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CONSPECTUS:

RNA-based technologies to control gene expression, such as, RNA interference (RNAi) and 

CRISPR-Cas9 have become powerful tools in molecular biology and genomics. The exciting 

potential that RNAi and CRISPR-Cas9 may also become new therapeutic approaches has 

reinvigorated interest in chemically modifying RNA to improve its properties for in vivo 

applications. Chemical modifications can improve enzymatic stability, in vivo delivery, cellular 

uptake, and sequence specificity; as well as minimize off-target activity of short interfering RNAs 

(siRNAs) and CRISPR associated RNAs. While numerous good solutions for improving stability 

towards enzymatic degradation have emerged, optimization of the latter functional properties 

remains challenging. In this Account, we discuss synthesis, structure, and biological activity of 

novel non-ionic analogues of RNA that have the phosphodiester backbone replaced by amide 

linkages (AM1). Our long-term goal is to use the amide backbone to improve the stability and 

specificity of siRNAs and other functional RNAs. Our work in this area was motivated by early 

discoveries that non-ionic backbone modifications, including AM1, did not disturb the overall 

structure or thermal stability of RNA duplexes. We hypothesized that the reduced negative charge 

and hydrophobic nature of the AM1 backbone modification might be useful in optimizing 

functional applications through enhanced cellular uptake, and might suppress unwanted off-target 

effects of siRNAs. NMR and X-ray crystallography studies showed that AM1 was an excellent 

mimic of phosphodiester linkages in RNA. The local conformational changes caused by the amide 

linkages were easily accommodated by small adjustments in RNA’s conformation. Further, the 

amide carbonyl group assumed an orientation that is similar to one of the non-bridging P-O bonds, 

which may enable amide/phosphate mimicry by conserving hydrogen bonding interactions. The 

crystal structure of a short amide-modified DNA-RNA hybrid in complex with RNase H indicated 

that the amide N-H could also act as an H-bond donor to stabilize RNA-protein interactions; which 

is an interaction mode not available to phosphate groups. Functional assays established that 

amides were well tolerated at internal positions in both strands of siRNAs. Surprisingly, amide 

modifications in the middle of the guide strand and at the 5′-end of the passenger strand increased 

RNAi activity compared to unmodified siRNA. Most importantly, an amide linkage between the 
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first and second nucleosides of the passenger strand completely abolished its undesired off-target 

activity while enhancing the desired RNAi activity. These results suggest that RNAi may tolerate 

more substantial modifications of siRNAs than the chemistries tried so far. The findings are also 

important and timely because they demonstrate that amide modifications may reduce off-target 

activity of siRNAs, which remains an important roadblock for clinical use of RNAi. Taken 

together, our work suggests that amide linkages have underappreciated potential to optimize the 

biological and pharmacological properties of RNA. Expanded use of amide linkages in RNA to 

enhance CRISPR and other technology requiring chemically stable, functional mimics of non-

coding RNAs is expected.

Graphical Abstract

INTRODUCTION

Progress in nucleic acid chemistry has historically been inspired by exciting discoveries of 

new biological roles played by DNA and RNA. The discovery of the DNA double helix was 

followed by the development of methods for the chemical synthesis of DNA and RNA. 

Later, the premise that antisense oligonucleotides may offer a new therapeutic approach of 

unusual specificity sparked extensive development of chemical modifications to optimize 

stability towards enzymatic degradation and RNA-binding affinity of DNA oligonucleotides.
4–5 The discovery of RNA interference (RNAi) and its development as a powerful tool for 

fundamental inquiry and pharmaceutical science expanded interest toward chemical 

modifications of RNA.6–9 RNAi is also maturing as a new therapeutic approach. At the time 

of writing, there are two FDA approved RNAi drugs, Onpattro (patisiran) and Givlaari 

(givosiran) by Alnylam Pharmaceuticals along with other RNAi therapeutics in late stage 

clinical trials.10–11 Future developments of RNAi and the recently invented CRISPR-Cas9 

technologies will benefit from advances in chemical modification of their RNA components.
6, 12

Chemical modification of short interfering RNAs (siRNAs) has mainly focused on the sugar-

phosphate backbone for optimization of siRNA biophysical and pharmacological properties.
6, 10, 12 Phosphorothioate backbone and ribose 2′-F and 2′-OMe modifications (Figure 1) 

have improved RNA binding affinity and enzymatic stability of siRNAs. Encapsulation in 

lipid nanoparticles or conjugation of siRNAs with GalNac has enabled efficient delivery to 
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liver.11 Delivery to other organs, such as the central nervous system, can also be facilitated 

by extensive chemical modifications. However, improving sequence specificity and 

minimizing off-target activity of siRNAs has been a more challenging task. Another key 

challenge for in vivo applications of siRNAs is the large size and hydrophilicity of these 

negatively charged biopolymers.

