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Abstract

Post Translational Modification (PTM) is considered an important biological process with a 

tremendous impact on the function of proteins in both eukaryotes, and prokaryotes cells. During 

the past decades, a wide range of PTMs has been identified. Among them, malonylation is a 

recently identified PTM which plays a vital role in a wide range of biological interactions. 

Notwithstanding, this modification plays a potential role in energy metabolism in different species 

including Homo Sapiens. The identification of PTM sites using experimental methods is time-

consuming and costly. Hence, there is a demand for introducing fast and cost-effective 

computational methods. In this study, we propose a new machine learning method, called Mal-

Light, to address this problem. To build this model, we extract local evolutionary-based 

information according to the interaction of neighboring amino acids using a bi-peptide based 

method. We then use Light Gradient Boosting (LightGBM) as our classifier to predict 

malonylation sites. Our results demonstrate that Mal-Light is able to significantly improve 
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malonylation site prediction performance compared to previous studies found in the literature. 

Using Mal-Light we achieve Matthew’s correlation coefficient (MCC) of 0.74 and 0.60, Accuracy 

of 86.66% and 79.51%, Sensitivity of 78.26% and 67.27%, and Specificity of 95.05% and 91.75%, 

for Homo Sapiens and Mus Musculus proteins, respectively. Mal-Light is implemented as an 

online predictor which is publicly available at: (http://brl.uiu.ac.bd/MalLight/)

Index Terms

Cluster Centroid based Majority Under-sampling Technique; Evolutionary Information; Light 
Gradient Boosting; Lysine Malonylation; Machine Learning; Post Transla tional Modifications

I. Introduction

Post-translational modifications (PTMs) are the key tools for regulating numerous biological 

processes that are affiliated with the control activities of various cells and diseases [1] – [4]. 

PTMs are formed after the translation process of proteins from the mRNA sequences when 

they are elucidated [5], [6]. PTMs are the major components of biological processes for 

genetic code proliferation and cellular physiology regulation. So far, more than 620 varieties 

of PTMs [7] have been identified. Lysine is one of the most widely modified residues among 

the 20 types of natural amino acids through PTM [8]. It has been associated with numerous 

PTMs including glycation [9], succinylation [10], [11], methylation [12], [13], acetylation 

[14], and sumoylation [15]. Among them, Lysine malonylation (Kmal) is a recently 

identified PTM type that is evolutionarily conserved, which is associated with several 

biological processes in both eukaryotic and prokaryotic cells. Lysine malonylation plays a 

vital role in a wide range of biological interactions [16]. It has also been found in histones 

with functions related to gene expression, and chromosome configuration. Thus, 

identification of malonylation sites can provide detailed insights into the functionality of 

proteins and their biological interactions. The affluence of malonylated proteins impact on 

metabolic pathways and notably those adhering to fatty acid metabolism is explained in [17]. 

In addition, newly identified malonylated sites have been found to be associated with 

monitoring the conditions in the pathological, and physiological functional structures such 

as control of appetite and muscle contraction [18], [19].

The foremost techniques for identifying the Kmal sites are experimental methods such as 

mass spectrometry. However, these methods are costly and time-consuming. In recent years, 

the identification of PTM sites using a fast and accurate computational method attracted 

tremendous attention [20]. To identify PTM sites in the protein sequences, various 

bioinformatics techniques have been suggested [11], [21] – [29]. Among those studies, a 

five-step rule was proposed in [30], to design an efficient computational predictor for 

solving these biological problems which have been widely referred and followed in other 

studies [27], [28], [31], [32], [33]. The following steps comprise: (1) curated the dataset 

manually or construct the dataset in some valid way to randomly split in both training and 

testing for the predictor, (2) transforming the biological sequences into numerical values to 

extracting the feature vector, (3) selecting proper algorithm according to the problem and 

develop an algorithm to build the predictor, (4) validate the statistical performance matrices 
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and evaluate the predictor enhancement, and (5) design a user-friendly predictor and deploy 

the method as a web server application publicly. The above-mentioned process is explained 

in Fig. 1 in the subsequent section.

