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Abstract

Most of our waking time as human beings is spent interacting with other individuals. In order to 

make good decisions in this social milieu, it is often necessary to make inferences about the 

internal states, traits and intentions of others. Recently, some progress has been made to uncover 

the neural computations underlying human social decision-making by combining functional 

magnetic resonance neuroimaging (fMRI) with computational modeling of behavior. Modeling of 

behavioral data allows us to identify key computations necessary for decision-making and how 

these computations are integrated. Furthermore, by correlating these computational variables 

against neuroimaging data, it has become possible to elucidate where in the brain various 

computational variables are implemented during social decision making. Here we review the 

current state of knowledge in the domain of social computational neuroscience. Findings to date 

have emphasized that social decisions are driven by multiple computations that are conducted in 

parallel and which are implemented in distinct brain regions. We suggest that further progress is 

going to depend on identifying how and where such variables get integrated in order to yield a 

coherent behavioral output.

Keywords

social cognition; decision-making; model-based fMRI; reinforcement learning; computational 
neuroscience

1. Introduction

A fundamental question in neuroscience is how we make a decision. A popular framework 

developed in economics, psychology and machine-learning is called value-based decision-
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making (Rangel et al., 2008). The framework posits that (i) our brain assigns a scalar 

quantity, subjective value, to each of the available options, then (ii) selects the option with 

the highest value, and finally (iii) updates values of the options based on experienced 

outcome (i.e., learning). Application of formal models of value-based decision-making (e.g., 

reinforcement learning) to behavioral and neuroimaging data has uncovered neural 

mechanisms underlying human decision-making (Daw & Doya, 2006; Glimcher & 

Rustichini, 2004; O’DOHERTY et al., 2007; Schultz et al., 1997): for instance, subjective 

value signals encoded in the medial prefrontal cortex (Chib et al., 2009; Kable & Glimcher, 

2007; Lebreton et al., 2009; Suzuki et al., 2017) and learning signals (i.e., reward prediction 

error) encoded in the striatum (McClure et al., 2003; O’Doherty et al., 2004; Rutledge et al., 

2010).

In the last decade, researchers have employed formal theoretical approaches from 

economics, game theory and machine-learning to understand the neural underpinnings of 

human social behavior with reference to the value-based decision-making framework 

(Behrens et al., 2009; Dunne & O’Doherty, 2013; Hackel & Amodio, 2018; Lee, 2008; Ruff 

& Fehr, 2014). Social decision-making is evidently very complex, as it often requires 

inference about hidden states such as another’s intentions, state of mind, traits and/or 

predispositions. Indeed, accumulating evidence suggests that multiple forms of computation 

performed in distinct brain regions might underlie social decision-making (Behrens et al., 

2009; Charpentier & O’Doherty, 2018; Dunne & O’Doherty, 2013; Joiner et al., 2017; 

Konovalov et al., 2018; Lee & Seo, 2016; Ruff & Fehr, 2014; Wittmann et al., 2018). In 

other words, to compute and update one’s own overall values for available decision options 

in a social situation, one might need to integrate multiple computations about one’s own 

individual preferences, one’s preferences about the outcomes that others can receive, 

socially-specific inferences about others, domain-general inferences about the environment 

and so on. Yet, much less is known about how these multiple computations necessary for 

social decision-making are integrated in the human brain.

Here, in this review, we discuss these issues, while maintaining a focus on studies that 

extend the value-based decision-making framework to social behavior. We first outline 

simple extensions of this framework to the social domain: decision-making for others, in 

which consideration of other individuals’ welfare works as a modulatory factor, and learning 

through observing others, in which others’ choice and its consequence work as a source of 

learning; and then review a more complex expansion of this framework to the domain of 

strategic decision-making/learning.

