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a b s t r a c t

On March 12th, 2020, the WHO declared COVID-19 as a pandemic. The collective impact of environ-
mental and ecosystem factors, as well as biodiversity, on the spread of COVID-19 and its mortality
evolution remain empirically unknown, particularly in regions with a wide ecosystem range. The aim of
our study is to assess how those factors impact on the COVID-19 spread and mortality by country. This
study compiled a global database merging WHO daily case reports with other publicly available measures
from January 21st to May 18th, 2020. We applied spatio-temporal models to identify the influence of
biodiversity, temperature, and precipitation and fitted generalized linear mixed models to identify the
effects of environmental variables. Additionally, we used count time series to characterize the association
between COVID-19 spread and air quality factors. All analyses were adjusted by social demographic,
country-income level, and government policy intervention confounders, among 160 countries, globally.
Our results reveal a statistically meaningful association between COVID-19 infection and several factors
of interest at country and city levels such as the national biodiversity index, air quality, and pollutants
elements (PM10, PM2.5, and O3). Particularly, there is a significant relationship of loss of biodiversity, high
level of air pollutants, and diminished air quality with COVID-19 infection spread and mortality. Our
findings provide an empirical foundation for future studies on the relationship between air quality
variables, a country’s biodiversity, and COVID-19 transmission and mortality. The relationships measured
in this study can be valuable when governments plan environmental and health policies, as alternative
strategy to respond to new COVID-19 outbreaks and prevent future crises.

© 2020 Elsevier Ltd. All rights reserved.
e by Dr. Da Chen.
s and Operations Research,
SEIAAT, Edifici TR5, C\Colom,

u (D. Fern�andez).
1. Introduction

Outbreaks of emerging infectious diseases, such as the 1918
influenza pandemic (Taubenberger and Morens, 2006), the 2014
Ebola (Rewar and Mirdha, 2014) virus disease, the white-nose-
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syndrome in bats (Blehert et al., 2009), the ash dieback (Pautasso
et al., 2013) fungal disease in ash trees, and the pandemic chy-
tridiomycosis, which killed amphibians worldwide (Fisher et al.,
2009; Fisher et al., 2012), are occurring with an increasing fre-
quency and terrible consequences. One of the main causes of
pandemic events and epidemic diseases is the close interaction
between human populations and both domesticated and wildlife
animals that carry pathogens (Woolhouse and Gowtage-Sequeria,
2005). Most pathogens pass from their wildlife reservoirs onto
human populations through hunting, the consumption of wild
species, wild animal trade, and other contacts with the wildlife.
Additionally, changes in the Earth’s climate and weather continue
to impact the planet’s ecosystems, which include the environ-
mental communities with infectious disease agents and hosts that
acts as vectors (Yeh K et al., 2020). Therefore, the intensified
emergence of infectious pathogens can also be attributed to climate
change, biodiversity loss, habitat degradation, and a rate increase of
human-wildlife interactions (HWI) (Schmeller et al., 2020).

A reduction of biodiversity richness and evenness causes the
disappearance of a key part of the ecosystem that serves as a buffer
to the spread of infectious diseases onto humans, animals, and
plants (Peixoto and Abramson, 2006; Pongsiri et al., 2009; Ostfeld
and Keesing, 2017). In that sense, several studies have suggested
that the transmission of diseases increases with the loss of biodi-
versity (Keesing et al., 2010; Wood et al., 2014; Lacroix et al., 2014;
Johnson et al., 2015). Additionally, the fifth edition of UN’s Global
Biodiversity Outlook report (GBO-5) published by the Convention
of Biological Diversity (CBD), remarks the importance of biodiver-
sity when addressing climate change and long-term food security.
GBO-5 concludes that action to protect biodiversity is essential to
prevent future pandemics. Moreover, the report notes that biodi-
versity loss might also lead to a faster rate of emergence and re-
emergence of infectious diseases.

There have been six large-scale epidemics in the 21st century
(i.e., SARS, swine flu, MERS, Ebola, Zika, and Avian). Here, we briefly
present their characteristics:

- The Severe Acute Respiratory Syndrome (SARS) occurred in
2003, which led to more than 8000 infections with a mortality
rate of approximately 10% and an impact limited only to local
and regional economies (LeDuc and Barry, 2004). This epidemic
ended abruptly in July 2003 and no human cases of the SARS
coronavirus have been detected since then.

- The 2009 H1N1 influenza virus, which causes swine flu, was a
pandemic that first appeared in Mexico in March 2009 and then
in April in the United States. The 2009 swine flu became a
pandemic as a result of global mobility and airline travel and led
to an estimated 0.4% case fatality (Al Hajjar andMcIntosh, 2010).

- The Middle East respiratory syndrome (MERS) was first identi-
fied in humans in Saudi Arabia and Jordan in 2012 (Memish
et al., 2020). MERS is considered a zoonotic pathogen that
jumps from infected dromedary camels to humans (El-Kafrawy
et al., 2019; Gardner et al., 2019). By contrast to SARS, which was
contained within a year after emerging, MERS continues to have
a limited circulation in the Middle East region and causes
intermittent sporadic human infection cases, infected commu-
nity clusters, and nosocomial outbreaks, all of which hold a high
risk of spreading globally (Zumla et al., 2015).

- The Ebola virus was first detected in 1976 in Zaire (presently
known as the Democratic Republic of Congo). Since the virus
was first detected, over 20 known outbreaks of Ebola have been
identified in sub-Saharan Africa, mostly in Sudan, Uganda,
Democratic Republic of Congo, and Gabon (Malvy et al., 2019). At
present, no vaccine or efficient antiviral management strategy
exists for Ebola (Hasan et al., 2019). Although the Ebola virus has
2

a substantial epidemic and pandemic potential due to the ease
of international travel, as demonstrated by the 2013e2016
West-African Ebola virus epidemic with approximately 28,000
confirmed cases and 11,000 deaths (Garske et al., 2017).

- The Zika fever (2015e2016) was first isolated in 1947 from a
febrile rhesus macaque monkey in the Zika Forest of Uganda.
Since 1954, when the first cases in humans were reported, the
Zika virus caused only limited sporadic infections in Africa and
Asia. However, a large outbreak with approximately 440,000 to
1,300,000 cases spread from Brazil to 29 countries in the
Americas in 2015 (Plourde and Bloch, 2016). In November 2016,
WHO announced the end of the Zika outbreak.

- Avian flu (or bird flu) was first reported in 1997 in Hong Kong
with only 18 infections and 6 human deaths. However, more
than 700 cases of the avian flu have been reported from over 60
countries (Alexander and Brown, 2009), which include the 2016
outbreaks that occurred in China (Chatziprodromidou et al.,
2018).