Among computational approaches, predicting the malonylated sites through the Machine 

Learning (ML) models has attracted the most attention [25], [34] – [40]. The first 

computational scheme developed by Xu et al. [35], called Mal-Lys, to predict the Kmal sites 

based on the protein sequences. They extracted three types of features in Mal-Lys based on 

position-specific amino acid dehydration, sequence order information, and physicochemical 

properties. They also used maximum relevance minimum redundancy for feature selection 

task [36]. They also used Support Vector Machine (SVM) as their classifiers to build Mal-

Lys. At the same time, Wang et al. [37] manifested an SVM-based classifier, named 

MaloPred to predict malonylation sites in three different species (Homo sapiens, Mus 

musculus, and Escherichia coli). In a different study, Xiang et al. [38] trained an SVM 

model by introducing a new computational method using the Pseudo Amino Acid 

Composition (PseAAC) scheme to extract features. Their study also validated the diverse 

pathways and biological processes in several species. In another study, Zhang et al. [39] 

extracted the characteristics and key patterns from the residue sequences of Kmal sites using 

11 different feature encoding methods. Among them, they identified the optimized feature 

and used Light Gradient Boosting Machine (LightGBM) as their classifier to predict Kmal 

sites for Homo sapiens, Mus musculus, and Escherichia coli samples.

In a different study, Jianhua et al. [11] developed a new predictor, named pSuc-Lys, by using 

a feature extraction technique called, PseAAC. To build this model, they combined a 

vectorized sequence-coupling model into the common form of PseAAC along with using 

ensemble random forest technique as their classifier. At the same time, Taherzadeh et al. [40] 

introduced a new machine-learning approach named SPRINT, which is conceived of 

sequence-based prediction of protein-peptide binding sites directly from protein sequence by 

using Support Vector Machine. Later on, Taherzadeh et al. [41] also proposed SPRINT-Mal 

for the Kmal site prediction problem. To build this model, they implicated both sequence-

based as well as structural-based features and used SVM as their classifier. They obtained 

promising results in predicting the malonylation sites for mouse samples. Most recently, Zhe 

et al. [42] proposed a new SVM base method, entitled CKSAAP FormSite, to solve the class 

imbalance problem in the prediction of formylation sites prediction task. They have applied 

a composition of k-spaced amino acid pairs (CKSAAP) feature extraction technique that 

were utilized to encode each peptide during training.

Despite all the efforts that have been made so far, the Kmal prediction accuracy has still 

remained limited. In this paper, we propose a new model called Mal-Light, based on the 

concepts of a bi-peptide based evolutionary feature extraction strategy for enhancing the 

performance of malonylated sites [43], [44]. We then investigated the performance of 12 

different classifiers on our extracted features to identify the best one to build Mal-Light. 

Among these classifiers, Light Gradient Boosting (LightGBM) obtained the best results. As 

a result, we use this classifier to build Mal-Light. The above-mentioned process is shown in 

Fig. 1 and explained in detail in the subsequent section. In fact, our main contribution is to 

investigate a wide range of models that obtained promising results for different studies but 
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have never been used for Malonylation site prediction problem to enhance the prediction 

performance. We compared the prediction results of Mal-Light with those of MaloPred [37], 

and kmal-sp [39]. We obtained Matthew’s correlation coefficient (MCC) of 0.74 and 0.60, 

Accuracy (ACC) of 86.66% and 79.51%, Sensitivity (SN) of 78.26% and, 67.27%, and 

Specificity (SP) of 95.05% and 91.75% on our employed independent test set, respectively 

for the Homo Sapiens (Human) and Mus Musculus (Mouse) samples. Mal-Light obtained 

promising results by exceeding all the preceding predictors.

II. Materials and Methods

A. Benchmark dataset

For the experimental analysis, we use malonylation data from the Protein Lysine 

Modification Database (PLMD) [45]. This dataset contains 9,584 malonylation and 677,865 

non-malonylation sites in 3,429 proteins belonging to mainly six species. Here we mainly 

focus on Homo sapiens (5,013 sites in 1,841 proteins) and Mus musculus (4,390 sites in 

1,466 proteins) as the number of samples for the remaining species is extremely low. The 

number of samples belonging to each group and species is shown in Table 1. The 

responsible residue for the malonylation site is the amino acid lysine (one letter notation of 

K). For transforming into peptide sequence from protein, the responsible residue is kept in 

the middle with the window size 2ξ + 1, where ξ is the length of upstream and downstream. 

