculations were made: the MOS for a median indi-
vidual, estimated by dividing the 5th percentile POD from the
population median distribution by the 95th percentile blood
concentration; and the MOS for a sensitive individual, calcu-
lated by dividing the 5th percentile POD from the random indi-
vidual distribution by the 95th percentile blood concentration.
Should a compound be included in the IVIVE analysis and have
an PCrit that was not sufficient for population variability analy-
sis, only the population median distribution was produced and
only the median individual MOS was calculated.

Environmental chemicals. For environmental compounds, the
same probabilistic method as detailed for the pharmaceuticals
was used in deriving the two types of PODs and an equivalent
measurement of risk, the MOE. However, the derivation of the
in vivo blood concentration used for the environmental chemi-
cals was conducted differently. Exposure predictions were
sourced from Expocast through the EPA CompTox database and
from the values published by Ring et al. (2019). Oral exposure
estimates were then sampled from a lognormal distribution fit
to these exposure estimates. Each exposure sample was then
converted to a steady-state plasma concentration (Css) using the
httk package (Pearce et al., 2017) (version 1.9.2) in R, using the
sampled exposure value and the population median value out-
putted by the calc_mc_css function, executed with a chemical-
specific physiologically based toxicokinetic model. In prelimi-
nary tests, we found that using Monte Carlo samples for the TK
conversion to Css outputs resulted in only small differences (due
to the much larger uncertainty in exposure estimates), so popu-
lation median values for TK conversion to Css were used to sim-
plify the analysis. Both the MOE for a median individual and the
MOE for a sensitive individual were then calculated using the
same approach as the MOSs for pharmaceuticals.

RESULTS

Bayesian Population Concentration-response Modeling
Population C-R modeling was conducted on 136 test compounds
and 5 phenotypes: positive chronotropy, negative chronotropy,
QT prolongation, asystole, and cytotoxicity (Figure 2). With suf-
ficient number of Markov Chain Monte Carlo samples, most
models for all compounds and phenotypes adequately con-
verged except for 2 compounds for positive chronotropy, one
compound for QT prolongation, seven compounds for asystole,
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and one compound for cytotoxicity (see Supplementary Table
3). The C-R data for each compound, phenotype, and individual
are provided in supplemental materials (Supplementary Figs. 1
and 2). Across the five phenotypes, most compounds converged
at 8000 or 16 000 iterations, only 7 compounds required more.
Model fits across all compounds, regardless of whether they
were found to be active or not, were largely adequate. Median
estimates of the model scale parameter r across all compounds
were 0.056, 0.057, 0.052, 0.064, and 0.076 for positive chrono-
tropy, negative chronotropy, QT prolongation, asystole, and cy-
totoxicity, respectively.

Hazard Characterization
The results of the hazard characterization step of the analysis
are summarized in Figure 3. Overall, the smallest degree of ac-
tivity across all compound classes was observed for the cytotox-
icity phenotype, with less than 25% of compounds active
regardless of chemical class. The QT prolongation phenotype
had the greatest percentage of CiPA drugs being both active and
sufficient for population variability analysis. The negative chro-
notropy phenotype mostly had activity with drugs (both CiPA
and non-CiPA), with little representation from the

environmental chemicals. This is in contrast with the positive
chronotropy phenotype, which was dominated by environmen-
tal chemicals, followed by CiPA drugs and then non-CiPA drugs.
The asystole phenotype had broad activity across all compound
classes, with a minimum of 40% of compounds in each class be-
ing active and sufficient for population variability analysis.
Detailed hazard characterization results for each compound
and phenotype are shown in Supplementary Table 4.