Some of those epidemics have been studied to anticipate their
societal and environmental impacts (Crameri et al., 2015; Kim et al.,
2018; Qiu et al., 2018). The current novel coronavirus disease
(COVID-19) dwarfs those six large-scale epidemics of the 21st
century in terms of spatial extent and societal consequences (Ali
and Alharbi, 2020), and COVID-19 is the only pandemic with
widespread and complex environmental impact (Lal et al., 2020;
Nakada and Urban, 2020).

On March 12, 2020, the World Health Organization (WHO)
declared the COVID-19 as a pandemic (WHO, 2020). By May 18th,
2020, more than 210 countries reported confirmed cases of COVID-
19 (Cucinotta and Vanelli, 2020). Extended virus transmission
outside China was reported among various European Union (EU)
countries, the United States of America (USA), Latin American
countries (e.g. Brazil and Peru) and African countries (e.g. South
Africa) (Davis, 2020).

Several social distancing measures were implemented to inter-
vene and contain the alarming spread of COVID-19 (Pan et al.,
2020). Various clinical trials to develop a vaccine or a pharmaceu-
tical treatment are being directed to fight against the virus. Some
initial data on the effect of environmental factors (i.e. temperature
and humidity) on virus spread and mortality have been presented
(Prata et al., 2020; Tobías and Molina, 2020; Triplett, 2020; Wang
et al., 2020a; Wang et al., 2020b). However, none of these studies
included as confounders factors such as the mutual impact of both
social distancing and government movement restriction policies on
virus spread. Additionally, while various researchers pointed out
the role of biodiversity on COVID-19 spread (Corlett et al., 2020;
Grandcolas and Justine, 2020; Lorentzen et al., 2020; Outlook et al.,
2010), until now, there is no information on that role at the local or
international level. Although still a debate in ecological forums,
theoretically, a higher biodiversity acts as an increased protection
factor that enhances the human immune system against unknown
viruses (Maas et al., 2006; Rook, 2013).

The collective impact of environmental and ecosystem factors,
as well as biodiversity, on COVID-19 spread remain empirically
unknown, particularly in regions with a wide ecosystem range. To
the best of our knowledge, there is no information on the rela-
tionship of biodiversity with COVID-19 at a worldwide level. Esti-
mates, over time, of COVID-19 spread and mortality that consider
ecosystem and biodiversity determinants could help identify which
level of these factors can be beneficial to slow down spread and
mortality, and with how much impact. In our view, an estimate of
the effect of environmental and biodiversity parameters, jointly
along with other studied factors, can give insights that may help
guide authorities when establishing an early decision for the
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containment of the future outbreaks. Thus, the aim of this study
was to assess the relationship between biodiversity, environmental,
and other ecosystem factors with COVID-19 spread andmortality at
global levels.
2. Methods

2.1. Study design

We conducted a retrospective, observational, longitudinal study.
We obtained data on COVID-19 spread and mortality, and related
risk factors from 218 countries. We compiled a dataset of COVID-19
daily cases and deaths spanning January 21st to May 18th, 2020,
based on the most recent publicly available population-level in-
formation (per country), as reported by WHO (https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/situation-
reports/). The current study was approved by Parc Sanitari’s Sant
Joan de D�eu, Ethics Committee (PIC-67-20, Barcelona, Spain) and
complies with the ethical guidelines of the 1975 Declaration of
Helsinki.
2.2. COVID-19 international data and other baseline measures

The WHO daily situation reports were used to compile data
between January 21st to May 18th, 2020, on daily confirmed cases,
total confirmed cases, daily confirmed deaths, the total amount of
confirmed deaths, and time since the last reported case for each of
the 218 countries/regions. Cases identified in cruise ships were
excluded from the analysis. Cases among all China’s provinces were
grouped all together. COVID-19 cases were classified separately, in
particular, administrative regions of China such as Hong Kong,
Macao, and Taiwan since they applied different government in-
terventions and policy measures than mainland China. Based on
the WHO database, Puerto Rico, Northern Mariana Islands, Guam,
and United States Virgin Islands were classified separately from the
US.

The effective date of each social distancing intervention, per
country, was initially extracted fromonline policy databases (World
Health Organization, 2020) to create a 4-level government policy
intervention score that varied from levels 0 to 3, which represented
“low”, “intermediate”, “high”, and “very high” intervention levels.
Level 0 (“low”) is defined as those countries with no restrictions at
entry points or temperature check or additional medical screening
(at entry) or completion of travel health questionnaires at entry
points or quarantine in suspected cases imported from affected
areas in each time; Level 1 (“intermediate”) is defined as those
countries that announced the “low” measures plus visa suspension
or suspension of entry to specific passengers or flow suspension to
and from COVID-19 affected areas; Level 2 (“high”) is defined as
those countries that applied all the aforementioned and proceeded
to annulations and suspensions of large gatherings, events or
educational activities (schools and/or universities closures) or
isolation of specific areas; and Level 3 (“very high”) is defined as
those countries that applied all the aforementioned and proceeded
to quarantine the entire country (defines as full or mandatory
lockdown) or announced a stay-at-home-order or applied nation-
wide curfew (defined as the specific government order referred to
the period of time when the population was required stay at home
or was allowed to move outside their homes - night or day curfews
were considered). More detail on the abovementioned methodol-
ogy could be found in Tyrolovas et al. (2020).

The World Bank classification system was used to classify each
of the 218 countries in a distinct country income level: High (HICs),
Upper (UMICs), Lower Middle (LMICs), and Low (LICs) income. Also,
3

to define different geographical regions, theWHO classificationwas
used as follows: European Region, Western Pacific Region; Region
of the Americas; African Region, Eastern Mediterranean Region,
and South-East Asia Region. Population density per square kilo-
meter was also assessed by country from the World Bank data
(Bank, 2016).

Finally, we used two more variables: “days since the first case”
and “days since the last case”. The former variable measures the
number of days since the first COVID-19 case was reported in each
country. This variable allows us to compare all countries even if
they have different starting times of the disease. Thus, it describes
the disease arrival into a region. Additionally, “days since the last
case” is a variable created by WHO and measures the count of days
in which a country has not reported a new COVID-19 case. There-
fore, it describes the acceleration or deceleration of the disease
spread in a region.