2. Value-based decision-making for others

In our daily life, we make value-based decisions not only for our own interest but also for 

the benefit of other individuals (e.g., charitable donation involving decision-making about 

how resources are allocated between oneself and others). In such decision-making, an 

individual computes the value of each option by considering both self and others’ reward 

outcomes in line with her social preference such as warm-glow, inequity-aversion and envy-

aversion (Crockett et al., 2017; Fehr & Shmidt, 1999; Fehr & Camerer, 2007; Fukuda et al., 

2019; Harbaugh et al., 2007; Hula et al., 2018; Sanfey et al., 2003; Takahashi et al., 2009), 
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suggesting that multiple types of information are represented in the brain to guide choice. 

One study (Hutcherson et al., 2015) examined simple decisions about different allocations of 

monetary reward between oneself and an anonymous partner. They found that choice 

behavior and reaction-times can be well-captured by a computational model called the 

Multi-attribute Drift-Diffusion Model (Ratcliff & McKoon, 2008). Furthermore, monetary 

reward for oneself and that for the anonymous partner were found to be encoded in the 

ventral striatum and temporoparietal junction (TPJ) respectively.

Another study (Hsu et al., 2008) investigated decision-making between different donation 

plans to two groups of children living in an orphanage in northern Uganda. Importantly, the 

plans differed in terms of efficiency (i.e., the overall amounts of money donated to the two 

groups) and inequity (i.e., the difference in the amounts donated to the two groups). They 

found that information about efficiency was represented in a region of dorsal striatum (the 

putamen) while information about inequity was encoded in insula.

Moreover, we sometimes make decisions on behalf of others (e.g., leadership decisions) 

(Edelson et al., 2018; Jung et al., 2013; Nicolle et al., 2012; Ogawa et al., 2018). One study 

(Edelson et al., 2018) examined decision-making to take the lead (i.e., make a choice on 

behalf of the group) or not (i.e., follow the majority’s choice). They found that participants 

in their experiment tended to avoid assuming leadership, especially when the choice was 

difficult; and that patterns of connectivity among brain regions encoding task-relevant 

variables (e.g., choice difficulty, probability of leading, and so on) predicted individual 

differences in leadership decisions and self-reported leadership scores.

Another important component in social value-based decision-making is learning for others 

(i.e., learning about the consequence of one’s own action for other individuals). Researchers 

have identified neural underpinnings of learning for others to attain monetary reward 

(Christopoulos & King-Casas, 2015; Lockwood et al., 2016), to avoid painful electric shock 

(Lockwood et al., 2019), and to reduce exposure to unpleasantly loud noise (Sul et al., 

2015). Some of these studies (Lockwood et al., 2016; 2019; Sul et al., 2015) have 

consistently found that ventral striatum tracks learning signals, reward prediction errors, 

when learning for others and oneself (but see (Christopoulos & King-Casas, 2015) for 

counter evidence). On the other hand, prediction error signals specific to learning for others 

have been found in the thalamus/caudate (Lockwood et al., 2019) and vmPFC expanding to 

subgenual anterior cingulate cortex (sgACC) (Christopoulos & King-Casas, 2015; 

Lockwood et al., 2016).

It is worth noting that there is likely to be considerable variation in social preference across 

individuals (Fehr & Camerer, 2007; Lange et al., 1997). Some people appear to care a lot 

about others’ payoffs, while others seem to care much more about their own payoff. Such 

individual differences modulate neural responses to fairness (Haruno & Frith, 2009), other-

regarding values (Sul et al., 2015) and prediction errors about others’ rewards (Christopoulos 

& King-Casas, 2015).