Figure 4 shows, for each chemical class, the distribution of
PCrit designations as defined by the effect with the lowest POD,
across the 1000 iterations of the sampling analysis. Although a
PCrit was determined at both the population level and the indi-
vidual level, the designations were identical for all chemicals in
the analysis. Cytotoxicity was found to the PCrit for one com-
pound—the pesticide captan. Similarly, the second viability
phenotype, asystole, was identified as PCrit for only 4 com-
pounds, the industrial chemical 3,4-dichlorophenyl isocyanate,
the food additives 4-hexylresorcinol and propyl gallate; and the
flame retardant 3,30,5,50-tetrabromobisphenol A. The CiPA drugs
were most likely to elicit QT prolongation as their critical effect,
with positive chronotropy also having a significant representa-
tion among this class of test compounds. Non-CiPA drugs had a

Figure 2. Population concentration response modeling of representative compounds for each phenotype. All compounds shown are considered active for their respec-

tive functional endpoint. Orange and purple solid and dotted lines reflect the median estimate and 90% CI of the population median and the “random” individual, re-

spectively. In vitro data for each donor is shown as a gray line. Histogram of median estimates for the 43 individuals’ point of departure is shown at the bottom of each

plot. Each representative compound’s cytotoxicity concentration-response (C-R) is shown to the right of its C-R for one of the four other phenotypes.
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relatively even distribution of PCrit designations, with 25%, 30%,
and 20% of compounds in this class having an PCrit of QT prolon-
gation, positive chronotropy, or negative chronotropy, respec-
tively. Treatment with environmental chemicals most often
resulted in positive chronotropy as the PCrit, both overall, as well
as across subclasses (with the exception of the metals).

To further characterize chemical-to-chemical heterogeneity
in TDVF05, a random effects meta-analysis approach was
employed. First, TDVF05 values were converted to log rH values
so that the confidence intervals are more symmetric and be-
cause prior analysis have suggested that the chemical-to-
chemical heterogeneity in log rH can be approximated by a nor-
mal distribution (Hattis and Lynch, 2006; WHO/IPCS, 2018). A
standard random effect analysis was conducted for each of the
five phenotypes, with a subgrouping analysis in each chemical
class. The results of this analysis included both the pooled esti-
mate of the log rH (and hence the TDVF05) for each phenotype
(and chemical class, with subgrouping, Supplementary Figure
4), the standard deviation of the random effects reflecting het-
erogeneity, represented by s, and best linear unbiased predic-
tions for phenotype- and chemical-specific estimations of
variability. Heterogeneity was also calculated for each chemical
class subgroup. An additional multivariate mixed effects analy-
sis was conducted to determine whether the chemical classes
vary significantly from one another in their random effects (ie,
their population variability, Supplementary Figure 3).

The meta-analysis results for log rH for each phenotype can
be converted back to TDVF05 values and their random effects

shrunken estimates can be compared with both the default hu-
man toxicodynamic UF (UFH, TD) value of 3.16, as well as to pre-
vious studies of TD variability, as shown in Figure 5. Figure 5A
shows the distribution of the random effects shrunken TDVF05

estimates (median estimate and 95% CI) for each phenotype,
with the distribution of the median estimates shown as the box-
plot above each panel. These were compared with the shrunken
TDVF05 estimates from 2 previous studies using different popu-
lation variability models: in vitro cytotoxicity population vari-
ability estimates from Chiu et al. (2017) using data from Abdo
et al. (2015) in > 1000 individual lymphoblastoid cell lines, and
human in vivo population variability from Hattis and Lynch
(2006) as analyzed by WHO/IPCS (2018).

The functional phenotypes (QT prolongation and positive or
negative chronotropy) tended to be more variable than the other
phenotypes and comparison studies, reflected in their distribu-
tions being shifted to the right of default TDVF05 ¼ 3.16, with all
median estimates and almost all confidence intervals for the
shrunken TDVF05s exceeding this value. In the case of positive
chronotropy, a substantial percentage of test chemicals
exceeded a TDVF05 value of 10. This contrasts with the cytotox-
icity phenotype, where most compounds regardless of class
have shrunken median estimate TDVF05 values under the de-
fault UFH,.TD. The asystole phenotype had more compounds