2.3. Biodiversity, environmental, and ecosystem assessments by
country

The National Biodiversity Index (NBI) reported by the Conven-
tion on Biological Diversity (https://www.cbd.int/gbo1/annex.
shtml) is a measure of the variation of genetic, species, and
ecosystem levels for each country and is based on estimates of a
country’s richness and endemism of four terrestrial vertebrate
classes and vascular plants; vertebrates and plants are ranked
equally. The NBI includes an adjustment for country size and values
range 0e1. Countries with a land area less than 5000 sq km, over-
seas territories, and dependencies were excluded.

Daily temperature and precipitation measures were down-
loaded from NASA’s Goddard Earth Sciences Data and Information
Services Center (GES DISC). Specifically, we obtained data from the
algorithm called Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGDE_06/summary) (IMERG) (Nasa ED, 2020a). The
measurement of precipitationCa measures the precipitation of the
combined microwave-IR spectrum. Additionally, the maximum,
minimum, and average, daily temperatures from 2m above the
ground, for each country, were obtained from the MERRA-2 (a
Modern-Era Retrospective analysis for Research and Applications
version 2) (Nasa ED, 2020b) (https://disc.gsfc.nasa.gov/datasets/
M2SDNXSLV_5.12.4/summary). We used only the maximum tem-
perature in our models to avoid multicolinearity. We note that we
obtained the 14-day lagged date of the temperature and precipi-
tation measures to account for 14 days between those measures
and case and mortality confirmation. This lag approach has been
similarly applied before in other studies (Shi et al., 2020; Runkle
et al., 2020).

The factors associated with the ecosystem vitality and envi-
ronmental health, per country, are listed in Table 1 and were ob-
tained from the 2020 Environmental Performance Index (EPI)
report (Index EP, 2018) (https://epi.yale.edu/downloads). A data-
driven summary of the state of sustainability around the world is
provided by EPI, which uses 32 performance factors across 11 issue
categories. The data comes from trusted third-party sources, such
as international governing bodies, nongovernmental organizations,
and academic research centers. Credible datasets rely on estab-
lished collection methods that have been peer-reviewed by the
scientific community or endorsed by international authorities.

This study emphasizes air deficiency 2020 EPIs, which are
broken down into five factors. Household solid fuels (HAD) mea-
sures the actual outcomes from exposure to indoor air pollution
from household use of solid fuels. Ambient particulate matter
pollution (PMD) measures the average annual concentration of
PM2.5 to which the typical citizen of each country is exposed. Ozone

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
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https://disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary
https://epi.yale.edu/downloads


D. Fern�andez, I. Gin�e-V�azquez, I. Liu et al. Environmental Pollution 271 (2021) 116326
(OZD) measures the intensity of ground-level ozone to which the
typical citizen of each country is exposed. The units of the former
three measures are the number of age-standardized disability-
adjusted life-years lost per 100,000 persons. And SO2 Emissions
(SDA) and NOx Emissions (NXA) measure the intensity of SO2 and
NOx emissions respectively, from the entire economy, as a blend of
current-year intensity and a 10-year trend. Technical details of how
these measures have been calculated can be found in the EPI
technical appendix (https://epi.yale.edu/downloads/
epi2020technicalappendix20200604.pdf). For all variables from
the EPI report, we have used the 2020 EPI values and also the 10-
year change rate to include increments or decrements of the
measures. The 2020 EPI report calculates the air quality and
pollutant measures from the previous year.

2.4. Atmospheric measurements by cities

We obtained information on the daily average of temperature,
level of humidity, ground-level ozone, atmospheric particulate
matter of 10 mm or less in diameter (PM10), and 2.5 mm or less in
diameter (PM2.5) from the World Air Quality Index project (https://
aqicn.org/data-platform/COVID-19). These measures are city-
based, and we used three cities with different levels of COVID-19
spread: Denver (with a medium case rate), and Barcelona and
Milan (with high case rates). We used data that spanned from
March 8th until May 18th, 2020.

2.5. Statistical analysis

2.5.1. Bayesian space-time analysis
We aimed to identify the influence of biodiversity, temperature,

and precipitation factors related to the number of positive COVID-
Table 1
The list below shows the environmental and ecosystem vitality factors from the 2020 Env
11 issue categories and two policy objectives. The code designates each factor variable. S

Policy objective Issue category

Environmental Health Air Quality

Sanitation & Drinking Water

Heavy Metals
Waste Management

Ecosystem Vitality Biodiversity & Habitat

Ecosystem Services

Fisheries

Climate Change

Pollution Emissions

Agriculture
Water Resources

4

19 cases and deaths. As we utilize data collected across different
countries in time, we employ a Bayesian spatio-temporal approach
to capture those effects between the outcomes and the covariates.
In particular, this approach accounts for temporal correlations as
well as spatio-temporal interactions, which have proven to be
important due to the nature of the spread and mortality cases of
COVID-19. Additionally, we assumed a Zero-Inflated Negative
Binomial (ZINB) distribution in the outcomes of interest that
exhibited overdispersion and excess zeros to lead to statistically-
sound inferences.

The spatio-temporal models for assessing the evolution of
COVID-19 spread and mortality were applied with the adjustment
of the following confounders: government intervention level (4
stringency levels), the number of days since the last COVID-19 new
case (days since last case), precipitation and temperature mea-
surements, country income level, count of days since the first
COVID-19 case is reported in each country (days since first case), and
population density (per sq. km). The natural logarithm of the total
population was added to the linear predictor function (as an offset)
to account for the infection and mortality rate per country, as is
more relevant to model spread or mortality rates (scaled based on
population) than counts of cases. We selected the best-fitting
model based on both the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002) and the Watanabe-Akaike Information
Criterion (WAIC) (Watanabe, 2010). All model details are presented
in the Supplementary Appendix S1. The Bayesian spatio-temporal
models were used as a first step in the current analysis to capture
spatial and in-time effects. All computations were carried out using
the R package R-INLA (Rue et al., 2009) in R Version 4.0.2.

2.5.2. Generalized linear mixed models
To identify the effects of ecosystem vitality and environmental
ironmental Performance Index Framework. The framework organizes 32 factors into
ource. (Index EP, 2018).