Our approach in this field has been guided by an overarching hypothesis that a reduction of 

the negative charge of siRNAs by using non-ionic backbone modifications would have 

multiple benefits for in vivo applications of siRNAs. Our long-term goal has been to 

improve the delivery and cellular uptake of siRNAs by replacing the negatively charged 

phosphates with amides, the natural backbone of proteins. Our most significant discovery in 

this endeavor was perhaps that replacing phosphates with amides at certain positions of 

siRNAs eliminated some of the undesired off-target activity while improving the on-target 

activity of modified siRNAs. Our cumulative results over the past two decades suggest that 

amides (and perhaps other non-ionic backbones) have untapped potential to optimize the 

functionality of the RNA components of RNAi technology.

HISTORICAL PERSPECTIVE

Replacing phosphates in DNA with various non-ionic linkages was extensively explored in 

the 1990s to improve the stability towards enzymatic degradation and RNA binding affinity 

of antisense oligonucleotides.4 Most of these replacements of DNA phosphates with 

alternative backbones decreased the thermal stability of DNA-RNA heteroduplexes in initial 

UV thermal melting assays and were not further studied.4 During this period, De Mesmaeker 

and co-workers at Ciba-Geigy (later Novartis) synthesized and tested almost all possible 

isomeric amide internucleoside linkages in DNA (Figure 1 shows AM1 and AM2 as two 

examples).4 In this series, AM1, first reported independently by Just13 and De 

Mesmaeker14–15 in 1993-94, stood out as one of the few non-ionic backbones that increased 

the melting temperature of DNA-RNA heteroduplexes (albeit slightly) when used to replace 

select phosphates. Substitution of all phosphates in a short DNA fragment with AM1 amides 

had minimal effect on its ability to base pair with either complementary DNA or RNA.16 

The isomeric AM2 also looked promising with relatively little effect on thermal stability.17 

Despite the extensive synthetic efforts, there were no reports on biological activity of amide-

modified antisense oligonucleotides until a very recent study by Brown and co-workers.18 

These authors found that isolated amide linkages in the center of an oligodeoxynucleotide 

did not support the RNase H activity required for antisense-mediated cleavage. On the other 

hand, an antisense oligodeoxynucleotide with four consecutive linkages at each 3′- and 5′-
ends (the so-called gapmer) was fully active and, as expected, more resistant to nuclease 

degradation than the unmodified DNA sequence.18

We found that non-ionic backbone modifications had a remarkably different effect on the 

thermal stability of RNA duplexes compared to the DNA duplexes or DNA-RNA 

heteroduplexes studied previously. For example, a formacetal internucleoside linkage (FA, 

Figure 1) was slightly stabilizing in RNA, but strongly destabilizing in DNA.19–20 Structural 

and osmotic stressing studies19 showed that the effect of formacetal was most likely related 

to differences in hydration rather than structure. While formacetal fit perfectly well in both 
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DNA and RNA duplexes, it decreased the hydration of DNA while having little effect on 

hydration of RNA.19 These differences were clearly caused by the different hydration of 

each distinct conformation of the right-handed double helices, A-form in RNA and B-form 

in DNA.

