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A B S T R A C T

The recent coronavirus disease (COVID-19) outbreak has dramatically increased the public awareness and
appreciation of the utility of dynamic models. At the same time, the dissemination of contradictory model
predictions has highlighted their limitations. If some parameters and/or state variables of a model cannot be
determined from output measurements, its ability to yield correct insights – as well as the possibility of con-
trolling the system – may be compromised. Epidemic dynamics are commonly analysed using compartmental
models, and many variations of such models have been used for analysing and predicting the evolution of the
COVID-19 pandemic. In this paper we survey the different models proposed in the literature, assembling a
list of 36 model structures and assessing their ability to provide reliable information. We address the problem
using the control theoretic concepts of structural identifiability and observability. Since some parameters can
vary during the course of an epidemic, we consider both the constant and time-varying parameter assumptions.
We analyse the structural identifiability and observability of all of the models, considering all plausible choices
of outputs and time-varying parameters, which leads us to analyse 255 different model versions. We classify
the models according to their structural identifiability and observability under the different assumptions and
discuss the implications of the results. We also illustrate with an example several alternative ways of remedying
the lack of observability of a model. Our analyses provide guidelines for choosing the most informative model
for each purpose, taking into account the available knowledge and measurements.
. Introduction

The current coronavirus disease (COVID-19) pandemic, caused by
he SARS-CoV-2 virus, continues to wreak unparallelled havoc across
he world. Public health authorities can use mathematical models
o answer critical questions related with the dynamics of an epi-
emic (severity and time course of infected people), its impact on
he healthcare system, and the design and effectiveness of different
nterventions (Adam, 2020; Currie et al., 2020; Li, 2018; Lofgren
t al., 2014). Mathematical modelling of infectious diseases has a long
istory (Brauer, van den Driessche, & Wu, 2008; Martcheva, 2015).
odelling efforts are particularly important in the context of COVID-

9 because its dynamics can be particularly complex and counter-
ntuitive due to the uncertainty in the transmission mechanisms, possi-
le seasonal variation in both susceptibility and transmission, and their
ariation within subpopulations (Cobey, 2020). The media has given
xtensive coverage to analyses and forecasts using COVID-19 models,
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YNBIOCONTROL (DPI2017-82896-C2-2-R) and the CSIC, Spain intramural project grant MOEBIUS (PIE 202070E062). The funding bodies played no role in the
esign of the study, the collection and analysis of the data or in the writing of the manuscript.
∗ Corresponding author.

with increased attention to cases of conflicting conclusions, giving the
impression that epidemiological models are unreliable or flawed. How-
ever, a closer look reveals that these modelling studies were following
different approaches, handling uncertainty differently, and ultimately
addressing different questions on different time-scales (Holmdahl &
Buckee, 2020).

Broadly speaking, data-driven models (using statistical regression or
machine learning) can be used for short-term forecasts (one or a few
weeks). Mechanistic models based on assumptions about transmission
and immunity try to mimic how the virus spreads, and can be used to
formalize current knowledge and explore long-term outcomes of the
pandemic and the effectiveness of different interventions. However,
the accuracy of mechanistic models is constrained by the uncertainties
in our knowledge, which creates uncertainties in model parameters
and even in the model structure (Holmdahl & Buckee, 2020). Further,
the uncertainty in the COVID-19 data and the exponential spread
vailable online 21 December 2020
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of the virus amplify the uncertainty in the predictions. Predictabil-
ity studies (Scarpino & Petri, 2019) seek the characterization of the
fundamental limits to outbreak prediction and their impact on decision-
making. Despite the vast literature on mathematical epidemiology in
general, and modelling of COVID-19 in particular, comparatively few
authors have considered the predictability of infectious disease out-
breaks (Castro, Ares, Cuesta, & Manrubia, 2020; Scarpino & Petri,
2019). Uncertainty quantification (Arriola & Hyman, 2009) is an in-
terconnected concept that is also key for the reliability of a model,
and that has received similarly scant attention (Faranda et al., 2020;
Raimúndez et al., 2020).