Factor Code

Ambient particulate matter pollution PMD
Household air pollution from solid fuels HAD
Ozone OZD
Unsafe drinking water UWD
Unsafe sanitation USD
Lead Exposure PBD
Solid Waste MSW
Terrestrial Biome Protection e National weights TBN
Terrestrial Biome Protection e Global weights TBG
Marine protection MPA
Protected Areas Representativeness Index PAR
Species Habitat Index SHI
Species Protection Index SPI
Biodiversity habitat Index e Vascular Plants BHV
Tree cover loss, % TLC
Grassland Loss GRL
Wetland Loss WTL
Fish Stock Status FSS
Regional Marine Trophic Index RMS
Fish caught by Trawling FGT
CO2 intensity trend CDA
Methane intensity trend CHA
F-gases intensity trend FGA
N2O intensity trend NDA
Black Carbon intensity trend BCA
GHG emission intensity growth rate GIB
GHG emission per capita GHP
CO2 from Land Cover, trend LCB
SO2 intensity trend SDA
NOX intensity trend NXA
Sustainable Nitrogen Management Index SNM
Wastewater treatment level WWT

https://epi.yale.edu/downloads/epi2020technicalappendix20200604.pdf
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health variables related to COVID-19 spread and mortality, we also
fitted generalized linear mixed models with Template Model
Builder (glmmTMB) and assumed a ZINB (ZINB) distribution in the
outcomes of interest. The analysis period was from January 21st to
May 18th.

The factors used in this analysis were those listed in Table 1. As a
preliminary analysis, given that all variable types are numeric, we
checked correlations among them to avoid multicollinearity issues
(see Supplementary Figure S1 for the correlation matrix with the
final set of variables used). The glmmTMBmodels were applied with
the adjustment of the following confounders: government inter-
vention level (low, intermediate, high, and very high), country in-
come level, count of days since the first COVID-19 case in each
country, the World Bank geographical region categorization, and
the interaction between the last two confounders. We selected the
best-fitting model based on the Akaike Information Criterion (AIC)
(Akaike, 1974). Additionally, because our data comes from a longi-
tudinal study with measurements over time per country, we
included random effects for the country grouping variable. How-
ever, we also assumed that the correlations within a country over
time are not constant. Therefore, we included random intercepts
and random slopes model which implies that correlations between
the observations within a country are functions of time. The con-
founders stated above were incorporated as fixed effects of the
model. As we applied in the Bayesian space-time analysis, the
population offset was taken into account in the models. Similar
methodological approaches have been applied by previous studies
in the field (Wu et al., 2020; Travaglio et al., 2020). All model details
are presented in the Supplementary Appendix S2.

We fitted the same models without the assumption of random
slopes with the aim of fitting parsimonious models. We calculated
the likelihood ratio test to compare the fit of the two models (with
and without random slopes). The results show evidence that a
model including random slopes is significantly better than the
simple models (p-value < 0.001). Finally, we also fitted similar
regression models stratified by country-income level to control the
virus’ spread and mortality variability of surveillance in-
frastructures and monitoring systems among regions. Thus, we
created two groups: the Low and Lower-middle income countries
(94 countries e 58.7%) and the High and Upper-middle income
countries (66 countries e 41.3%), in which each income level group
reflects healthcare quality in a homogenous way. All modelling was
carried out using the R package glmmTMB (Brooks et al., 2017) in R
Version 4.0.2.
2.5.3. Analysis of count time series following generalized linear
models

We fitted a count time series and followed Negative Binomial
models with an autoregressive term to characterize the association
between COVID-19 spread and air quality factors. Particularly, we
were interested in finding if the following air quality factors: at-
mospheric particulate matter 10 mm or less in diameter (PM10),
2.5 mm or less in diameter (PM2.5), and ground-level ozone (O3),
have a significant effect related to the number of COVID-19 cases.
We assessed all count time series models adjusted by humidity and
temperature confounders and the analysis was carried out using
the R package tscount (Liboschik et al., 2015) in R Version 3.6.3.
Besides, we calculated Spearman correlations between the COVID-
19 spread and all air quality factors. We note that the date of the air
quality factors was that of two weeks before respective COVID-19
case dates to account for 14 days between transmission and case
confirmation.
5

3. Results

We obtained data on the social demographic, country-income
level, and government policy intervention factor from all 208
countries. The presence of missing values reduced our sample of
countries to 192 (90.8%). Out of these 192 countries, 174 (90.6%) and
180 (93.8%) had the National Biodiversity Index and the EPI report
informed, respectively. Due to differential patterns of missing data,
our final data pertained to 160 countries with all variables relevant
to the analyses reported here. The distribution of country-income
level is quite similar among all groups with exception of lower
income countries (HICs: 29.4%; UMICs: 28.8%, LMICs: 25.6%; LICs:
16.3%). The region distribution is in descending order: Europe &
Central Asia (29.5%), Sub-Saharan Africa (27.5%), Latin America &
Caribbean (16.4%), East Asia & Pacific (11.9%), Middle East & North
Africa (9.4%), South Asia (4.4%), and North America (1.3%).

3.1. Association of COVID-19 spread and mortality with national
biodiversity index; a global and spatio-temporal analysis

The raw data for COVID-19 spread (case rates by 100,000) and
NBI are displayed in theworldmaps in Fig. 1. The color scale was set
to range between 0 and 1 in both maps for the COVID-19 case rates
and NBI to allow comparison. We see that color distribution be-
tween the maps are reversed, i.e. large values in one map (more
reddish tones) correspond to smaller values in the other map (more
bluish tones) and vice versa. These maps are visual indication of a
negative correlation between NBI and COVID-19 case rate.

The summary table given in Fig. 1 confirms this univariate as-
sociation. The table shows the average of COVID-19 case rates for
different groups of NBI (categorized using quartiles). For instance,
the COVID-19 case rate corresponding to the lower values of NBI is
1.56, which drastically increased from a case rate of 0.134 for high
values of NBI.

The spatio-temporal regression analysis, which is summarized
in Table 2, assesses the COVID-19 spread along with government
interventions, level of income, biodiversity, environmental, and
other factors, among 160 countries.

The biodiversity degree of a country was reversely associated
with to COVID-19 spread globally [NBI: �0.61, 95%CI
(�0.95, �0.27)]. NBI impact was statistically strongest in this
model: the lower the country’s variations in genetic, species, and
ecosystem levels, the higher was the impact on the levels of COVID-
19 spread. Although with a lower significance, there was also an
inverse effect of the maximum 2-m air temperature (see Table 2),
suggesting the spread of the virus is lower in countries with higher
temperatures. There were no significant interaction effects be-
tween biodiversity and temperature related to COVID-19 spread.
The same observation was made with precipitation measures.
However, number of days since the first reported COVID-19 case
was inversely related to the number of COVID-19 cases [days since
first case: �0.01, 95%CI (�0.02, �0.002)].

We also utilized the Bayesian spatio-temporal, and the gener-
alized linear mixed models to analyze the evolution of mortality
(see Table S1 of the Supplementary Appendix S3 for the detailed
results). The results showed that biodiversity and environmental
factors do not have a direct influence on mortality.