Figure 3. Cardiotoxicity hazard characterization. Percentage of compounds for

each phenotype that were found to be active and sufficient for population vari-

ability analysis (“ActiveþPop. Var.”), active but insufficient for population vari-

ability analysis (“Active”), and inactive and insufficient for population variability

analysis (“Inactive”), differentiated by color intensity and separated by class. Figure 4. Critical phenotype calls. Critical (most sensitive) phenotype occurrence

(percentage out of the number of compounds in the class) from population me-

dian-derived points of departure, colored by endpoint and separated into com-

pound class. The environmental chemicals are also further broken down into

subclasses.
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Figure 5. Distribution of random effects derived shrunken TDVF05 estimates. A, Shrunken median estimate and 95% CI TDVF05 values separated by phenotype or study

and color coded by chemical class. The vertical dotted line reflects the default uncertainty factor (UFH, TD ¼ 3.16). The distribution of shrunken median estimate TDVF05

values is illustrated as the boxplot above each endpoint panel. B, Barplots showing the percentage of compounds by class whose shrunken median estimate TDVF05

value exceeds or falls below the default UFH, TD. Number of compounds reported in each class is the number of unique compounds, not accounting for multiple com-

pound/endpoint combinations.
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that exceed the default UFH, TD than the other viability pheno-
type, but less than the functional phenotypes. Asystole also had
the highest measure of heterogeneity (s2) of the 5 evaluated
phenotypes, with a value comparable with the values calculated
from Chiu et al. (2017) and WHO/IPCS (2018). The cytotoxicity
phenotype TDVF05 measurements are most similar to that of
the TDVF estimates derived from Chiu et al. (2017), which are
also based on cytotoxicity measurements, albeit in a different
human in vitro model. The negative chronotropy phenotype has
a heterogeneity value of 0, resulting in all shrunken TDVF05 esti-
mates to be the same, but still exceeding the default value. The
overall tendency of functional phenotypes to have more inher-
ent variability in response is shown in Figure 5B. It is evident
that the fraction of compounds where the random effects
shrunken median estimate TDVF05 value was greater than the
default value was considerably higher for the functional end-
points than for cytotoxicity. With respect to class-specificity, we
did not find a statistically significant effect of chemical class on

the degree of variability within any phenotype with the excep-
tion of CiPA drugs for the positive chronotropy phenotype
(Supplementary Figure 4).

Risk Characterization
Figure 6A compares the uncertainty distributions of the Cmax

and the POD estimate for the chemical-specific PCrit. Blood con-
centrations were available from PharmaPendium for 27 out of
54 pharmaceuticals, including 13 CiPA pharmaceuticals indi-
cated by the chemical name in bold face. Median and sensitive
individual (where possible) MOSs were calculated, for each com-
pound. If a compound had a PCrit not considered sufficient for
population variability estimate, only the population median
POD distribution is shown, and an asterisk appended to the
compound’s name. In addition, in this case, the sensitive indi-
vidual MOS was not derived and was instead replaced with a
dash. The overall distributions of MOSs are shown in Figure 7.

Figure 6. Distributions of exposures (green) as compared with distributions of population based (blue) and random individual POD estimates (orange) for critical pheno-

types for both drugs (A) and environmental chemicals (B) ordered from lowest to highest population median critical phenotype population point of departure (POD)

and separated by phenotype. Pharmaceutical exposures are based on the Cmax values extracted from the Pharmapendium database. Environmental chemical exposure

estimates are in the form of a Css value based on Expocast exposure estimates and Monte Carlo based estimation of the Css using the httk package in R. POD and expo-

sure estimates are both log10 transformed. Median and sensitive individual margins of safety (MOS)/margins of exposure (MOE) values are derived, if possible, and

shown next to each compound name. CiPA drugs are designated with a bold face chemical name. Compounds with no derived random individual distribution and sen-

sitive individual MOS/MOE are designated with an asterisk (*).
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For more than half of pharmaceuticals tested, there was at
least some overlap between the Cmax distributions and the POD
distributions. For example, 15 compounds with median individ-
ual MOS predictions, and 11 of the 16 compounds with sensitive
individual MOS predictions had values under 100. Notably, 10 of
the 13 CiPA drugs had median individual MOS predictions below
100, with 9 of them being for the QT prolongation phenotype.
Cisapride, colchicine, and verapamil were the compounds with
the lowest MOS.