Our early studies on amide-modified RNA showed that both AM1 and AM2 linkages having 

either 2′-OH or 2′-O-methyl neighboring groups (R in Figure 1) were well accommodated 

in A-form RNA duplexes.21–22 AM2 was more stabilizing in RNA duplexes than AM1,22 

whereas in DNA-RNA heteroduplexes, the trend was opposite.17 Both AM1 and AM2 were 

destabilizing in DNA duplexes.17, 23 Our group pursued detailed thermodynamic and nuclear 

magnetic resonance (NMR) structural studies that showed that AM1 internucleoside 

linkages were surprisingly effective mimics of phosphates, causing little, if any, distortion of 

the structure, change in thermal stability, or difference in hydration of A-form RNA duplexes 

(Figure 2).3 In another study, we showed that three consecutive AM1 linkages in the middle 

of a short RNA duplex caused some loss of thermal stability, but only a modest alteration of 

the structure of the RNA.24 In both cases, the planar amide linkage was easily 

accommodated as a replacement for the tetrahedral phosphate by small conformational 

changes of the overall helical structure of RNA inspiring confidence that, despite the 

different geometry (Figure 2), amides may be favorable modifications for modulating the 

properties of siRNAs. Our results were consistent with earlier NMR25 and molecular 

modeling26–27 studies showing that AM1-modified DNA adopted an A-like conformation.

The NMR structural studies showed that the amide carbonyl bond in modified RNA aligned 

with one of the non-bridging phosphate oxygen bonds (designated P–OP2 in crystal 

structures) of unmodified RNA, assuming the same orientation towards the major groove of 

the RNA duplex. This interesting observation led us to hypothesize that the amide carbonyl 

may be able to mimic hydrogen bonding interactions between proteins involved in RNAi, 

such as argonaute 2 (Ago2), and P–OP2 in unmodified siRNAs. Argonautes belong to a 

family of proteins that bind short (~21 nucleotide long) double-stranded regulatory RNAs, 

such as siRNAs and microRNAs.28–32 Argonautes retain one strand of the regulatory RNA 

duplex, the so-called guide strand, and use its sequence to recognize and silence the 

expression of complementary mRNAs. The other strand, the so-called passenger strand is 

discarded. The silencing either occurs irreversibly by endonucleolytic cleavage of mRNA, as 

in Ago2-catalyzed reactions using exogenous siRNAs (including the novel therapeutic 

agents under development), or by more complex mechanisms involving the recruitment of 

additional protein factors that silence gene expression without RNA cleavage. The latter 

mechanisms are used by microRNAs, a group of short endogenous regulatory RNAs that 

require only partial sequence complementarity to silence target mRNAs. Since Ago2 binds 

siRNAs by interacting mostly with the negatively charged phosphates in a sequence non-

specific manner,28–32 the ability of amides (as modifications in synthetic siRNAs) to mimic 

these interactions would be highly advantageous.

X-ray crystallography studies confirmed results obtained by NMR, showing that AM1 

linkages caused little change to the conformation and hydration of double-stranded RNA.33 

Like in the earlier NMR structure,3 crystallographic analysis33 showed that the amide-

modified RNA forms a typical A-form duplex where the amide carbonyl group points into 
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the major groove and assumes an orientation similar to the P–OP2 bond in unmodified RNA.
33 Tandem water molecules link the carbonyl group and adjacent phosphate oxygens, 

supporting an uninterrupted hydration network of the amide-modified backbone in the 

duplex. Taken together, our early studies3, 19–22, 24 suggested that 1) A-form RNA may 

accommodate non-ionic internucleoside linkages better than B-form DNA; and 2) amides 

may be excellent mimics of phosphates in RNA, and interesting modifications to explore for 

modulating the properties of siRNAs. These results prompted us to explore in more detail 

the structure and RNAi activity of amide-modified RNAs.

SYNTHETIC CHALLENGES

Both fundamental studies and therapeutic applications of oligonucleotides having significant 

alteration of their chemical structures depend critically on efficient monomer and oligomer 

synthesis. For example, while formacetal (Figure 1) appears to be an almost perfect 

structural mimic of the phosphate backbone,19 further exploration of FA is hindered by low 

yielding and poorly reproducible syntheses of monomers and internucleoside linkages.20 

The presence of the 2′-OH adds another layer of complexity to synthesis of any modified 

RNAs, compared to antisense oligonucleotides that are modified DNA fragments. Because 

of favorable biophysical results (discussed above) and more straightforward synthesis than 

AM2 or FA, our recent studies have focused mostly on AM1-modified RNA. To prepare 

such compounds, we and others have used two general approaches: 1) incorporation of 

isolated amide linkages using dimeric phosphoramidites in traditional RNA synthesis (the 

dimer approach); and 2) synthesis of consecutive amide linkages using peptide-like 

couplings of nucleoside amino acids (the monomer coupling approach).