3.2. Association of COVID-19 spread and mortality with ecosystem
vitality and environmental health variables

Fig. 2 shows the set of factors having a significant effect on the
COVID-19 spread, which are estimated using a generalized mixed



Fig. 1. World map of the NBI values (map on the left) and the COVID-19 spread (map on the right) from January 21st to May 18th.

Table 2
Bayesian spatio-temporal regression analysis to evaluate the COVID-19 spread.

Items Estimated coefficient 95% HPDI

NBI ¡0.606 ¡0.946, -0.268
precipitationCa �0.001 �0.003, 0.001
Temperature (max.) ¡0.010 ¡0.017, -0.002
Population Density (sq/km) 0.0003 �0.0002, 0.0006
Days since last case �0.015 �0.041, 0.010
Days since first case ¡0.009 ¡0.016, -0.002
HICs Reference Category
LICs �0.334 �0.801, 0.132
LMICs �0.275 �0.636, 0.086
UMICs �0.305 �0.612, 0.000
NBI: Temperature (max.) �0.011 �0.023, 0.002

Significant effects where the 95% HPDI does not include the zero-value are shown in
boldface. HPDI: Highest Posterior Density Interval, is the equivalent CI in a Bayesian
framework. LMICs: Lower Middle-income countries; UMICs: Upper Middle-income
countries; LICs: Low-income countries. NBI: National Biodiversity Index as reported
by the Convention on Biological Diversity. precipitationCa: measures the precipi-
tation of the combined microwave-IR spectrum. Days since last case: the number of
days since the last COVID-19 new case. Days since first case: count of days since the
first COVID-19 case is reported in each country.
Spatio-temporal models were also adjusted for government policy interventions.
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ZINB model for ecosystem measures as presented in Table 3.
After we adjusted for various confounders, we found only a

single, but relevant, 2020 EPI variable: the level of air deficiency.
This variable is constructed using weighted average of exposure to
household air pollution (55%), fine air particulate matter smaller
than 2.5 mm (PM2.5, 40%), and ground-level ozone pollution (5%).

Fig. 2a depicts the increasing effect on the spread of COVID-19
when associated with air quality deficiency. Out of the four fac-
tors, the one that impacts health the worst was the quality of the
air, the greater the value of air deficiency, the larger was the effect
on increasing COVID-19 spread [air deficiency: 0.028, 95%CI (0.004,
0.053), p-value ¼ 0.021]. There were additional covariates signifi-
cantly associated with the spread of COVID-19. In terms of the
spread of the virus, HICs had the worst effect, as depicted in Fig. 2.
Moreover, the plot shows a consistent gradient on COVID-19 spread
from highest in HIC to lowest in LIC [LICs: �2.080, 95%CI
(�3.842, �0.311), p-value ¼ 0.021], when compared to HICs.
However, it should be noted that this relationship might be driven
by some other underlying variables such as the nature of global
6

travel, which possibly skewed towards HIC in the period studied
(Menkir et al., 2020; Schellekens and Sourrouille, 2020). Number of
days since the first reported case of COVID-19 was positively
associated with the increase of COVID-19 cases across all World
Bank regions, except for the East Asian& Pacific region (see Fig. 2c).

We also observed some interesting interactions. In the case of
the number of days since the first COVID-19 case was reported
across country income levels (Fig. 2d), LMICs and the UMICs had a
significant impact on virus’ spread compared to HICs [Days since
first case: LMICs 0.032, 95%CI (0.009, 0.054), p-value ¼ 0.005; Days
since first case: UMICs: 0.027, 95%CI (0.007, 0.046), p-
value ¼ 0.006].

Analysis of mortality with the same set of covariates under the
same modeling strategy (results shown in Table S2 and Figure S2 in
Supplementary Appendix) shows that the lack of air quality had a
small impact on mortality evolution. Air quality was less significant
in the rate of mortality than in the spread of the disease analysis.
Further, number of days since the first reported case across the
World Bank regions is the only significant predictor in the COVID-
19 mortality analysis with similar conclusions as in the analysis of
spread of COVID-19.

The analysis of the random intercepts for both models shows
country-to-country variability even after accounting for all the
differences in the underlying covariates reported in our analyses
[spread model: 3.205, 95% CI (2.444, 4.204); mortality model:
4.052, 95% CI (2.939, 5.586)]. This indicates that random variability
when all covariates are set to zero is significant.
3.3. Association of COVID-19 spread and mortality with air quality
measures

Given the observed impact of air deficiency on COVID-19 spread
and mortality, we fitted similar mixed-effects models as described
in the previous section to further investigate this impact. Air defi-
ciency variable is broken down to three specific air quality mea-
sures: Air pollution (HAD), PM2.5 exposure (PMD) and Ground-level
ozone exposure (OZD). Our analysis also used the other ecosystem
vitality and environmental health variables described in Table 1 and
adjusts them by the same aforementioned set of confounders
(model estimates for COVID-19 spread and mortality are given in
Tables S3 and S4 in Supplementary Appendix S4). Fig. 3 presents



Fig. 2. The plots show the effect on the spread of COVID-19 when associated to (a) Air quality deficiency, (b) country income group, days since the first COVID-19 case by (c) region
and by (d) country-income group. The COVID-19 spread units are based on rates via the offset as produced by the related models.
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the effects of the significant factors for both outcomes: spread (see
Fig. 3a) and mortality (see Fig. 3b).

Fig. 3a and b shows a similar tendency in exposure to air
pollution, where the effect is more significant on mortality than on
COVID-19 spread [Air pollution (spread): 0.021, 95%CI (0.001,
0.043), p ¼ 0.049; Air pollution (mortality): 0.029, 95%CI (0.005,
0.054), p¼ 0.019]. The larger is the level of air pollution, the greater
is the influence of that factor on COVID-19 spread andmortality. No
other analyzed air quality factor seems to have an effect on spread
or mortality.

3.4. Association of COVID-19 spread and mortality with the level of
air deficiency. Stratification by country-income level

Some countries possibly do not capture at an equal level, like
7

other countries, the spread of COVID-19 and mortality, because
there might be a certain variability of surveillance infrastructures
and monitoring systems among the regions. Based on that
assumption, we stratified the analysis of the mixed models pre-
sented in the previous two sections by country-income level.