In the proposed model, the window size is considered as 21 (length of upstream and 

downstream is considered as ξ = 10). The optimal window size in the specified range is 

found by observing the performance of the LightGBM classifier on the features extracted 

using the amino acid composition technique. For ensuring the uniform length of upstream 

and downstream, a dummy residue, (X) has been added to any of the ends when required 

(for n-terminus and c-terminus amino acids that have less than 10 neighboring amino acids 

at each end). After that, we removed duplicated sites and extracted unique positive and 

unique negative from peptide sequences of all species as well as Homo sapiens (human) and 

Mus musculus (mouse). In the next step, to reduce redundant data of homology from the 

sequences we use CD-HIT [46] which have been widely used for this task. From the peptide 

sequence, we have found the ratio between positive and negative is quite large. As a result, 

we merely used CD-HIT [46] over negative sequences only where remaining the positive 

sequences untouched to avoid losing limited positive samples. If we applied CD-HIT [46] 

over the positive sequences then the difference ratio between positive and negative 

sequences more increases. This is why we only apply the CD-HIT [46] over the negative 

sequence. It reduced the negatives sites with the similarity cut-off 40%. We then generated 

PSSM for our positive 9,584 and negative 14,972 samples for all the species. Besides, we 

have a dataset containing 5,013 positive and 12,869 negative samples for human and 4,390 

positive and 10,152 negative samples for mouse. To measure the actual effectiveness of our 

proposed model, we generate independent test data from our original data that is unknown to 

the training data. In this continuum, we randomly place 90% for the training data and 10% 

for the independent test data, which is the same for all types of species as well as for human 

and mouse.
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B. Feature extraction

Biological data are usually represented as strings of sequences. Normally strings consist of 

one-letter notations where each letter represents amino acids for protein and nucleotides for 

DNA. The string data should have to mutate into numerical values to represent the biological 

instances through to the classifier. This transformation which is called feature extraction can 

be accomplished in many ways [44], [47] – [52]. However, the information can not be 

preserved for all numerical values at the same level that is carried in the letter strings. To 

maximize the information carried by the string, different feature extraction techniques have 

been introduced in the literature [43], [44], [47], [48], [50], [51], [53]. Most of these studies 

introduced sequential-based features extracted from evolutionary-based and structure-based 

information [43], [44], [50], [52], [53]. Besides, some of these studies incorporate 

evolutionary-based and physicochemical-based information, simultaneously [47], [51]. 

Evolutionary-based features are most widely used and provides information on how proteins 

and peptides evolved or changes through mutation. While structural features provide 

information on the local structure of the proteins extracted from predicted secondary 

structure. Similarly, physicochemical-based features are extracted based on different 

physical, and chemical properties of the amino acids along the protein and peptide 

sequences. However, in almost all the cases, proposed feature extraction methods failed to 

extract local discriminatory information based on the interaction of the amino acids along 

the protein or peptide sequences. Adopting feature extraction techniques that do not preserve 

important discriminatory information causes low prediction performance in the classification 

task.

In this study, the sequential evolutionary features were used to represent each malonylated 

and non-malonylated lysine residue. Their 10 upstream and 10 downstream amino acids 

were selected to extract features as it obtained the best results compared to other windows 

sizes. We reflected the missing peptide outspread if a lysine residue did not carry 10 amino 

acids of upstream or downstream in c-terminus and n-terminus, respectively. This process is 

shown in detail in Fig. 2. The sequence segment Pξ(⊙) consists of 10 upstream and 10 

downstream residues in addition to the central lysine amino acid (K).

Here is an example of a peptide sample presented as follows,

Pξ( ⊙ ) = R−ξR−(ξ − 1)…R−2R−1 ⊙ R1R2…R+(ξ − 1)R+ξ (1)

Here, ξ is an integer and ⊙ indicates the amino acid lysine (K). Where denotes upstream as 

R−ξ, and denotes downstream as R+ξ of the peptide sample. Meanwhile, the entire peptide 

length and a substring of a protein sequence where the sample contains 2ξ + 1 residues. 