The dimer approach has been the most straightforward, and has been used in the majority 

of previous studies on non-ionic backbone modifications in DNA.4 In this approach, the 

modified linkage is synthesized between two nucleosides creating a dimer that is then 

converted into a phosphoramidite derivative (for example, 5 in Scheme 1) suitable for 

standard solid phase DNA/RNA synthesis. The dimer approach allows for complex multi-

step chemistry to make a wide variety of novel internucleoside linkages, which is the key 

advantage. The disadvantages are that the dimer approach does not allow introduction of 

consecutive modified linkages (e.g., only isolated modifications spaced between native 

phosphates can be made) and that the sequence of the modified oligomer is limited by the 

identity of two nucleosides in the dimer.

Synthesis of AM1-linked RNA dimers requires separate two-carbon C3′-homologation and 

5′-nucleophilic substitution to install the carboxylic acid and amine groups on the upper and 

the lower ribose residues of the dimer, respectively. In the DNA series, Just13 and De 

Mesmaeker14–15, 27 used radical allylation (Scheme 1) as the 3′-C-C bond forming step, 

followed by oxidative cleavage of the alkene to synthesize the carboxylic acid parts of 

amide-linked DNA (R1, R2 = H) and 2′-O-methyl RNA (R1, R2 = OCH3) dimers. We 

adopted this approach to synthesize AM1-linked RNA (R1, R2 = OH) dimers.3, 21–22, 33 

Starting from the easily accessible radical precursor 1, radical allylation provided the C3′-
homologated intermediate 2, which after protecting group exchange and oxidative cleavage 

of alkene gave the 5′ -O-(4-methoxytrityl) (MMTr) protected C3′-carboxylic acid derivative 
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3. The 5′ -aminonucleosides 4 were prepared using straightforward nucleophilic substitution 

with azide followed by reduction to the corresponding amine. Coupling of 3 and 4 followed 

by installation of the phosphoramidite group gave the solid-phase-synthesis-ready amide-

linked RNA dimers 5.

While synthetically straightforward, this approach to AM1-linked RNA requires 16 dimers 

to make all possible sequences with isolated amide linkages. In our studies, careful choice of 

RNA sequences enabled detailed structural and mechanistic studies on amide 

internucleoside linkages in RNA using only four amide-linked dimers UaU, UaA, AaU, and 

AaA (‘a’ represents the internucleosidic AM1 amide-linkage). This approach streamlined 

synthetic efforts and allowed structural and biophysical studies on model RNAs having 

isolated amide linkages2–3, 33 as well as mechanistic and biological assays on siRNAs 

having systematically-placed amide modifications.1–2, 33

The monomer coupling approach enables synthesis of consecutive amide linkages, but 

requires nucleoside amino acids 10 (Scheme 2), which is a more difficult task than dimer 

synthesis because both C3′-homologation and 5′-nucleophilic substitution must be done in 

the same compound. Robins and co-workers used the Wittig reaction followed by 

stereoselective hydrogenation for the C3′-homologation34–35 of a 3′-keto derivative 6, later 

installing the 5′-azide using nucleophilic substitution. However, deprotection of the ethyl 

ester under basic conditions resulted in loss of the 2′-O-TBS group and lactonization to 8. 

Opening of the lactone in 8 and reintroduction of 2′-O-TBS required harsh basic conditions 

and a large excess of TBS-Cl, resulting in a tedious and low yielding route to 9. Moreover, 

the basic conditions were not compatible with protecting groups on heterocyclic bases, 

resulting in more complications and additional late synthetic steps for nucleosides other than 

uridine. Nevertheless, Robins and co-workers used this chemistry to synthesize an all-amide 

linked uridine pentamer,36 but did not report biophysical properties of either isolated or 

consecutive amide linkages in RNA.