The analyses of results are given in Table S5 through Table S8 in
the Supplementary Appendix S4 and show that the lack of air
quality consistently made an impact on the spread of the disease
and its mortality across the High and Upper-middle income coun-
tries [Air deficiency (spread): 0.037, 95%CI (0.009, 0.064), p-
value ¼ 0.008; Air deficiency (mortality): 0.032, 95%CI (0.003,
0.062), p-value ¼ 0.031]. The plot, in Figure S3, in Supplementary
Appendix S3 illustrates the effects of air deficiency on the spread
of the disease and its mortality. However, the impact of air defi-
ciency was not observedwhen the factor of Low, and Lower-middle,



Table 3
Generalized mixed ZINB model regression analysis to evaluate the COVID-19 spread.

Items Estimated coef 95% CI

HICs Reference Category
LICs ¡2.080 ¡3.842, -0.311
LMICs ¡1.880 ¡3.425, -0.332
UMICs ¡1.310 ¡2.515, -0.114
Air Deficiency 0.028 0.004, 0.053
Air Deficiency 10-year change �0.020 �0.142, 0.101
Sanitation & Drinking Water 10-year change 0.001 �0.140, 0.143
Heavy Metals 10-year change 0.030 �0.116, 0.177
Biodiversity & Habitat �0.001 �0.019, 0.017
Biodiversity & Habitat 10-year change 0.005 �0.028, 0.038
Ecosystem Services 0.006 �0.009, 0.020
Climate Change 10-year change 0.0002 �0.021, 0.021
Pollution Emissions �0.014 �0.033, 0.006
Pollution Emissions 10-year change 0.009 �0.004, 0.023
Agriculture �0.010 �0.031, 0.011
Agriculture 10-year change �0.004 �0.036, 0.029
Days since first case:East Asia & Pacific Reference Category
Days since first case:Europe & Central Asia 0.050 0.024, 0.075
Days since first case:Latin America & Caribbean 0.052 0.023, 0.080
Days since first case:Middle East & North Africa 0.053 0.023, 0.084
Days since first case:North America 0.111 0.050, 0.172
Days since first case:South Asia 0.077 0.036, 0.117
Days since first case:Sub-Saharan Africa 0.061 0.032, 0.090
Days since first case:HICs Reference Category
Days since first case:LICs 0.024 �0.006, 0.054
Days since first case:LMICs 0.032 0.009, 0.054
Days since first case:UMICs 0.027 0.007, 0.046

Significant effects are shown in boldface. LMICs: Lower Middle-income countries; UMICs: Upper Middle-income countries; LICs: Low-income
countries.
Generalized mixed ZINB models were also adjusted for days since the first case, World Bank region and government policy interventions.

Fig. 3. Air pollution (HAD) effects for COVID-19 spread in (a) and mortality in (b). In (a) the blue line represents the effect of air pollution on COVID-19 spread and the upper and
lower bands represent the 95%CI. Equivalently in (b) for COVID-19 mortality evolution, the effect and bands appear in color orange. The COVID-19 spread and mortality units are
based on rates via the offset as produced by the related models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

D. Fern�andez, I. Gin�e-V�azquez, I. Liu et al. Environmental Pollution 271 (2021) 116326
income countries were considered.
3.5. COVID-19 spread association with specific air pollutants;
analysis of three cities

Our time series modeling, for each city, shows a significant effect
for ground-level ozone in Barcelona [O3: 0.04, 95%CI ¼ (0.02, 0.08),
p-value<0.001] and in Milan [O3: 0.02, 95% CI ¼ (0.01,0.03), p-
value ¼ 0.003], which implies that high values of ground-level
ozone in the previous 14 days increases COVID-19 spread. Similar
patterns in terms of atmospheric particulate matter of 10 mmor less
(PM10) were observed in the case of Denver. Thus, PM10 was posi-
tively correlated to COVID-19 daily cases for the period analyzed
8

[PM10: 0.02, 95%CI ¼ (0.06, 0.26), p-value ¼ 0.002] even after the
underlying models controlled for the set of covariates mentioned
before. Details of the model estimates are shown in Supplementary
Table S9 of the Supplementary Appendix S4.

Fig. 4 shows the COVID-19 time series overlapped with the 14-
day lag daily PM10 or O3 levels for the three cities. The grey
shaded areas depict the period when each city was under a strict
intervention level (“very high”) following a similar methodology as
used at the country level. This point only concerns the time series of
COVID-19 daily cases as the time series of PM10 or O3 are 14-day
lagged. Thus, the time series of those pollutant measures were in
the period when a “high” level of intervention was implemented
and, therefore, when there still was a business and industrial
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activity that may generate air pollutants. Only the factor with a
significant effect on COVID-19 daily cases is shown in each graph.
We observe similar trend patterns within each city and some peaks
occur concurrently. For instance, in plot (c) for Denver, there are
simultaneous peaks of PM10, and COVID-19 daily cases, in the
period between the ends of March and April. We then calculated
Spearman correlations between the COVID-19 cases and the air
pollutant measures. The results supported what we had observed
with the time series [Barcelona COVID-19 spread and O3: r ¼ 0.38,
p-value ¼ 0.001; Milan COVID-19 spread and O3: r ¼ 0.55, p-
value<0.001; Denver COVID-19 spread and PM10: r ¼ 0.48, p-
value<0.001].

4. Discussion

Like other major known epidemics, such as Ebola or SARS, the
emergence of the COVID-19 is not unrelated to the climate and
biodiversity crises we are experiencing. There is evidence that
human health is intimately connected to the intervention humans
have in the natural world (Seymour, 2016; Thompson Coon et al.,
2011). Our research focused on the association of environmental,
biodiversity, and ecosystem factors with COVID-19 spread and
mortality between January 21st and May 18th, 2020, where we
adjusted for several sociodemographic, social distancing, and
county-income level factors. There are several aspects of the results
worthy of more discussion than presented in our manuscript. First,
a country’s level of biodiversity was of moderate impact on the
spread of the disease. Secondly, the COVID-19 spread appeared to
be smaller in countries with higher temperatures. Thirdly, there
was a direct impact between the level of air deficiency and the
spread of COVID-19 andmortality evolution. Particularly, the higher
the exposure is to indoor air pollution from household use of solid
fuels (see the HAD variable in Table 1), the higher is the impact in
both the COVID-19 spread and mortality. Fourthly, the lack of air
quality consistently made an impact on the spread of the disease
and mortality in HICs and UMICs, rather than LICs and LMICs.
Fifthly, as presented in the case studies on cities, COVID-19 trans-
mission is associated is with the 14-day lag ground-level ozone and
atmospheric particulate matter of 10 mm, or less, levels.