Figure 6B similarly compares the uncertainty distributions of
the estimated general population exposure-derived in vivo blood
concentration for environmental chemicals, this time in the
form of a Css, and the chemical-specific PCrit POD estimate for
both the population and individual level. Blood concentrations
could be predicted for 23 out of the 83 tested environmental
chemicals included in this analysis. The lowest population me-
dian MOE was 0.4 for the pesticide rotenone, whereas no other
median individual MOE was less than 1000. The flame retardant
triphenyl phosphate and the pesticide 2-phenylphenol had the
lowest calculated sensitive individual MOEs with values of 100
and 400, respectively. The remaining compounds had sensitive
individual MOE predictions of 5000 or greater. The overall distri-
bution of the MOE values for both the median and sensitive in-
dividual are shown in the lower section of Figure 7.

Detailed comparisons of blood concentrations (Cmax or Css)
and PODs for each individual phenotype are shown in
Supplementary Figure 5.

DISCUSSION

In this study, we demonstrate how combining a population-
based iPSC-derived cardiomyocyte in vitro model with Bayesian
C-R modeling can provide a quantitative characterization of
population TD variability in cardiotoxicity hazards. This ap-
proach can be applied for both pharmaceuticals and environ-
mental chemicals. Ensuring protection of more sensitive
members of the population remains a challenge in both drug
safety evaluation and chemical risk assessment, with continued
reliance largely on generally accepted “rules-of-thumb,” such as
10- or 100-fold safety factors, rather than empirical data.
Attempts to address this challenge more broadly have been
constrained by a paucity of population variability data in vivo
(Zeise et al., 2013) and concerns about the in vivo relevance of
population-based models using immortalized cell lines (Abdo
et al., 2015; Chiu et al., 2017). Our model based on iPSC-derived

differentiated cells from a population of nondiseased individu-
als provides a unique opportunity to bridge these gaps by utiliz-
ing functional, nonimmortalized cells in a population context.
Although Burnett et al. (2019) were able to utilize this population
model to examine TD variability in a frequentist context, we
demonstrate in this study the benefits of using Bayesian
approaches in better characterizing the degree of population
variability along with its uncertainty. Specifically, hierarchical
Bayesian methods allows for better characterization of uncer-
tainty in not only in the model parameters for each individual
(eg, accounting for shrinkage toward the mean), but also in the
degree of variability across individuals overall (Zhao et al., 2010).
This was not possible in Burnett et al. (2019), which derived indi-
vidual POD values independently for each individual.
Ultimately, we have demonstrated that population-based ex-
perimental data, together with population-based hierarchical
Bayesian modeling, can be applied to rigorously estimate the
degree of population variation in TD sensitivity for a panel of
clinically relevant outcomes.

For pharmaceuticals, our model reproduced the in vivo ob-
servation that QT prolongation represents a common liability,
particularly for CiPA drugs, at both the population and the indi-
vidual level. For environmental chemicals, we found QT prolon-
gation to be a less common potential liability, with positive
chronotropy being the most observed potential human health
hazard. However, it should be noted that many test compounds
elicited multiple effects, both related to cardiomyocyte function
and viability. Nonetheless, functional effects tended to be the
most sensitive hazard indicators as they were observed at lower
concentrations than effects on viability. This was consistent
with observed effects on beat rhythmicity and action potential
duration being independent of and not secondary to cytotoxic-
ity, thus implying that cytotoxicity alone is insufficiently sensi-
tive to identify cardiotoxic compounds. More broadly, our
results show the importance of using differentiated, functional
cells for drug safety and chemical toxicity screening, not only
because the effects are more interpretable, but because they are
likely to identify more sensitive endpoints.