Therefore, each of the peptides specimens befalls below one of two categories, that follows,

Pξ( ⊙ ) ∈
Pξ

+( ⊙ ), if the central residue is a Kmal site

Pξ
−( ⊙ ), else

(2)
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The positive malonylation segment symbolizes for Pξ
+( ⊙ ) and Pξ

−( ⊙ ) represents the 

negative malonylation segment where ∈ indicates the association of set principles.

Written the benchmark dataset as follows,

Sξ(K) = Sξ
+(K) ∪ Sξ

−(k), ⊙ = K (3)

In order that Sξ
+( ⊙ ) carried malonylated segment, Pξ

+( ⊙ ) and Sξ
−( ⊙ ) carried non-

malonylated segment, Pξ
−( ⊙ ) where ∪ is the union operation of set principles.

C. Bi-peptide based evolutionary feature

The bi-peptide based evolutionary concept is the feature extraction technique introduced in 

the prediction of lysine sites. This technique is a modification of the original sequential 

evolutionary feature extraction technique that is introduced in [54], [55]. It has been shown 

as an effective method for feature extraction in similar studies [43], [44], [49], [50]. We 

extract this feature directly from the Position Specific Scoring Matrix PSSM) which contains 

important evolutionary information about the interaction of amino acids through mutation. 

The mutation is the process of sudden alterations, insertions, deletions or rearrangements of 

amino acids which result in the creation of diverse characteristics for the next generations. 

This evolution sometimes brings fairly information to nature but also sometimes causes 

adverse effects. Alignment is the best way to find how similar the peptide sequences are. A 

widely used tool named BLAST (Basic Local Alignment Search Tool) can be used for 

finding the alignment of the query sequence against a database. PSI-BLAST (Position-

Specific Iterative Basic Local Alignment Search Tool) [56] utilizes the concept of BLAST to 

create the PSSM matrix iteratively based on the cutoff e-value (E) 10−3(0.001).

The following procedure is used to construct a feature vector from a dataset.

i. A peptide query sequence is indicated as P that can be shown as,

P = R1R2R3R4R5⋯⋯⋯RL (4)

PSSM is an L * 20 matrix, where L is the protein length and the 20 columns 

indicate the amino acids,

É1 1 É2 1 ⋯ ⋯ ÉL 1

É1 2 É2 2 ⋯ ⋯ ÉL 2
⋮ ⋮ ⋮

É1 20 É2 20 ⋯ ⋯ ÉL 20

(5)

Here, 20 is points to the diverse 20 amino acids correspond to the alphabetic 

form, where the length of P denotes as L, and Éi j refers to the amino acid 

responsible residue inclination at the position site ‘i’ that transmute to the amino 

acid at position site ‘j’ during the evolution process.
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ii. From Equation (5), the newly created matrix can be derived as—

É1 1 É2 1 ⋯ ⋯ ÉL 1

É1 2 É2 2 ⋯ ⋯ ÉL 2
⋮ ⋮ ⋮

É1 20 É2 20 ⋯ ⋯ ÉL 20

(6)

By means of,

Ei j = Éi j − Éj
SD(Éj)

i = 1, 2, …, L; j = 1, 2, …, 20 (7)

Where,

Éj = 1
L ∑

i = 1

L
Éi j j = 1, 2, ……, 20 (8)

Herein, É denotes as the mean and the following equation refers and elucidates 

by standard deviation,

SD Éj = ∑
i = 1

L
Éi j − Éj

2/L (9)

iii. The renewed matrix MT M to build 20 * 20 matrix (20 * L * L * 20 = 20 * 20 

matrix) is computed by multiplying the main M matrix with its transpose matrix 

MT resulting in a 20 * 20 matrix. The number of elements in diagonal is 20. So, 

each triangular matrix consists of (400−20)/2 which is equal to 190 elements. In 

this study, we only considered the lower triangular matrix along with the 

diagonal matrix that means, (190 + 20) = 210 as shown below—

(1)
(2) (3)
(4) (5) (6)
⋮ ⋮ ⋮

(191) (192) (193) . . . . (210)