While we have so far emphasized contributions of anatomically distinct brain regions to self-

regarding and other-regarding computations, recent studies suggest the existence of more 
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flexible representations in the ventral-dorsal axis of medial prefrontal cortex (Nicolle et al., 

2012; Sul et al., 2015). Comparing decision-making for oneself and that on behalf of others, 

one study (Nicolle et al., 2012) demonstrated that vmPFC tracked “executed value” utilized 

for the current choice. That is, the brain region signaled self- and other-referential values, 

when making a choice for self and for others, respectively. They further found that 

dorsomedial prefrontal cortex (dmPFC) encoded “modeled value”, which is not used for the 

current choice but could be internally simulated (i.e., self- and other-values, when making a 

choice for others and for self, respectively). Another study (Sul et al., 2015) revealed that 

social preference modulated a spatial gradient from vmPFC predominantly representing self-

value to dmPFC encoding other-value. These studies together challenge the view that 

distinct and non-overlapping neural mechanisms are utilized for social and non-social 

inferences.

Most of the studies discussed above have investigated social interactions with anonymous 

others. However, several studies suggest that neural responses to social decision-making can 

be modulated as a function of the relationship between self and other such as social distance 

(Strombach et al., 2015), friendship (Fareri et al., 2015) and group membership (Hackel et 

al., 2017; Hein et al., 2016). For example, in the context of decision-making for others, 

willingness to pay for another individual’s benefit declines with an increase in social 

distance, and social-distance-dependent choices were found to be associated with neural 

activity in TPJ and vmPFC and in the functional coupling between those areas (Strombach et 

al., 2015).

3. Value-based decision-making through observing others

To make appropriate decisions, one needs to learn the values of available actions (options) 

and other features of the environment. Such learning can be accomplished not only by one’s 

own experience but also by observing another individual’s experience. This type of 

observational learning exists in multiple species, and has been directly tested in a range of 

species from rodents to humans (Burke et al., 2010; Cooper et al., 2011; Hill et al., 2016; 

Zentall, 2012). This form of learning is likely to be beneficial for survival as it enables 

individuals to efficiently acquire knowledge about the world without direct experience.

Recent human neuroimaging studies suggest that, for observational learning, human 

observers utilize two sources of information in order to acquire knowledge from an 

observee: the rewards obtained by the observee in relation to particular choices, and the 

actions performed by the observee (Burke et al., 2010; Suzuki et al., 2012). More precisely, 

prediction errors about the reward outcomes received by the observee have been found in 

vmPFC and dorsal striatum, and these may be used to update the value of the option chosen 

by the observee, in a similar manner to that which occurs during conventional reinforcement 

learning through direct experience. Indeed, a meta-analysis found that the vmPFC tracks 

reward prediction errors about both experienced and observed outcomes (Morelli et al., 

2015). On the other hand, prediction errors about the observee’s actions (i.e., the 

discrepancy between the observee’s actual choice and the observer’s prediction of the 

choice) have been found to be encoded in the dorsolateral prefrontal cortex (dlPFC) as well 

as other brain structures such as dorsomedial prefrontal cortex (dmPFC) and inferior parietal 
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lobule (IPL) (Burke et al., 2010; Suzuki et al., 2012). Moreover, another line of studies 

focused on fear conditioning and highlighted the pivotal role of amygdala in both learning 

from experienced and observed outcomes (Olsson et al., 2007; Olsson & Phelps, 2007).

In decision-making and learning through direct experience, there exist two key strategies 

(Balleine & O’Doherty, 2010): one is a goal-directed strategy that tracks causal relations 

between actions and outcomes, and the other is a habitual strategy in which actions are 

automatically elicited by environmental states. Interestingly, a similar dichotomy between 

goal-directed and habitual strategies has been suggested to apply when learning through 

observation (Liljeholm et al., 2012). However, the underlying neural mechanisms of these 

two strategies still remain elusive (Dunne et al., 2016; Liljeholm et al., 2012).