Early efforts from our group focused on a total synthesis approach37–38 starting with an 

enantioselective ene reaction, but the resulting route to 9 was difficult to scale up. Later, we 

adopted a variation of Robins’34 synthesis starting with Wittig homologation of xylose, but 

the resulting route required 19 steps and 5 protecting groups to give uridine amino acid 10 in 

~5% overall yield.39 Most recently, we developed a new route40 (Scheme 2, 11 to 13) based 

on Robins strategy35 starting from nucleosides. The most important and enabling 

innovations in our new route were changing the order of the reaction sequence by installing 

the 5′-azide before the Wittig reaction, and choosing to use benzyl over ethyl ester (7 vs 12), 

thereby obviating saponification. These changes allowed us to accomplish three chemical 

transformations of 12: stereoselective hydrogenation of alkene, reduction of azide, and 

deprotection of benzyl ester – all in a single step. The neutral conditions of hydrogenation 

prevent formation of lactone (like 8) and preserve the base-labile protecting groups on 

nucleobases. We have prepared uridine and adenosine amino acids 10 using our new route,40 

and used them to synthesize siRNAs containing as many as seven consecutive amide 

linkages.24, 41
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BIOLOGICAL ACTIVITY OF AMIDE-MODIFIED siRNAs

siRNAs in current clinical trials rely largely on the sugar-phosphate modifications that were 

previously proven effective in antisense oligonucleotides – phosphorothioates, 2′-F, and 2′-
O-methyl being the most popular.10 Novel backbone modifications in siRNAs have been 

relatively little explored. Variations of the phosphorothioate theme, such as, 

boranophosphates,42 phosphonoacetates and thiophosphonoacetates,43 and 

phosphorodithioates,44–45 have shown some promising results, but have not yet entered 

mainstream applications. Dowdy and co-workers46 developed siRNA prodrugs based on 

bioreversible and non-ionic S-acyl-2-thioethyl phosphotriesters as RNA backbone 

modifications. Removal of the negative charges enabled conjugation of siRNAs with 

cationic delivery domain peptides, which would otherwise have been deactivated through 

aggregation with the negatively charged phosphates. After delivery of these conjugates, 

cytoplasmic thioesterases hydrolyzed the S-acyl-2-thioethyl group, unmasking the native 

phosphates of the siRNAs. Taken together with our biophysical studies, the previous results 

on RNA backbone modifications inspired us to explore the RNAi activity of amide-modified 

siRNAs.

Iwase and co-workers were the first to introduce two consecutive amide linkages at the 3′-
overhangs of an siRNA targeting a luciferase reporter gene.47–48 They used Robins’ 

chemistry to synthesize uridine amino acid monomers required for the introduction of 

consecutive amide linkages in RNA.35 The siRNAs having two consecutive 3′-terminal 

amide linkages were more stable against degradation by nucleases and had RNAi activity 

similar to the unmodified siRNAs.47–48 Because chemical modifications are generally better 

tolerated at the 3′-overhangs than at internal positions of siRNAs, these results were not 

unexpected, but still encouraged us to hypothesize that amide internucleoside linkages might 

also be tolerated at internal positions of siRNAs.

To evaluate this hypothesis and systematically study the effect of amide linkages on RNAi 

activity, we modified every phosphate linkage one by one in a series of four different guide 

strands of siRNAs targeting the Cyclophilin B (PPIB) gene (color-coded blue, black, yellow 

and green in Figure 3A). PPIB is a highly expressed housekeeping gene commonly used to 

test siRNA activity. In these studies,2, 33 we used the Dharmacon’s bioinformatics data base 

to choose the four different siRNAs (Figure 3A) targeting the same PPIB mRNA so that 

each internucleoside phosphate between the first and nineteenth nucleosides could be 

systematically replaced with an amide using only four modified dimers (UaU, UaA, AaU, 

and AaA). All guide strands were synthesized using the dimers prepared as discussed in 

Scheme 1 and their 5′-OH were chemically phosphorylated.2, 33 The results of PPIB 

silencing in HeLa cells2, 33 showed that at most positions an amide linkage only slightly 

reduced the activity of the modified guide strand, except at phosphates 10 and 11 (at the 

catalytic site of Ago2) where amide modifications increased the RNAi activity. The lower 

the bars in Figure 3B, the higher the activity of amide-modified siRNAs. The data are 

normalized across all four siRNA sequences so that ‘0’ is the activity of unmodified siRNA 

and ‘1’ represents complete loss of activity. The negative bars for G10 and G11 represent 

activity higher than that of the unmodified siRNA.
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A notable exception to the good tolerance of amide modification was G1, where an amide 

linkage caused an almost complete loss of activity (Figure 3B). Another intriguing 

observation was that when the amide modification was placed at positions G2, G3, G14, and 