(10)

The above matrix is then transformed into a vector of 210 elements annotated as 

Pevo,

Pevo = Θ1
E⋯Θ2

E⋯Θu
E⋯Θ210

E (11)
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D. Addressing Imbalanced dataset issue

After cross-checking the sites from the original sequence, the ratio between the malonylation 

sites (positive) and the non-malonylation (negative) sites remains largely imbalanced. By 

comparison, the number of non-malonylation sites is much larger than that of malonylation 

sites. Due to such proportions, the predictor can be precariously biased towards negative 

samples. It has been comprehensively studied in machine learning literature that bias-free 

classification can be difficult to succeed due to the data imbalance in the training data. To 

address this complexity, a number of balancing strategies have been proposed with regard to 

the data balance issue [42], [58], [63]. In this case, we can downsample the data, but this can 

dramatically reduce the number of available samples. Instead of excluding, we use upsample 

at an early stage as it was done in [60], [64], [65], so that no information for the predictor 

would be discarded. To handle the class imbalance problem, some studies tried to adjust 

learning parameters of their model. For example, [42], [60], [62] adjusted the learning 

parameter for the Support Vector Machine (SVM) classifier to deal with imbalance data. In 

some other studies, K-Nearest Neighbors (KNN) strategy, and Neighborhood Cleaning Rule 

(NCR) were adopted to balance the data [59], [61], [63]. In order to calculate their Euclidean 

distance, they have tuned the value of k with several thresholds in simultaneous iterations.

In this study, to balance our dataset using oversampling with synthetic data construction, the 

synthetic data must be very similar to the original data. For ensuring the small variation, we 

took the maximum value of all the feature vectors and found that even if the maximum value 

is multiplied with the constants 1.0001 or 1.0005, the new value is very much closer to the 

original value. As multiplying the maximum value results in small variation, multiplying 

with the other values of feature vectors must generate very small variations of data [61], 

[62], [63], [66], [67], [68]. This is how we generate our new dataset with a small variation. 

Therefore, we multiply 1.0001 with 9,584 positive sites (19,168 Pξ
+( ⊙ ) sites) of all species, 

1.0003, and 1.0005 with 5,013 positive sites (15, 039 Pξ
+( ⊙ ) sites) of Homo sapiens. 

Besides, we multiply 1.0003 with the 4,390 positive sites (8,780 Pξ
+( ⊙ ) sites) of the Mus 

musculus, where the number of negative sites of all species is 14,972, the Homo sapiens has 

12,869 negative sites, and the Mus musculus has 10,152 negative sites. Then we use the 

Cluster Centroid based Majority Under-sampling Technique (CCMUT) [69] to balance the 

positive and negative sites in the total training data. After applying, the ratio of our positive 

and negative number of sites in the training data is 1 : 1 (malonylation sites : non-

malonylation sites). Note that positive and negative sites for total species and individual 

species in test data were untouched. In this way, we make sure that our balancing will not 

impact the generality of our results and we avoid overfitting.

E. Classification Algorithm

To identify the most effective predictor, we have investigated 12 different classifiers that 

performed outstandingly in numerous biological quandaries [39], [43], [57], [60], [70] – 

[80]. These classifiers are: Extreme Gradient Boosting (XGBoost) [39], Adaptive Boosting 

(AdaBoost) [43], Support Vector Machine (SVM) [57], [60], Random Forest (RF) [70], [71], 

Light Gradient Boosting Machine (LightGBM) [72], [73], Linear Discriminant Analysis 

(LDA) [74], Quadratic Discriminant Analysis (QDA) [75], Bootstrap Aggregating (Bagging) 

AHMAD et al. Page 8

IEEE Access. Author manuscript; available in PMC 2020 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[76], Decision Tree (DT) [77], Extra-Trees (ET) [78], Gradient Boosting (GB) [79], and 

Multi-layer Perceptron (MLP) [80], [81]. Finally, we consider the LightGBM [73] as our 

classifier as it obtained the best results regarding all aspects compared to other classifiers. 