In addition to predictability and uncertainty quantification ap-
proaches, identifiability is a related property whose absence can
severely limit the usefulness of a mechanistic model (Chowell, 2017).
A model is identifiable if we can determine the values of its parameters
from knowledge of its inputs and outputs. Likewise, the related control
theoretic property of observability describes if we can infer the model
states from knowledge of its inputs and outputs. If a model is non-
identifiable (or non-observable) different sets of parameters (or states)
can produce the same predictions or fit to data. The implications can
be enormous: in the context of the COVID-19 outbreak in Wuhan, non-
identifiability in model calibrations was identified as the main reason
for wide variations in model predictions (Roda, Varughese, Han, & Li,
2020).

Reliable models can be used in combination with optimization and
optimal control methods to find the best intervention
strategies, such as lock-downs with minimum economic impact (Ace-
moglu, Chernozhukov, Werning, & Whinston, 2020; Alvarez, Argente,
& Lippi, 2020). Further, they can be used to explore the feasibility of
model-based real-time control of the pandemic (Casella, 2020; Köhler,
Schwenkel, Koch, Berberich, Pauli, & Allgöwer, 2020). However, using
calibrated models with non-identifiability or non-observability issues
can result in bad or even dangerous intervention and control strategies.

It is common to distinguish between structural and practical identifi-
ability. Structural non-identifiability may be due to the model and mea-
surement (input–output) structure. Practical non-identifiability is due
to lack of information in the considered data-sets. Non-identifiability
results in incorrect parameter estimates and bad uncertainty quan-
tification (Chowell, 2017; Kao & Eisenberg, 2018), i.e. a misleading
calibrated model which should not be used to analyse epidemiological
data, test hypothesis, or design interventions. The structural identifia-
bility of several epidemic mechanistic models has been studied e.g. in
Brouwer, Meza, and Eisenberg (2019), Chapman and Evans (2009),
Eisenberg, Robertson, and Tien (2013), Evans, Chapman, Chappell,
and Godfrey (2002), Evans, White, Chapman, Godfrey, and Chappell
(2005), Prague, Wittkop, Clairon, Dutartre, Thiebaut, and Hejblum
(2020). Other recent studies have mostly focused on practical iden-
tifiability, such as Alahmadi et al. (2020), Chowell (2017), Kao and
Eisenberg (2018), Roosa and Chowell (2019), Tuncer and Le (2018).

Since checking structural identifiability can be hard, one might
think that directly checking practical identifiability could be a better
alternative. However, it has been shown Janzén et al. (2016) that this
practice entails at least two dangers: (i) checking practical identifiabil-
ity can exhibit numerical issues that lead to wrong results, and (ii) if
structural identifiability is unknown, the source of uncertainty in the
parameter estimates can be either the data or the model structure,
so it will not be clear how to improve the situation. In contrast,
if we can verify structural identifiability, we can then focus on the
data uncertainty to resolve possible practical identifiability issues. In
other words, practical identifiability analysis cannot be used to deduce
structural identifiability, and ignoring the latter can lead to modelling
artefacts.

In this paper we assess the structural identifiability and observ-
ability of a large set of COVID-19 mechanistic models described by
deterministic ordinary differential equations, derived by different au-
442

thors using the compartmental modelling framework (Brauer, 2008).
Compartmental models are widely used in epidemiology because they
are tractable and powerful despite their simplicity. We collect 36 dif-
ferent compartmental models, of which we consider several variations,
making up a total of 255 different model versions. Our aim is to charac-
terize their ability to provide insights about their unknown parameters
– i.e. their structural identifiability – and unmeasured states – i.e. their
observability. To this end we adopt a differential geometry approach
that considers structural identifiability as a particular case of nonlinear
observability, allowing to analyse both properties jointly. We define
the relevant concepts and describe the methods used in Section 2.
Then we provide an overview of the different types of compartmental
models found in the literature in Section 3. We analyse their structural
identifiability and observability and discuss the results in Section 4,
where we also show different ways of remedying lack of observability
using an illustrative model. Finally, we conclude our study with some
key remarks in Section 5.