The primary innovation of this work is in the development
of a combined experimental-computational approach to quan-
tify TD variability in susceptibility so as to directly inform drug
and chemical safety assessments for cardiotoxicity. Specifically,
our approach results in the derivation of a TD variability factor,
or TDVF, that can provide compound- and endpoint-specific
replacements to widely used default safety factors. Although
similar approaches have been previously applied to a
population-based immortalized cell line model evaluating cyto-
toxicity (Chiu et al., 2017; WHO/IPCS, 2018), and to functional
studies in patient-derived cardiomyocytes (Magdy et al., 2018),
the use of a population of differentiated human cells from non-
diseased individuals provides information on functional pheno-
types that have not been available previously, and is more
representative of the general population variability. This is par-
ticularly important because we found that functional pheno-
types not only tend to have greater levels of population
variability as compared with cell viability endpoints, but also
have TDVF values almost uniformly greater than the usual de-
fault assumption of 3-fold used in both pharmaceutical safety
and chemical risk assessments. Other studies utilizing similar
populations of iPSC-derived cardiomyocytes coupled to an in sil-
ico model have not had the pointed focus on TD variability
quantification for use in risk assessment. For instance, a recent
study by Kernik et al. (2019) developed a computational whole-
cell model to examine cell-to-cell variability and more

Figure 7. Distribution of median and sensitive individual’s margins of safety

(MOS)/margins of exposure (MOE). Box and whiskers plots show the range in

MOE/MOS across tested compounds. Box is interquartile range, vertical line is

the median, whiskers are min-max values. All individual data are shown as

circles. Red vertical line indicates a MOS or MOE of 100.
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specifically, experimental variability within a given donor,
which they posit is a strength when properly incorporated into
a model (Kernik et al., 2019). This contrasts with the Bayesian
framework used in this study, which disaggregates the impact
of experimental variability while also providing hazard, risk,
and population variability estimates. An in silico cardiotoxicity
study by Passini et al. (2017) similarly did not address variability
at an endpoint and chemical-specific level, instead utilizing a
population of human ventricular action potential model to
demonstrate the accuracy of in silico trials in predicting TdP risk.
Passini et al. (2017) also diverges from this study in that we use
Ca2þ data and the decay-rise ratio as the in vitro surrogate for
the QT prolongation phenotype as opposed to action potential
duration. However, the authors noted that the results from their
study are in agreement with experimental recordings from
iPSC-derived cardiomyocytes (Passini et al., 2017). This study
also represents a natural extension of both Blanchette et al.
(2019) and Burnett et al. (2019), providing a complete, high-
throughput experimental and computational workflow to pro-
vide high throughput, population-based estimates of hazard,
risk, and TD variability that can be applied in both the pharma-
ceutical and risk assessment arenas (Pang, 2020).

Two previous studies (Chiu et al., 2017; WHO/IPCS, 2018) that
we used for comparison included drugs that overlap with the
CiPA-list pharmaceuticals included in our study; therefore, di-
rect comparisons of TDVF estimates were possible. The only
overlapping compound from the WHO/IPCS (2018) study with a
TD phenotype was sotalol, whose principal hazard phenotype is
QT prolongation. This WHO/IPSC study utilized an EC50 for the
POD and therefore their derivation of a TDVF. We recalculated a
TDVF05 shrunken estimate using an EC50 for the purposes of
comparison. The shrunken median estimate and 95% confi-
dence interval TDVF05 for sotalol as derived by our study was
6.0 (2.8, 23.0) whereas the TDVF05 shrunken estimate derived
from WHO/IPCS (2018) was 16.9 (11.7, 37.5). Although the
shrunken estimate derived using the WHO/IPCS (2018) dataset
was larger, the confidence intervals of both our study and theirs
are indistinguishable. The only direct comparison between CiPA
drugs from the Chiu et al. (2017) study and our study was with
tamoxifen. The shrunken TDVF05 estimate derived from our
data for this compound was 2.5 (1.7, 4.8), whereas the estimate
derived using the Chiu et al. (2017) data set was 1.31 (1.29, 1.33).
This comparison is less informative because although both are
based on cytotoxicity, and it is not unexpected that different
cell types may have different degrees of variability for viability.
Indeed, this result may suggest that immortalized cell lines
such as lymphoblastoid cells might underestimate the degree of
population variation as compared with the functional cell types
such as cardiomyocytes.