The appearance of COVID-19 has highlighted the extreme
importance of the combat against the loss of biodiversity (WHO,
2017). Mounting evidence of the relationship between this new
disease and the reduction in biodiversity requires urgent attention
(Lorentzen et al., 2020). In an ecosystem with more biodiversity, a
quick spread of the pathogen is harder. Loss of biodiversity can
Fig. 4. Time series of COVID-19 daily cases with ground-level ozone (O3) and atmospheric p
shaded area highlights the period when the city was under a strict intervention level.
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affect the transmission of infectious diseases (Keesing et al., 2006)
and provides an opportunity for viruses to pass between animals
and people (Keesing et al., 2010). Researchers have reported that
the disturbance of natural ecosystems increases wildlife-to-human
disease jumps, which has been suggested as the principal cause of
neglected, forgotten, and the recent occurrence of unknown human
diseases (Epstein et al., 2003). For example, three studies detected a
strong association between low bird diversity and an increased
human risk or incidence of West Nile encephalitis in the United
States (Allan et al., 2009; Ezenwa et al., 2006; Swaddle and Calos,
2008). The results of our study based on the NBI are aligned with
these assessments. Thus, preservation and sustainable manage-
ment of biodiversity might be necessary to mitigate climate
disruption and prevent pandemics in order to protect health and
wellbeing for the generations to come (United Nations Secretary-
General, 2020). Our findings suggest there is a relationship be-
tween biodiversity factors and the spread of COVID-19. Our study
aims to highlight this possible relationship with the underlying
data collection conditions and over the period from January 21 to
May 18. However, we are aware that this relationship could be
driven by some other underlying variables, such as socio-economic
development (Travaglio et al., 2020) and, therefore, further analysis
is required.

A new study showed that wild animals that are known to be
host to pathogens and parasites, which can jump to humans,
become a greater share of the local animals on those sites where
humans have turned natural habitats into secondary, agricultural,
or urban ecosystems (Gibb et al., 2020). The study found that the
latter effect was strongest for zoonotic diseases with host species
such as rodents, bats, and passerine birds. Some of those species are
the ones that survive after humans diminish biodiversity, and as a
consequence, there is a higher risk of dangerous pathogens that can
make the leap to humans (Tollefson, 2020) However, the latter
connection between the loss of biodiversity due to human devel-
opment and disease outbreaks does not predict the next pandemic
or the current COVID-19 spread, which prompts to keep investi-
gating to establish a mechanism with the current pandemic.

The WHO estimates that around 7 million people die every year
from exposure to fine particles in polluted air that lead to diseases
such as stroke, heart disease, lung cancer, chronic obstructive
pulmonary diseases, and respiratory infections, which include
pneumonia (WHO, 2016). Air pollution is also known toweaken the
immune system because and to compromise a person’s ability to
fight off infection according to the European Public Health Alliance
(Vettore, 2020). In particular, household air pollution has
articulate matter PM10 and PM2.5 for Barcelona (a), Milan (b), and Denver (c). The grey
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contributed to 3.8M deaths (WHO, 2016). A 2003 study found that
patients with SARS, a respiratory virus disease closely related to
COVID-19, were 84% more likely to die if they lived in areas with
high levels of pollution (Cui et al., 2003). Our study showed that
there is also an association between air pollution and COVID-19.
However, the impact is not the same among countries, because in
HICs and UMICs the impact of air pollutionwas higher. One possible
reason for this discrepancy between countries with different in-
come levels is that HICs and UMICs have higher industrialization
levels, which in turn causes higher levels of air deficiency (Vigo
et al., 2020).

Industrialized countries have driven 5.3 million of the
confirmed cases of COVID-19 worldwide and 350,000 global deaths
to date (WHO, 2020b). Those countries tend to have higher levels of
atmospheric particulatematters (PM10 and PM2.5) and ground-level
ozone (O3) pollutants, which originate from man-made sources,
such as vehicles and industrial emissions. PM10 and PM2.5 are fine
particles, which tend to stay longer in the air, and ground-level
ozone (O3) is an irritant gas. All those pollutants trigger or
worsen respiratory chronic diseases (Vigo et al., 2020). This is a
serious health issue with scientific evidence. For instance, one
recent study found that an increase of just 1 mg per cubic meter of
PM2.5 corresponded to a 15% increase in COVID-19 deaths (Wu et al.,
2020). Researchers have also observed that the consequence of an
increased level of O3 is worse than the impact of PM10 level on
COVID-19 spread (Cui et al., 2003; Australian Governament, 2020;
Staehelin et al., 2001; United States Environmental Protection
Agency, 2020). We studied the levels of PM10, PM2.5, and O3 in
three industrialized cities and observed an association of those
pollutants with COVID-19 spread. The number of COVID-19 cases
correlated with levels of O3 in the two European cities (Barcelona
and Milan) and an associationwas observed with the levels of PM10
for Denver. In support of our findings, recent studies marked the
relation of PM levels and other pollutants with COVID-19 spread
(Travaglio et al., 2020; Zoran et al., 2020) mentioning as a potential
mechanism the possible virus attachment to large pollutants
(Reche et al., 2018).

Apart from the mentioned findings related to environmental
and biodiversity factors, there were other significant effects. When
our study was stratified byWorld Bank regions, then as the number
of days became larger, since the first COVID-19 case was reported in
a particular World Bank region, the effect on COVID-19 spread was
greater. The only exceptionwas the East Asian & Pacific region. One
plausible explanation is that we know the disease struck first in
Asia, then Europe, North America, and so on. Therefore, the region
of Asia has had a longer period to reduce the COVID-19 trans-
mission than the other regions where the disease arrived later.
Moreover, the disease has made an impact in regions where more
HICs countries exist. Our analysis also determined that the
wealthier a country is, the lesser the effect is on disease trans-
mission, as the number of days from the first case increases
(Clouston et al., 2020). A possible argument is that HICs perform a
higher number of COVID-19 test, have better prepared national
health systems and organizations, on the other hand, Governments
of LICs lack the resources to implement mitigation measures.

Finally, we conducted a sensitivity analysis to assess our in-
ferences for large countries in terms of area extension. For the
sensitivity analysis, we fitted the models again for data on COVID-
19 spread and mortality removing the five top countries with the
largest area (i.e., Russia, Canada, China, USA, and Brazil). Taking
away those large countries, wewere able to check if they influenced
the inferential analyses. In both cases, mortality and spread mea-
sures were not only in line with the definitive model estimates, but
also the significant environmental covariates were estimated with
similar effects to those when the five countries were included. We
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only observed changes in the income covariate, which is possibly
due to the exclusion of three UMIC countries (Brazil, Russian, and
China) with high level of cases. The results of the spatio-temporal
analysis are shown in Tables S10 and S11 in Supplementary
Appendix S4 for spread and mortality, respectively.