2. Methods

2.1. Notation, models, and properties

We consider models defined by systems of ordinary differential
equations with the following notation:

 =

{

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝜃, 𝑢(𝑡), 𝑤(𝑡)) (a)
𝑦(𝑡) = ℎ (𝑥(𝑡), 𝜃, 𝑢(𝑡), 𝑤(𝑡)) (b)

(1)

here 𝑓 and ℎ are analytical (generally nonlinear) functions of the
tates 𝑥(𝑡) ∈ R𝑛𝑥 , known inputs 𝑢(𝑡) ∈ R𝑛𝑢 , unknown constant pa-
ameters 𝜃 ∈ R𝑛𝜃 , and unknown inputs or time-varying parameters
(𝑡) ∈ R𝑛𝑤 . The output 𝑦(𝑡) ∈ R𝑛𝑦 represents the measurable functions
f model variables. The expressions (1)a–(1)b are sufficiently general
o represent a wide range of model structures, of which compartmental
odels are a particular case.

efinition 1 (Structurally Locally Identifiable (DiStefano III, 2015)). A
arameter 𝜃𝑖 of model  is structurally locally identifiable (s.l.i.) if for
lmost any parameter vector 𝜃∗ ∈ R𝑛𝜃 there is a neighbourhood  (𝜃∗)
n which the following relationship holds:

̂ ∈  (𝜃∗) and 𝑦(𝑡, �̂�) = 𝑦(𝑡, 𝜃∗) ⇒ 𝜃𝑖 = 𝜃∗𝑖 (2)

therwise, 𝜃𝑖 is structurally unidentifiable (s.u.). If all model parameters
re s.l.i. the model is s.l.i. If there is at least one s.u. parameter, the
odel is s.u.

Likewise, a state 𝑥𝑖(𝜏) is observable if it can be distinguished from
ny other states in a neighbourhood from observations of the model
utput 𝑦(𝑡) and input 𝑢(𝑡) in the interval 𝑡0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑡𝑓 , for a finite 𝑡𝑓 .
therwise, 𝑥𝑖(𝜏) is unobservable. A model is called observable if all its

tates are observable. We also say that  is invertible if it is possible to
nfer its unknown inputs 𝑤(𝑡), and we say that 𝑤(𝑡) is reconstructible in
his case.

Structural identifiability can be seen as a particular case of observ-
bility (Sedoglavic, 2002; Tunali & Tarn, 1987; Villaverde, 2019), by
ugmenting the state vector with the unknown parameters 𝜃, which are
ow considered as state variables with zero dynamics, 𝑥 = (𝑥𝑇 , 𝜃𝑇 )𝑇 .
he reconstructibility of unknown inputs 𝑤(𝑡), which is also known
s input observability, can also be cast in a similar way, although in
his case their derivatives may be nonzero. To this end, let us augment
he state vector further with 𝑤 as additional states, as well as their
erivatives up to some non-negative integer 𝑙:

𝑥 =
(

𝑥𝑇 𝜃𝑇 𝑤𝑇 … 𝑤(𝑙)𝑇
)𝑇

, (3)

he 𝑙−augmented dynamics is:
̇̃𝑥(𝑡) = 𝑓 𝑙 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑙+1)(𝑡)

)

=
(

𝑓 (𝑥(𝑡), 𝑢(𝑡))𝑇 0 𝑤(𝑡)𝑇 … 𝑤(𝑙+1)(𝑡)𝑇
)𝑇

,
1×𝑛𝑝
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leading to the 𝑙−augmented system:

𝑙

{

̇̃𝑥(𝑡) = 𝑓 𝑙(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑙+1)(𝑡))
𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡))

(4)