Learning about another individual’s reliability or trustworthiness and competence through 

observing her behavior is also useful, especially when making a decision about whether or 

not to take into account her advice (Behrens et al., 2008; Boorman et al., 2013). One study 

(Behrens et al., 2008) examined a case, in which for optimal decisions participants were 

required to combine learning about option values through direct reward feedback and 

learning about the adviser’s reliability through observation. They found that these two types 

of learning were formed in parallel in the brain: with the ventral striatum tracking learning 

about value from reward feedback, and the right posterior superior temporal sulcus (pSTS) 

and TPJ tracking learning about the adviser’s reliability. Furthermore, neural signatures of 

uncertainty in the two types of learning were found in distinct sub-regions of dACC, 

consistent with the postulation that uncertainty of the estimation modulates the speed of 

learning (Behrens et al., 2007). Another study (Wittmann et al., 2016) used a mini-game that 

requires participants to estimate their own and other players’ ability in cooperative and 

competitive contexts. The results of that study showed that the abilities of the participants 

themselves on the task and those of the other players were estimated based on past 

performance, and were found to be represented in the vmPFC and dmPFC respectively. In 

addition to reliability and ability, researchers have assessed social learning about other types 

of traits (Delgado et al., 2005; Hackel et al., 2015; Stanley, 2016). For example, Hackel et al. 

(Hackel et al., 2015) devised a task that allows one to dissociate learning about others’ 

generosity from learning about the reward obtained from others. Utilizing this task, they 

revealed that, while both types of learning recruited ventral striatum, learning about others’ 

generosity specifically employed a network of brain regions associated with social cognition 

(e.g., TPJ and precuneus).

More broadly, neural signatures of learning signals (i.e., prediction errors) have been 

reported in many other social situations. For example, in the case of learning about 

ownership, prediction errors about others’ and self ownership are represented in distinct sub-

regions of dACC along the antero-posterior axis: the anterior part tracks prediction errors 

about whether objects belong to others, while the posterior part tracks prediction errors 

about individuals’ own ownership (Lockwood et al., 2018). Furthermore, another study 

examined a teacher-student interaction in which the teacher informed the student whether 

the student’s choice was rewarding or not (Apps et al., 2016). Those authors demonstrated a 

role for anterior dACC in the teacher’s brain in signaling prediction errors about the 

student’s rewards, suggesting that teachers vicariously kept track of their students’ learning 
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progress. Importantly, these prediction error signals in ACC cannot be attributed to the 

domain-general process of error/conflict detection (Botvinick et al., 2004), because the 

signals were observed only in a particular condition (Lockwood et al., 2018), and were 

significant after controlling for effects of error trials and surprise (i.e., unsigned prediction 

error) (Apps et al., 2015).

Apart from value-based decision-making, information provided by others would be useful 

for forming and updating one’s belief about oneself. One study (Will et al., 2017) examined 

how appraisals from others shape our self-esteem. They found that fluctuation in self-esteem 

was driven by a prediction error corresponding to the discrepancy between expected and 

received social feedback. This was in turn represented in the ventral striatum and sgACC.

4. Value-based decision-making in strategic interactions

In the real world, we are often engaged in bilateral or reciprocal interactions, in which an 

individual needs to take into account predictions about another agent’s intentions in order to 

make an advantageous decision, while the other agent also strives to predict the individual’s 

intentions at the same time (Camerer, 2003). Researchers have begun to uncover 

computational processes for such strategic decision-making/learning and its neural 

underpinnings (Fareri, Chang, & Delgado, 2015; Hampton, Bossaerts, & O’Doherty, 2008; 

Haruno & Kawato, 2009; Hill et al., 2017; Lee & Seo, 2016; Suzuki, Adachi, Dunne, 

Bossaerts, & O’Doherty, 2015; Xiang, Ray, Lohrenz, Dayan, & Montague, 2012; Yoshida, 

Seymour, Friston, & Dolan, 2010; Zhu, Mathewson, & Hsu, 2012).