To place our results in a decision-making context, we further
demonstrated how a MOS or MOE can be derived from these
data to also incorporate population variability. As expected,
many pharmaceuticals had relatively narrow MOSs, and popu-
lation variability further narrowed their margins by 1.5- to 8.8-
fold, as a consequence of TDVF values for these compounds of-
ten being greater than the default value of 3.16. For the environ-
mental chemicals, only four had MOEs less than 10 000, and of
these only three had sufficient data on population variability to
estimate a sensitive individual MOE. Although the impact of
population variability for the two pesticides was relatively
small, for the flame retardant triphenyl phosphate, the sensi-
tive individual MOE of 140 was more than 20-fold less than the
population median-based MOE, indicating that estimated hu-
man exposures may be approaching levels of concern for

cardiotoxicity when taking toxicodynamically sensitive individ-
uals into account.

This study has several limitations that are important to
note. First, the number of individuals (43) tested herein was rel-
atively limited, and whereas it can be used to provide an esti-
mate of the degree of variability in the population as a whole, it
is insufficient to identify idiosyncratic individuals. Thus, the
proposed model is not to replace the need for careful postmar-
keting surveillance or the development of personalized,
precision-medicine-based approaches that use patient-specific
cells (Burridge et al., 2016) to identify susceptibility to potential
cardiotoxic liabilities of drug candidates. Secondly, despite the
model being high-throughput in nature, the routine use of 43
different cell lines for screening a large number of compounds
will be impractical and costly. There is therefore a need to better
characterize the tradeoffs between the cost/time needed to test
a greater number of cell lines with the model’s ability to accu-
rately capture hazard and characterize risk. Third, because our
study utilized data from Burnett et al. (2019), a number of the
limitations acknowledged in that study also apply here. These
include being unable to examine the potential effects of under-
lying disease on hazard and variability due to the use of only
nondiseased donors, and the relatively small number of com-
pounds tested compared with the total number of pharmaceuti-
cals and chemicals in the environment.

Overall, this study demonstrates how a combined in vitro-in
silico approach can help to close the ever-widening data gap of
chemicals with insufficient or no data on cardiotoxicity and its
population variation in susceptibility. Not only can this model
be effectively utilized in characterizing cardiotoxicity hazards,
but it also enables quantification of TD variability through the
derivation of a TDVF that can replace default assumptions with
respect to numerous cardiotoxicity phenotypes. Of particular
importance is our finding that for a large number of com-
pounds, cardiomyocyte-derived TDVFs far exceeded the default
TD safety factor/UF of 3.16, suggesting that this default factor
may not be sufficiently protective of sensitive members of the
population. Moreover, greater variability was observed largely
for functional phenotypes such as beat rate and action potential
duration, rather than measures of viability such as cytotoxicity.
In terms of risk characterization, we found that although a
number of pharmaceuticals had relatively narrow MOS, for en-
vironmental chemicals tested current estimates of the general
population exposures were not high enough to pose a concern,
even for sensitive individuals. In conclusion, we have extended
the utility of iPSC-derived cardiomyocyte-based in vitro model
from being a primarily cardiotoxicity hazard screening tool to
an approach that can be used to quantify the extent of popula-
tion variability in susceptibility for drugs and environmental
chemicals. This provides a critically important experimental-
computational approach for ensuring that decisions in both
drug development and environmental chemical risk assess-
ment are protective of the health across the population.
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online.
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