Remark 1 (Unknown Inputs, Disturbances, or Time-Varying Parameters).
In Section 4, when reporting the results of the structural identifiability
and observability analyses, we will explicitly consider some parameters
as time-varying. In the model structure defined in Eqs. (1)a–(1)b the
unknown parameter vector 𝜃 is assumed to be constant. To consider
n unknown parameter as time-varying we include it in the ‘‘unknown
nput’’ vector 𝑤(𝑡). Thus, changing the consideration of a parameter

from constant to time-varying entails removing it from 𝜃 and including
it in 𝑤(𝑡). The elements of 𝑤(𝑡) can be interpreted as unmeasured
disturbances or inputs of unknown magnitude or, equivalently, as time-
varying parameters. Regardless of the interpretation, they are assumed
to change smoothly, i.e. they are infinitely differentiable functions
of time. For the analysis of some models it is necessary, or at least
convenient, to introduce the mild assumption that the derivatives of
𝑤(𝑡) vanish for a certain non-negative integer 𝑠 (possibly 𝑠 = +∞),
i.e. 𝑤 𝑠)(𝑡) ≠ 0 and 𝑤 𝑖)(𝑡) = 0 for all 𝑖 > 𝑠. This assumption is equivalent
to assuming that the disturbances are polynomial functions of time,
with maximum degree equal to 𝑠 (Villaverde, Tsiantis, & Banga, 2019).

Definition 2 (Full Input-State-Parameter Observability, FISPO (Villaverde
et al., 2019)). Let us consider a model  given by (1)a–(1)b. We
augment its state vector as 𝑧(𝑡) =

(

𝑥(𝑡)𝑇 𝜃𝑇 𝑤(𝑡)𝑇
)𝑇 (3), which leads

to its augmented form (4). We say that  has the FISPO property if,
for every 𝑡0 ∈ 𝐼 , every model unknown 𝑧𝑖(𝑡0) can be inferred from 𝑦(𝑡)
and 𝑢(𝑡) in a finite time interval

[

𝑡0, 𝑡𝑓
]

⊂ 𝐼 . Thus,  is FISPO if, for
every 𝑧(𝑡0) and for almost any vector 𝑧∗(𝑡0), there is a neighbourhood


(

𝑧∗
(

𝑡0
))

such that, for all �̂�(𝑡0) ∈ 
(

𝑧∗
(

𝑡0
))

, the following property
is fulfilled:

𝑦
(

𝑡, �̂�(𝑡0)
)

= 𝑦
(

𝑡, 𝑧∗
(

𝑡0
))

⇒ �̂�𝑖
(

𝑡0
)

= 𝑧∗𝑖
(

𝑡0
)

, 1 ≤ 𝑖 ≤ 𝑛𝑥 + 𝑛𝜃 + 𝑛𝑤.

2.2. Structural identifiability and observability analysis

In this paper we analyse input, state, and parameter observability –
that is, the FISPO property defined above – using a differential geome-
try framework. Such analyses are structural and local. By structural we
refer to properties that are entirely determined by the model equations;
thus we do not consider possible deficiencies due to insufficient or
noise-corrupted data. By local we refer to the ability to distinguish
between neighbouring states (similarly, parameters or unmeasured in-
puts), even though they may not be distinguishable from other distant
states. This is usually sufficient, since in most (although not all, see
e.g. Thomaseth and Saccomani (2018)) applications local observability
entails global observability. This specific type of observability has
sometimes been called local weak observability (Hermann & Krener,
1977).