One important form of strategic decision-making arises when it is necessary to form a 

coordination or consensus within a group. One study (Suzuki et al., 2015) devised a novel 

experimental task in which in the main condition participants tried to make a unanimous 

consensus with other human participants. Behavioral modeling together with analysis of 

neuroimaging data demonstrated that one’s decisions were guided by three separate factors: 

knowledge about one’s own preference, information about the prior choices made by the 

majority of group-members, as well as an inference about how much each option is 

doggedly stuck to by the other group-members. These three different variables were found to 

be represented in the vmPFC, TPJ and IPL respectively (Fig. 1AB). Note that TPJ and IPL 

activations sometimes overlap, but this was not the case in this study (the peak MNI 

coordinates: [60 −46 10] for TPJ and [30 −52 34] for IPL). Importantly, the experimental 

task used in this study had a control condition in which participants interacted with 

computer agents programmed to mimic actual human behavior. Comparison of the main and 

the control conditions revealed a significant difference in the neural representation of group-

members’ prior choices in TPJ, but not for the other variables. This suggests that 

information about the group-members’ prior choices is processed in a social-specific manner 

in TPJ, while information about one’s own preference and inference about the stickiness of 

an option (i.e., how much each option is stuck to by the other human group-members or 

computer agents) are processed in a domain-general manner in vmPFC and IPL respectively.

Another study (Hampton et al., 2008) examined a competitive interaction between two 

individuals, by using an experimental task originally developed in economics. The task, 
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called the inspection game, models repeated interactions between an employee and her 

employer, in which the employee decides to work or to shirk (i.e., not to work) while the 

employer decides to inspect or not to inspect her employee. Each player gets a higher payoff 

if they can outsmart the opponent. For example, an employee obtains a higher reward by 

shirking without being inspected by the employer. The authors identified two computations 

related to forming a prediction about the opponent’s next move. One is learning from the 

opponent’s past choices, driven by prediction error, which was found to be encoded in the 

ventral striatum. The other is higher-order reasoning about how one’s own current move will 

influence the opponent’s next choice, which was found to be encoded in pSTS/TPJ. It is also 

worth noting that a recent study combining computational modeling and neuroimaging with 

non-invasive brain stimulation largely replicated the original findings of the Hampton et al. 

study, while establishing that the TPJ signal is causally relevant for computing a higher-

order inference about the influence of one’s own action on the opponent’s next choice (Hill 

et al., 2017). In that study, theta burst stimulation over the TPJ which temporarily disrupts 

the functions of that region was found to result in a reduced tendency to engage the higher 

order inference compared to a sham control condition.

Complex strategic interactions often involve deep recursive reasoning about another’s 

mental state: inference about your inference about my inference about your inference and so 

on (Camerer, 2003). A cognitive hierarchy theory, originally developed in game theory, 

posits that an individual conducts recursive inferences to a one-step higher level of depth 

than one’s opponent in order to gain an advantage over the opponent (Camerer, 2003). In 

other words, a reasonable strategy is to estimate the opponent’s depth-of-reasoning and 

adjust one’s own behavior so as to be tailored to that estimation (by being one step more 

sophisticated). Although in general this type of inference is itself computationally costly, 

several formal models based on Bayesian inference have been proposed (Ray et al., 2008; 

Yoshida et al., 2008). Correlating these models with fMRI signals, Yoshida et al. showed 

that uncertainty about the estimation of the opponent’s depth-of-reasoning was represented 

in dmPFC, while dlPFC tracked the depth of one’s own strategy (Yoshida et al., 2010). 

Furthermore, Xiang et al. demonstrated differential brain regions encoded reward prediction 

error signals with respect to individual difference in participants’ depth-of-reasoning (Xiang 

et al., 2012).