The comparison of the results with other classifiers is provided in: https://github.com/

Wakiloo7/Mal-Light. The Light Gradient Boosting Machine (LightGBM) [72], [73] uses a 

tree-based learning algorithm which is known as gradient boosting frameworks. Because of 

its high-speed computation, Light’ titles have been added before GBM. This algorithm uses 

the minor size of the memory and can handle the large data. It is recommended not to apply 

LightGBM [73] over small data as it is extremely sensitive because of overfitting. 

Implementing the LightGBM is straight forward. To implement this powerful algorithm we 

tune some parameters, such as num leaves, n estimators, and learning rate. In here, num 

leaves is a base learner maximum tree leaves, n estimators represents the number of base 

trees, and the third parameter learning rate, is basically the learning rate of boosting. In this 

study, the optimized values for these parameters are 31, 40, and 0.1 respectively. Alongside 

this, to fit the method for shrinking or adapting the learning while training, reset parameter 

callback is used.

F. Performance evaluation metrics

In this study, for the purpose of the computational analysis of our results, we use Accuracy 

(ACC), sensitivity (SN), specificity (SP), Matthew’s correlation coefficient (MCC), and F1-

score(F1). All of the metrics were widely used in the literature [82], [83].

ACC = TP + TN
TP + TN + FP + FN (12)

SP = TN
TN + FP × 100 (13)

SN = TP
TP + FN × 100 (14)

MCC = (TP)(TN) − (FP)(FN)
(TP + FP)(TP + FN)(TN + FP)(TN + FN) (15)

F1 = 2 * PR * RE
PR + RE (16)

PR = TP
TP + FP × 100 (17)

RE = TP
TP + FN × 100 (18)
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In the above equations, the TP indicates the True Positive which notifies how many peptide 

segments are thoroughly classified as malonylated (positive) sites. TN indicates the True 

Negative that means how many numbers of non-malonylated (negative) sites are thoroughly 

classified. Besides, the FP denotes the False Positive which represents the frequencies of 

non-malonylated (negative) peptide segments that are classified incorrectly as malonylated 

(positive), and the FN denotes the False Negative, the number of malonylated (positive) sites 

that were predicted wrongly as non-malonylated (negative). Alongside this, the MCC value 

is basically regarded as the representative of the total system for the performance. The F1-

score is the weighted average or the combination of Precision as PR (also called positive 

predictive value) and Recall as RE (also known as sensitivity). The FP, and the FN both are 

taken to calculate this score. However, if anyone has gone through a data imbalance issue, 

F1-score is coming up with more beneficial information rather than accuracy. The 

outstanding predictor should be able to perform well in all above mentioned statistical 

measuring metrics.

III. Results and Discussion

Each proposed predictor aimed at predicting the malonylated sites must have its 

effectiveness measure to present how well it performs. For the purpose of this study, we 

examine five statistical performance matrices of Mal-Light namely, accuracy, sensitivity, 

specificity, F1-score, and Matthew’s correlation coefficient [21] – [23], [49], [82], which has 

been extensively used in the literature. Mal-Light comprehensive performance for predicting 

malonylated residues is presented for the above-mentioned five metrics.

A. Analysis of the Results for different species

Here, we report malonylation sites prediction performance for all six species specified in 

Table 1, and we have collected the dataset from PLMD [45]. As it was explained in the 

previous section, we applied 12 types of machine learning algorithms on the total and 

separate species that are trained using 10-fold cross-validation. Among all these algorithms, 

XGBoost [39], SVM [57], [60], LightGBM [73], GB [79], and MLP [80] obtained the best 

results. Among these classifiers, LightGBM [73] obtained the best results both for Homo 

sapiens and Mus musculus species. Whereas all species have been trained by Mal-Light and 

Homo sapiens well-trained than other species. Our results demonstrate that Mal-Light has 

the best performance for Homo sapiens, all species (six species), and Mus musculus, 

respectively in Table 2. To investigate the generality of our model and compare our results 

with those reported in previous studies, we run Mal-Light on the independent test set as 

well. Accordingly, we train Mal-Light using training data and use it for the independent test 

dataset. As shown in Fig. 3, using LightGBM in average obtained better results than other 

classifiers. Such result is repeated in Fig. 4 for the independent test set which confirms those 

that are reported in Fig. 3. The consistent results achieved both for 10-fold cross-validation 

and independent test set demonstrate the generality of using LightGBM as the classifier to 

build Mal-Light.