G15 in the sequences highlighted with black color in Figure 3, the modified siRNAs were 

significantly less active (data not shown in Figure 3B) than the corresponding blue 

sequences modified at the same positions (data shown in Figure 3B).2 We hypothesized that 

certain positions (e.g., G1) or sequences (e.g., the black guide sequence that starts with 5′-
C) may be more sensitive to amide modifications because they impair loading of the 

modified guide strands in Ago2. While the exact mechanism of siRNA loading is not 

completely understood,49 the guide strand selection is biased towards the strand whose 5′-
end pairs less strongly with its complement.50 In other words, the siRNA strand with the less 

stable 5′-end is preferentially loaded as the guide in Ago2. Therefore, highly active guide 

strands typically start with 5′-U or A (siRNA duplexes starting with a weaker U-A or A-U 

base pair), while strands starting with 5′-C or G (siRNA duplexes starting with a stronger C-

G or G-C base pair) are disfavored as guides.50 Since the black sequence starts with a 5′-C, 

we hypothesized that the amide-modification compromised loading of the black guides in 

Ago2. These hypotheses were confirmed using a dual luciferase assay that showed that the 

unmodified passenger strands of all black sequences, as well as the blue sequence G1, were 

more active than their corresponding modified guide strands.1 This observation led to the 

next hypothesis: that the unique intolerance of the amide in G1 could be used to overcome 

the undesired passenger strand activity. Indeed, placing an amide linkage between the first 

and second nucleosides of the passenger strand (P1 in Figure 3A) almost completely 

abolished its undesired activity and significantly improved the activity of the amide-

modified guide strands paired with P1.1 Our combined studies1–2, 33 demonstrated that 

amides were not only well tolerated as internal modifications in siRNAs, but could even 

enhance the RNAi activity if placed at strategic positions, such as, the middle of the guide 

strand or the first internucleoside linkage of the passenger strand. Perhaps, the most 

important discovery of these studies was that that a single amide linkage at the 5′-end of the 

passenger strand almost completely suppressed its unwanted off-target activity.

Using uridine and adenosine amino acids 10 (Scheme 2), we synthesized a series of black 

guide sequences having three to seven consecutive amide linkages at their 3′-ends.41 

Increasing the number of 3 ′-amide modifications gradually decreased the RNAi activity. 

However, a guide strand having four consecutive amide linkages was highly active when 

paired with the amide-modified P1 passenger strand, and even guides with six and seven 

amide linkages still retained useful RNAi activity.41

STRUCTURE-ACTIVITY RELATIONSHIPS IN MODIFIED siRNAs

Structural studies show that most of the guide strand phosphates visible in crystal structures 

of siRNAs complexed with Ago2 are engaged in hydrogen bonding interactions with Ago2 

residues.28–32 Considering the extensive hydrogen bonding between Ago2 and the 

negatively charged phosphates, the introduction of neutral amide modifications had a 

relatively small effect on RNAi activity. A notable exception was the almost complete loss of 

activity of G1 guide strand having an amide linkage between its first and second nucleosides 

(Figure 3B). The first nucleoside of the guide strand does not hydrogen bond with the target 
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mRNA; instead, it is buried within a pocket in Ago2, which causes the tetrahedral phosphate 

backbone between the first two nucleosides to twist away from canonical A-form 

conformation.28, 31–32 Our study suggested that the planar amide was unable to mimic the 

sharp backbone turn required for docking the first nucleotide of the guide strand in Ago2.1 

Moreover, the sugar of the first nucleotide adopts a C2′-endo (south) conformation after 

docking in Ago2,9, 28, 31–32 which, as our studies showed,22 is not favored by the amide-

modified ribose that strongly prefers the C3′-endo (north) conformation. In other words, the 

amide-modified sugar-phosphate backbone is not able to adopt the conformation required for 

docking of the guide’s first nucleotide in the MID domain of Ago2, which most likely 

disfavors loading of the amide-modified G1 guide and P1 passenger strands.