Note that complex strategic decision-making is not mutually exclusive from the issues 

discussed in the previous sections. For example, inference about the opponent’s depth-of-

reasoning (Yoshida et al., 2010) can be interpreted as a form of learning about her traits (see 

the section of value-based decision-making through observing others). Furthermore, 

decision-making in a strategic game called the Ultimatum game has been found to be 

affected by one’s preference for fairness (see the section of value-based decision-making for 

others) (Chang & Sanfey, 2013; Falk et al., 2003; Sanfey et al., 2003).
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5. Integration of multiple computations in social value-based decision-

making

We have considered evidence supporting the possibility that multiple computational 

strategies are involved in parallel during many different forms of social value-based 

decision-making. However, the different computations need to be integrated somehow in 

order to generate a coherent behavioral output. In our review so far we have revealed that 

neuroimaging studies have identified a number of different forms of computation during 

social-decision-making which are represented in discrete brain regions. In most of the 

computational models mentioned above, the form of the integration of the variables is to 

compute a subjective value or choice probability for a given option. For example, in models 

of decision-making for others (e.g., Fukuda et al., 2019; Hutcherson et al., 2015), a 

subjective value for each option is computed by integrating information about the amount of 

reward delivered to oneself and others (Fig 2A). In the contexts of observational learning 

(e.g., Burke et al., 2010; Suzuki et al., 2012), leaning signals from others’ choices and 

reward outcomes are integrated to compute the value of each option (Fig 2B). In strategic 

decision-making models (e.g., Hampton et al., 2008; Hill et al., 2017; Suzuki et al., 2015), 

value computation requires the integration of multiple types of inference (Fig 1 and 2C). 

Given these model structures (Figs 1 and 2), we suggest that a brain region engaged in the 

integration process must (1) encode the integrated subjective value or choice probability 

signals assigned by the computational model (Fig. 1C) and (2) have functional connectivity 

with regions encoding each of the individual key computational variables (Fig. 1D). In other 

words, if a brain region is implicated in the information integration, the region must satisfy 

the above two criteria.

The first criterion has been examined in many studies. Correlating fMRI signals with the 

model-derived overall subjective value or choice probability signals, convergent evidence 

suggests that key computational variables necessary for decision-making are integrated in 

the vmPFC including the rostral ACC (rACC) and/or the dmPFC including dACC (e.g., 

Behrens et al., 2008; Hsu et al., 2008; Hutcherson et al., 2015; Suzuki et al., 2012).

On the other hand, to our knowledge, only a few studies (Fukuda et al., 2019; Hampton et 

al., 2008; Hill et al., 2017; Suzuki et al., 2015) have examined both of the two criteria. For 

example, as mentioned in the previous section, Suzuki et al. (Suzuki et al., 2015) first 

identified three key computational variables and their neural correlates for consensus 

formation in a group: vmPFC encoding one’s own preference for each of the available 

options, TPJ encoding group-members’ prior choices and IPL encoding one’s inference 

about how much each option was stuck to by the other group-members (Fig. 1AB). Next, 

they found two brain regions, rACC and posterior dACC, that satisfied the first criterion: that 

is, fMRI signals in these two regions were correlated with modeled choice probability 

derived by integration of the three key computational variables (Fig. 1C). Finally, to examine 

the second criterion, a functional connectivity analysis was employed (Psycho-Physiological 

Interaction analysis (Friston et al., 1997)) which demonstrated that the posterior dACC, but 

not the rACC, had increased connectivity at the time of decision with each of the three 

regions, the vmPFC, the TPJ, and the IPL, that individually tracked the three key 
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computational variables (Fig. 1D). Taken together, only the posterior dACC satisfies both of 

the two criteria, suggesting that the three key computational variables involved in consensus 

decision-making are integrated in posterior dACC.

In the context of competitive interactions, Hampton et al. suggest that integration process 

occurs in dmPFC (Hampton et al., 2008). The dmPFC was found to represent overall 

subjective value and have functional connectivity with the other regions, the ventral striatum 

and the pSTS/TPJ, responsible for individual computations underlying the decision-making 

(i.e., learning from the opponent’s past choices and higher-order reasoning about how one’s 

own choice will influence the opponent’s next choice). This account of integration is further 

supported by a recent study showing that disruption of the TPJ alters its functional 

connectivity with the dmPFC (Hill et al., 2017).