AHMAD et al. Page 10

IEEE Access. Author manuscript; available in PMC 2020 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Performance Comparison with Other Existing Methods

Malonylation has been discovered only a few ages ago. Due to its novelty, to the best of our 

knowledge, there are only four main tools to predict malonylation sites. These include Mal-

Lys [35], which is solely trained on Mus musculus data, SPRINT-Mal [41], only to predict 

the malonylation sites for Homo sapiens and Mus musculus, MaloPred [37] which designed 

to predict the malonylation sites for three species (Homo sapiens, Mus musculus, and 

Escherichia coli), and kmal-sp [39], also designed to predict the malonylation sites for the 

same three species (Homo sapiens, Mus musculus, and Escherichia coli). Considering our 

targeted species, we compared Mal-Light with two of those predictors namely, MaloPred 

[37], kmal-sp [39] which attained the best performance and have online predictors. For the 

purpose of comparison, we manually transmitted all the peptide sequences to the web 

servers and retrieved their predictor performance for the measuring assessment. It is worth 

noting that, MaloPred [37], kmal-sp [39] web servers were pre-trained with some of the 

corresponding peptides sequences that are utilized in this study for the performance 

assessment as independent test set. In fact, they used all the data and trained their model and 

then used 10-fold cross-validation or jackknife cross-validation to evaluate their model. 

Therefore, their results on the independent test set which is filtered out from the whole data 

may have been overestimated. In other words, the results reported for those studies on the 

independent test set are in fact higher than expected. Despite this, our method was able to 

outperform even those overestimated results.

As a result, we run some of those specific classifiers used in their style over some of those 

species, as well as run other types of classifier algorithms on our own training data and 

compare them based on the method and test dataset. Our achieved results compared to 

MaloPred [37] and kmal-sp [39] for Homo sapiens and Mus musculus are shown in Table 3. 

Results presented in Table 3, demonstrate that Mal-Light achieves better performance 

compared to MaloPred [37] and kmal-sp [39]. For example, SP, F1-score, ACC, and MCC 

prominently enhanced by 12.65%, 0.03, 3.96%, and 0.09 compared to MaloPred for the 

human samples, respectively. Also, SP, ACC, and MCC are 8.05%, 0.66%, and 0.02 better 

compared to kmal-sp for the human samples, respectively. In addition, SP increased by 

12.05% and 8.05%, respectively for mouse sample compared to MaloPred [37] and kmal-sp 

[39]. Besides, conducting the T-test demonstrates the statistical significance of the 

improvement reported in this study compared to those reported in the previous studies (p-

value = 0.047). It is also important to note that Mal-Light achieves ACC of 82.36% when 

predicting malonylation sites for all the data together (consisting of samples belonging to 6 

species). These results demonstrate the effectiveness of Mal-Light compared to those 

previous studies proposed to predict malonylation sites in the literature. We also plot the 

ROC curve for the 10-fold cross-validation and independent test which is shown in Fig. 3, 

and Fig. 4, respectively. These figures compare the comprehensive performance between the 

species. In addition, here we visualize the comparison of Mal-Light with MaloPred and 

kmal-sp in Fig. 5 that demonstrate the results for each species as well the error bars in bar 

plots have also been included for better visualization in Fig. 6.
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C. Identifying the most effective features to build Mal-Light

Here we also conduct a comprehensive study to investigate the impact of our extracted 

features for malonylation sites prediction tasks. To do this, a common approach is to 

eliminate the combination of features once at a time to show their relative importance in Fig. 