Interactions with Ago2 divide the guide strand of siRNA into five domains with distinct 

functionalities and RNA-binding properties (Figure 3B): anchor (N1), seed (N2 to N8), 

central (N9 to N12), 3′-supplementary (N13 to N17), and 3′-tail (N18 to N21).51 While the 

surprisingly large effect of the amide linkage at the anchor domain could be rationalized, as 

discussed above; the relatively small effect of amide modifications in the seed region was 

unexpected, because the seed domain is highly sensitive to structural perturbation caused by 

chemical modification, mismatches, and G–U wobble pairs.51 MacRae and co-workers 

suggested that the seed domain forms two subdomains with distinct roles: N2 to N5 that are 

preorganized by Ago2 in an A-form for facile initial base pairing contacts to target mRNAs, 

and N6 to N8 that are more flexible.52 Our results (Figure 3) show that amides are well-

tolerated between nucleosides where the guide is fixed in the A-form, but that there is a 

decrease in RNAi activity when amides are placed between nucleosides where the guide 

conformation is more dynamic. We propose that amides cause little functional interference 

between N2 and N6 (modified guides G2 to G5 in Figure 3) because the amide linkages fit 

well in the preorganized canonical A-form helix (Figure 2). In contrast, the guide RNA 

conformation beyond N6 is disrupted from the canonical A-form helix by two kinks 

introduced by Ago2 amino acid residues inserted between N6 and N7, and again between 

N9 and N10 (Figure 4).28–29, 31, 53 The stacking between N14 to N18 is completely 

disrupted as the guide strand is forced through a narrow channel inside of Ago2.29, 49

To achieve complete recognition of a perfectly matched mRNA, the seed pairing induces 

movements of the Ago2 that relax the kinks.29, 49 These movements propagate throughout 

the protein, leading to a widening of the narrow channel and a rearrangement of N11 to N16 

of the guide RNA to a near-perfect A-form conformation.29, 49 We propose that the larger 

loss of activity caused by amide modification in the 3′-part of the seed, the 5′-part of the 

central, and the entire 3–-supplementary domains (modified guides G7-G9 and G13-G17 in 

Figure 3B) may be caused by the higher conformational rigidity of amides (compared to 

phosphates) that either disfavors the non-canonical backbone twists (as observed for G1) or 

impedes the dynamic transitions required to relax the guide-strand kinks. Static crystal 

structures suggested that the amide-modifications in modified-guides G6 and G9 would be 

less tolerated, which is not exactly what we observed (Figure 3). It is conceivable that the 

amide mostly affects the conformational dynamics of target recognition as the Ago-guide 

moves to release conformational constraints to allow the guide and target RNAs to adopt an 

A-form conformation.
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Conversely, the increase of RNAi activity by the amides in modified-guides G10 and G11 at 

the catalytic site of Ago2 may be due to stabilization of a favorable conformation, or 

additional hydrogen-bonding interactions of amide with Ago. In a recent crystal structure of 

amide-modified RNA in complex with RNase H (Figure 5), the amide N–H acted as an H-

bond donor to the backbone carbonyl and side chain oxygens of a serine residue (S74).2 The 

important observation here was that the amide engaged in a new stabilizing interaction 

between protein and RNA by serving as an H-bond donor, something unmodified RNA 

cannot do. In contrast to our observation that amide could be accommodated by RNase H in 

the RNA strand of DNA-RNA heteroduplex (Figure 5), Brown and co-workers18 reported 

that amide linkage in the DNA strand does not support the RNase H activity.

The central domain (N9 to N12 in Figure 3) tolerates chemical modifications that do not 

disrupt the A-form conformation around the cleavage site.8 However, crystal structures 

provide little information about Ago2-guide interactions beyond N10; in most cases 

nucleotides of the central and supplementary domains are disordered and not visible in 

structures. Thus, the currently available structural data do not offer insights into the 

unexpected activation of siRNAs by amide-modified guide strands G10 and G11.9

CONCLUSIONS AND OUTLOOK: RNAi, CRISPR AND BEYOND

Our cumulative studies show that amides are excellent structural mimics of the phosphate 

backbone in RNA and may mimic hydrogen bonding interactions of phosphates to RNA-

interacting proteins. The amide N-H may act as a hydrogen bond donor, which is a binding 

mode impossible for native RNA. Our studies suggest that an optimized combination of 

amide-modified guide and passenger strands may have potential to improve the biological 

properties of siRNAs for in vivo applications. In particular, off-target activity remains a 

significant bottleneck for applications of siRNAs, both as research tools and as therapeutics. 