4.1. Limitations

To the best of our knowledge, this is the first study that uses
publicly available COVID-19 data to analyze the spread of the dis-
ease and mortality related to environmental factors and biodiver-
sity levels, adjusted by social demographic, country-income level,
and government policy intervention confounders, among 160
countries, globally. However, there are several limitations which
must be remarked:

� Our inferences are drawn using observational data. To the extent
data available, our inferences adjust for the differential cova-
riates across observational units. Ideally, we should have fitted
the models in a randomized design, but such design is impos-
sible to pursue in the current settings. However, an extension of
this work could use post-randomization techniques based on
matching or weighting-based random sampling methods that
specifically target potentially varying background characteris-
tics. Unfortunately, there is a lack of readily-available methods
to address the intricate nature of correlations and the nature of
spatio-temporal data designs. Based on our analytical findings of
the correlation structure, one should anticipate that the role of
the study design would be significant in such considerations.

� This is an observational study, which includes a potential risk of
bias that these kinds of studies carry as reported by previous
similar studies (Wu et al., 2020; Travaglio et al., 2020). Thus, the
results of this study should not be used to make individual-level
inferential conclusions. Moreover, this study could also be
proned to unmeasured confounding bias. However, we tried to
adjust for the most important confounding factors such as
population density, time since the beginning of the epidemic,
government interventions, weather, and socio-economic fac-
tors. Additionally, due to the observational nature of the current
study, reported results could be sensitive to specific modeling
choices. To assess the sensitivity of such modeling approaches,
we also fitted models stratified by country income level (see
Tables S5-S8 in Supplementary Appendix S4).

� A conclusive capture of temporal COVID-19 spread and mor-
tality trends may not exist due to several factors such as
completeness of WHO COVID-19 datasets and government in-
terventions that may be announced one particular day and
applied effectively after several days.

� Some of the countries have a reliable reporting system, while
others do not. Thus, there is variability in the monitor and sur-
veillance of the number of COVID-19 cases and deaths per
country and region. For instance, COVID-19 cases and deaths
could be underreported (Piovani et al., 2020; Islam et al., 2020).
To this extent, this study was unable to take into account
asymptomatic cases (Oran and Topol, 2020). Nonetheless, the
countries still must report spread and mortality figures at the
national level to the WHO with the use of a certain criteria. In
that sense, the association of COVID-19 spread and mortality
with ecosystem vitality and environmental health factors was
also analyzed stratified by country-income level with the aim to
capture diversities among surveillance and healthcare systems
(Barber et al., 2017). The results showed a consistency with the
global analysis.

� Daily screening COVID-19 tests per country (Udugama et al.,
2020) was not used, because only a limited number of
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countries had reported that information. Other studies have also
noted that the COVID-19 testing rate by country for the same
period was challenging (Islam et al., 2020). As we also had a
reduced number of countries with environmental and NBI var-
iables, we preferred not to use the COVID-19 test data as it could
alter the parameter estimations due to the use of a small sample
of countries.

� We used covariates in the spatio-temporal model related to
precipitation and temperature. Those covariates only summa-
rize the precipitation and temperature levels for the centroid of
each country (e.g., we only have the values of Rivas-Vaciamadrid
(near Madrid) in Spain), which is not representative of the entire
country. This is only used as a proxy and any error associated is
incorporated in the zero-inflated negative binomial probability
distribution. However, an extension of this work could use a
more precise geographical proxy focused on subnational data of
a set of countries.

� Our analysis is based on the National Biodiversity Index (NBI) by
country. We understand that the country’s measure of biodi-
versity has a great variation between areas of a country (urban
or not), but probably the transmission of COVID-19 occurred
mainly on urban areas. A correlation analysis of our confounded
models with city-level data would be interesting. To the best of
our knowledge, there are no public city-level data sets available
with biodiversity indexes. Additionally, we applied sensitivity
analysis in our spatio-temporal models, excluding the top 5
countries with the largest area (i.e. Russia, Canada, China, USA,
and Brazil). The results remained in the same direction.

� The 2020 Environmental Performance Index is the most upda-
ted data set at the country-level. However, the air quality and
pollutant measures were calculated from the EPI report of the
previous year. Therefore, they were not measured at the same
period as the time series of COVID-19 daily cases. Therefore, our
study tries to assess an association between environmental
trends and COVID-19 transmission and mortality, during a four-
month period.

� A limitation of ourmortality models is that they did not consider
a measure of the age-density of the population or an indirect
measure of life expectancy per country. Additionally, the factors
related to an individual’s micro-environment (such as the
workplace, schools, etc) and behavior (i.e., outdoor activities,
smoking habits, etc) are highly related to people’s exposure to
air pollution (Travaglio et al., 2020) and could not be assessed in
the current study.

� A limitation of our analysis is we did not use a higher spatial
resolution in each country to perform an analysis at a local scale.
To have the same data set but for the local scale is almost
impossible. Even if such data were available, significant
parameter correspondence and reliability issues would lead to
substandard quality in the statistical inference. In addition,
these issues would require statistical interventions to compen-
sate them and, unfortunately though, they are beyond the scope
of this study.

� Our investigation and analysis focused on data variations in the
spread and mortality of COVID-19 from January 21st to May
18th, 2020. For country subsets LIC, LMIC, UMIC, and HIC, we ran
a sensitivity analysis with the use of a Granger test that
compared trends until May 18th and until June 30th of the
median of number of cases. The results showed that the trends
for HIC and LIC countries until June 30th were similar to the
trends until May 18th. However, the trends before and after May
18th for LMIC and UMIC were significantly different. Therefore,
the results of this article should be interpreted with caution as
they only relate to the underlying data collection conditions and
period. As COVID-19 is an infectionwith a dynamic transmission
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and all the covariates we used might change, we do not think it
would be appropriate to make conclusions beyond May 18th as
further data and analysis would be required.

5. Conclusions

The COVID-19 pandemic is probably a consequence related to
the global crises of biodiversity loss and environmental health. The
extent and significance in the association between air quality var-
iables, a country’s measure of biodiversity, and COVID-19 trans-
mission and mortality were measured in this study, which also
prompts to continue with further investigations to reveal the
mechanism of this relationship. Air pollution reduction and biodi-
versity preservation are complex problems that depend on gov-
ernment actions and financial resources. Our findings give insights
that may help governments plan environmental and health pol-
icies, as alternative strategy to respond to new COVID-19 outbreaks
and prevent future crises.
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