In the context of decision-making for others, one study (Fukuda et al., 2019) tested for areas 

meeting the two criteria, by combining two types of connectivity analysis: Psycho-

Physiological Interaction analysis, PPI (Friston et al., 1997), and Dynamical Causal 

Modeling, DCM (Friston et al., 2003). Note that PPI is based on a regression model and thus 

cannot examine directionality of the connectivity, while DCM is based on a model of causal 

interactions of brain regions and can thus enable inference about the directionality of the 

effects. In Fukuda et al., these two connectivity analysis approaches consistently showed that 

integration of information about self- and others’ rewards occurred in the vmPFC, including 

the adjacent rACC (Fukuda et al., 2019).

Furthermore, some other studies have aimed to address the issue of integration by using 

connectivity analyses, although they did not directly test the above two criteria. For example, 

van den Bos et al. suggest that multiple computations necessary for bidding behavior in an 

auction are integrated in vmPFC and striatum (van den Bos et al., 2013). Smith et al. 

proposed that the value of social stimuli (i.e., attractiveness of others’ faces) is computed in 

the vmPFC via interactions with other regions such as the TPJ and middle temporal gyrus 

(Smith et al., 2014). Finally, based on a meta-analytic connectivity analysis evaluating co-

activation patterns across various tasks, the authors of one study (Alcalá-López et al., 2017) 

concluded that diverse neural circuits for from low-level sensory to high-level associative 

processes mediate human social cognitive capacities.

These findings could, we believe, provide a possible account for HOW social information is 

integrated with simple non-social decision-making processes. In studies on simple decision-

making, it has been suggested that values of available options and goals in the vmPFC 

(including rACC) are utilized as inputs for computing values for actions in the posterior 

dmPFC (posterior dACC), and then finally transformed into a motor command in the motor 

cortex (Hare et al., 2011) . The findings obtained in Suzuki et al., Hampton et al. and Fukuda 

et al. could suggest that, in the contexts of strategic decision-making, social information 

modulates the basic decision-making process at the stage of action value computation in the 

posterior dmPFC, while social information operates on the upstream stage (i.e., the 

computation of option and goal values in the vmPFC) in the context of decisions for others. 

This account further motivates another fascinating question: how is anterior dmPFC 

(anterior dACC), located between vmPFC and posterior dmPFC along the rostral-caudal axis 
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of medial prefrontal cortex, involved in the social decision-making process? This question is 

of particular importance as the anterior dmPFC has been proposed to play a central role in 

social cognition (Amodio & Frith, 2006; Apps et al., 2016). Given the sparsity of studies to 

date that have addressed both of the above two criteria for how integration might happen 

across different computational strategies, however, future studies will need to address how 

and where discrete social computations are integrated across a wide array of different task 

domains and computational variables.

6. Conclusions

It is widely believed that decisions in social contexts are made through integrating multiple 

types of inference about one’s own rewards, others’ rewards, others’ mental-states and so on. 

In the last decade, the notion has been supported by a computational modeling approach 

combined with neuroimaging (Behrens et al., 2009; Charpentier & O’Doherty, 2018; Dunne 

& O’Doherty, 2013; Joiner et al., 2017; Konovalov et al., 2018; Lee & Seo, 2016; Wittmann 

et al., 2018). Construction of a formal model that can account for behavioral data enables us 

to identify key variables necessary for decision-making, providing significant insights into 

what computations underlie human social behavior. Furthermore, correlating the key 

variables with neuroimaging data informs us where in the brain these computations are 

implemented.

On the other hand, a more challenging and less explored issue is how these computations are 

integrated in the brain to guide our social behavior. In a broader sense, this issue is related to 

a long-lasting question in neuroscience, known as “The Binding Problem” (Roskies, 1999). 