From this perspective, our finding that a single amide linkage eliminated the off-target 

activity of the passenger strand is important, because passenger strand loading can double 

the off-target effects of miRNA-like activity. Hence, the amide modification can be added to 

the toolbox of nucleic acid chemist to supplement other chemical modifications that 

suppress the passenger strand loading and enhance the guide strand loading, such as, 5′-
morpholino substitution,54–55 5′-vinylphosphonate,56 unlocked nucleic acid backbone,57–58 

and designer nucleobases.59

Projecting forward, we envision that amide conformational-rigidity and unique N-H 

functionality may be also used to modulate the specificity of siRNAs (e.g., potentially 

inhibiting miRNA-like off-target activity) and their charge-neutralization of the backbone 

may be useful for conjugating siRNAs with cationic delivery domain peptides. Taken 

together, our studies demonstrate that amides, beyond their evolutionary role as protein 

backbone, also have untapped potential for the chemical and synthetic biology of nucleic 

acids. Others have also recognized this potential and developed novel DNA and RNA 

analogues based on derivatives of amide backbone.60–62 We also propose that non-ionic 

linkages, and amides in particular, have great potential to contribute to fundamental studies 

and practical applications by optimizing CRISPR associated RNAs and other functional 

RNA molecules, many of which are yet to be discovered. The RNA components of RNAi 
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and CRISPR share many common structural and functional features, and it is conceivable 

that lessons learned when replacing phosphates with amides in siRNAs will guide 

development of optimized CRISPR associated RNAs.
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ABBREVIATIONS

Ago2 argonaute 2 protein

MMTr 4-methoxytrityl

PAZ a conserved RNA binding domain of Piwi, Argonaute and Zille 

proteins

TBS tert-butyldimethylsilyl

TOM triisopropylsilyloxymethyl
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Figure 1. 
Chemical structures of DNA and RNA having modified sugar-phosphate backbone.
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Figure 2. 
The four central base pairs of the solution structures of an amide-modified self-

complementary oligoribonucleotide (GCGUAM1ACGC) (purple, with amide linkage 

highlighted in green) overlapped with the unmodified RNA (gray), as determined by NMR 

spectroscopy in our previous study.3 The P-OP2 bonds aligning with amide carbonyls are 

indicated with red arrows. Reproduced with permission from ref 20.
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Figure 3. 
(A) Four individual sequences of siRNA guide strands targeting PPIB mRNA, color-coded 

blue, black, yellow and green; (B) Comparison of silencing activity across the siRNA 

sequences. The bars present activity of the modified guide strand (Gn) minus activity of the 

unmodified control (G0) divided by one minus activity of the unmodified control (G0): Y = 

(YGn – YG0)/(1 – YG0). After the normalization, zero on the Y-axis is the activity of 

unmodified siRNAs, a negative value indicates an activity of amide-modified siRNA that is 

higher than that of unmodified siRNA, while ‘1’ indicates complete loss of activity. The 
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positions of amide linkages are numbered based on the 5′-nucleotide, e.g. G1 has an amide 

between N1 and N2.
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Figure 4. 
Cartoon representation of the guide strand’s kinks between nucleotides U6-G7 and U9-U10 

in the crystal structure of Ago2 in complex with miR-20a.28 Reproduced with permission 

from ref 25.

Kotikam and Rozners Page 21

Acc Chem Res. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
A portion of the RNA strand of the crystal structure of the RNA-DNA heteroduplex 

r(GACACCUGAUaUC)-d(GAATCAGGTGTC) in complex with BhRNase H.2 The amide 

N-H of UaU makes two H-bonds to the main chain carbonyl oxygen and side chain Oγ of 

S74. Carbon atoms of RNA, AM1 linkage, DNA and protein are colored in green, yellow, 

purple and beige, respectively. Reproduced with permission from ref 31.
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Scheme 1. 
Synthesis of amide-linked dimers.
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Scheme 2. 
Synthesis of nucleoside amino acids.
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