7, which shows the impact of the 15 most important features for different species to build 

Mal-Light. The precision-recall curves for our experiments across all the species that are 

illustrated in Fig. 8. Besides, we plot the ROC curve for the cross-validation and 

independent test set shown in Fig. 3, and Fig. 4, which compares the comprehensive 

performance between the species. Furthermore, we reported a comparison which is shown in 

Fig. 5 with the corresponding species performance growth in the underneath of the predictor 

to compare with the same species in MaloPred [37], and kmal-sp [39] and the error bars in 

bar plots for the important result in Fig. 6.

IV. Conclusion

In this study, we proposed a new predictor named Mal-Light which uses PSSM concepts 

differently to predict Malonylation sites. Mal-Light incorporates the concept of bi-peptide to 

extract local features from PSSM. To build our model, we took an oversampling approach 

with synthetic data construction which was given as the input for the LightGBM classifier 

for predicting the malonylation site. Our results demonstrate that Mal-Light is able to 

achieve prominent performance among different species. This also demonstrates that Mal-

Light is about to outperform previous studies found in the literature to predict malonylation 

sites using different evaluation measurements. Our aim is to investigate different window 

sizes along with different kinds of new evolutionary and structural-based features in our 

future studies to further enhance the malonylation as one of the most important PTMs. Mal-

Light is publicly available as an online malonylation site predictor at: (http://brl.uiu.ac.bd/

MalLight/). Also, all our supplementary materials, figures, and their detailed descriptions are 

available at: (https://github.com/Wakiloo7/Mal-Light).
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Fig. 1. 
The evaluation and development of Mal-Light that contains in the flowchart strategy. 

Sequences were yield from a public database and features were generated by our method, 

named bi-peptide based evolutionary feature extraction approach with the classifier and the 

classification algorithm was evaluated by using both 10-fold cross-validation and an 

independent test set
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Fig. 2. 
Schematic representation of a lysine residue and its surrounding amino acids. Figure 2.A: 

lysine residues with both upstream and downstream amino acids with 10 residues. Figure 

2.B: Adding dummy residues in n-terminus and c-terminus to complete the window for 

those amino acids with less than 10 neighboring amino acids on each side.

AHMAD et al. Page 22

IEEE Access. Author manuscript; available in PMC 2020 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Receiver operator characteristic (ROC) curves Figure (A), (B) and (C) based on the 

classifiers with 10-fold cross-validation for training the malonylation sites of Homo sapiens, 

Mus musculus, Altogether (six species), and respectively by using some machine learning 

algorithms to develop our model for comparing the performances.
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Fig. 4. 
Receiver operator characteristic (ROC) curves Figure (A), (B) and (C) based on the 

classifiers with the independent test for the malonylation sites of H. sapiens, M. musculus, 

Altogether (six species), and respectively by using some machine learning algorithms.
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Fig. 5. 
Performance Comparison among MaloPred [37], kmal-sp [39] and our proposed model, 

Mal-Light.
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Fig. 6. 
Error bars in a bar plot among our proposed model, Mal-Light and MaloPred [37], kmal-sp 

[39] in order to H. sapiens, M. musculus, Altogether (six species), respectively.
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Fig. 7. 
The impacts of the 15 most important features out of the 210 feature vectors for different 

species, instead of skipping any features in the development of Mal-Light.
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Fig. 8. 
Precision-Recall curves Figure (A), (B) and (C) based on different classifier algorithms for 

the malonylation sites of Homo sapiens, Mus musculus, Altogether (six species), and 

respectively.
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TABLE I

The total number of sites in different species of protein.

Species # of protein # of sites in protein

Homo sapiens 1,841 5,013

Mus musculus 1,466 4,390

Saccharopolyspora erythraea 117 175

Saccharomyces cerevisiae 3 3

Sus scrofa 1 2

Escherichia coli 1 1

In Total 3,429 9,584
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TABLE II

The performance comparison to predict the malonylation sites altogether with six species and separately two 

species (homo sapiens, mus musculus) trained and tested with 10-fold cross-validation.

Species Sensitivity Specificity F1-score ACC MCC

Homo sapiens 71.18% 98.27% 0.81 83.33% 0.68

Mus musculus 66.58% 92.13% 0.76 79.35% 0.60

Altogether (six species) 73.46% 96.53% 0.83 85.00% 0.71
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