While in this review we have introduced some studies addressing this issue, more evidence 

is needed for a more comprehensive understanding of the information integration process. 

For example, to understand information integration process in the brain, it would also be 

essential to examine the nature of causal interactions (i.e., the direction of information flow) 

among multiple brain regions, which cannot be tested by correlation-based connectivity 

analysis methods such as psychophysiological interaction analysis (Friston et al., 1997). An 

interesting and important avenue in social decision-making would be to utilize Dynamic 

Causal Modeling or/and non-invasive brain stimulation together with computational 

modeling (Hein, Morishima, et al., 2016; Hill et al., 2017).

Important issues we have not addressed in this review are the perceptual aspects of social 

decision-making. Perception of social stimuli, especially others’ faces, plays an important 

role in real-world decisions such as mate choice (Fletcher et al., 1999), electoral behavior 

(Todorov et al., 2005) and sentencing judgments (Blair et al., 2004). While several brain 

regions have been found to represent others’ attractiveness (O’Doherty et al., 2003), emotion 

(Wegrzyn et al., 2015) and trustworthiness (Todorov et al., 2008; Winston et al., 2002) as 

perceived from their faces, much less is known about how these perceptions are constructed 

from low-level visual inputs. Another line of studies has examined neural mechanisms 

underlying perception of animacy or biological motion (Giese & Poggio, 2003; Schultz & 

Bülthoff, 2019). Such studies have implicated a brain network including pSTS in detection 

of animacy of abstract stimuli (e.g., moving dots), but the underlying computations still 

remain elusive. Future studies could fruitfully provide neurocomputational accounts that 
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bridge low-level sensory inputs and the higher-order perception of social stimuli (Chang & 

Tsao, 2017; Lin et al., 2019; Oosterhof & Todorov, 2008).

To conclude, in this review, we discuss recent advancement in the studies of human social 

value-based decision-making. Despite the consensus that multiple types of computations 

underlie the decision-making, our understanding of how these computations are integrated to 

guide behavior is still in its infancy. Further elucidation of the integration process by 

combining neuroimaging, brain stimulation, computational modeling and connectivity 

analyses would be a critical step towards a more comprehensive understanding of human 

social decision-making.
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Figure 1 - 
Neural mechanism underlying human consensus decision-making (Suzuki et al., 2015).

(A) Illustration of the computational model. Subjective value of each option is computed 

through integrating one’s own preference, group-members’ prior choices and one’s inference 

about how much each option is stuck to by the other group-members, and then finally 

converted to the choice probability.

(B) Neural correlates of the three key computational variables. vmPFC: ventromedial 

prefrontal cortex; TPJ: temporoparietal junction; and IPL: inferior parietal lobule.

(C) Neural correlates of the integrated choice probability. dACC, dorsal anterior cingulate 

cortex.

(D) Functional connectivity between dACC and each of the three regions individually 

tracking the key computational variables.
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Figure 2 - 
Schematic illustrations of example computational models for social value-based decision-

making and their neural correlates.

(A) Decision-making for others (Fukuda et al., 2019; Hutcherson et al., 2015). Overall value 

and choice probability of each option is computed by integrating information about self and 

other reward values. S: self; O: other; dlPFC: dorsolateral prefrontal cortex; TPJ: 

temporoparietal junction; and vmPFC: ventromedial prefrontal cortex.

(B) Decision-making through observing others (Burke et al., 2010; Suzuki et al., 2012). 

Value and choice probability of each option is computed by integrating two types of learning 

from others’ rewards and choices. dmPFC: dorsomedial prefrontal cortex; and IPL: inferior 

parietal lobule.

(C) Decision-making in strategic interactions (Hampton et al., 2008; Hill et al., 2017). Value 

of each option is computed by the prediction of the other’s choice that integrates learning 

from the other’s past choices and higher-order inference about influence of self-choice on 

the other’s next choice.
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