This approach assesses structural identifiability and observability by
calculating the rank of a matrix that is constructed with Lie derivatives.
The corresponding definitions are as follows (in the remainder of this
section we omit the dependency on time to simplify the notation):

Definition 3 (Extended Lie Derivative (Karlsson, Anguelova, & Jirstrand,
2012)). Consider the system  (1)a–(1)b with augmented state vector
(3) and augmented dynamics (4). Assuming that the inputs 𝑢 are
analytical functions, the extended Lie derivative of the output along
𝑓 = 𝑓 (⋅, 𝑢) is:

𝐿ℎ
𝑓
(�̃�, 𝑢) = 𝜕ℎ

𝜕�̃�
(�̃�, 𝑢) 𝑓 (�̃�, 𝑢) + 𝜕ℎ

𝜕𝑢
(�̃�, 𝑢) �̇�.

he zero-order derivative is 𝐿0
𝑓
ℎ = ℎ, and the 𝑖−order extended Lie

derivatives can be recursively calculated as:

𝐿𝑖
𝑓
ℎ (�̃�, 𝑢) =

𝜕𝐿𝑖−1
𝑓

ℎ

𝜕�̃�
(�̃�, 𝑢) 𝑓 (�̃�, 𝑢) +

𝑖−1
∑

𝑗=0

𝜕𝐿𝑖−1
𝑓

ℎ

𝜕𝑢(𝑗)
(�̃�, 𝑢) 𝑢(𝑗+1), 𝑖 ≥ 1.
443
efinition 4 (Observability–identifiability Matrix (Villaverde et al., 2019)).
he Observability–identifiability matrix of the system  (1)a–(1)b
ith augmented state vector (3), augmented dynamics (4), and ana-

ytical inputs 𝑢 is the following 𝑚𝑛�̃� × 𝑛�̃� matrix,

𝐼 (�̃�, 𝑢)

= 𝜕
𝜕�̃�

(

𝐿0
𝑓
ℎ (�̃�, 𝑢)𝑇 𝐿𝑓ℎ (�̃�, 𝑢)

𝑇 𝐿2
𝑓
ℎ (�̃�, 𝑢)𝑇 … 𝐿𝑛�̃�−1

𝑓
ℎ (�̃�, 𝑢)𝑇

)𝑇
,

(5)

The FISPO property of  can be analysed by calculating the rank
of the Observability–identifiability matrix:

Theorem 1 (Observability–identifiability Condition, OIC (Karlsson et al.,
2012)). If the identifiability–observability matrix of a model  satisfies
rank

(

𝐼
(

�̃�0, 𝑢
))

= 𝑛�̃� = 𝑛𝑥 + 𝑛𝜃 + 𝑛𝑤, with �̃�0 being a (possibly generic)
point in the augmented state space, then the system is structurally locally
observable and structurally locally identifiable.

2.2.1. Analysis tools
In this paper we generally check the OIC criterion of 1 using

STRIKE-GOLDD, an open source MATLAB toolbox (Villaverde, Barreiro,
& Papachristodoulou, 2016). Alternatively, for some models we use
the Maple code ObservabilityTest, which implements a procedure that
avoids the symbolic calculation of the Lie derivatives and is hence com-
putationally efficient (Sedoglavic, 2002). A number of other software
tools are available, including GenSSI2 (Ligon, Fröhlich, Chiş, Banga,
Balsa-Canto, & Hasenauer, 2018) in MATLAB, IdentifiabilityAnalysis in
Mathematica (Karlsson et al., 2012), DAISY in REDUCE (Saccomani,
Bellu, Audoly, & d’Angio, 2019), SIAN in Maple (Hong, Ovchinnikov,
Pogudin, & Yap, 2019), and the web app COMBOS (Meshkat, Kuo,
& DiStefano III, 2014). It should be taken into account that in the
present work we are interested in assessing structural identifiability and
observability both with constant and continuous time-varying model
parameters (or equivalently, with unknown inputs), as explained in
Remark 1. Ideally, the method of choice should provide a convenient
way of analysing models with this type of parameters (inputs). It is
always possible to perform this type of analysis by assuming that the
time dependency of the parameters is of a particular form, e.g. a
polynomial function of a certain maximum degree.

3. Models

In this article we review compartmental models, which are one
of the most widely used families of models in epidemiology. They
divide the population into homogeneous compartments, each of which
corresponds to a state variable that quantifies the number of individuals
that are at a certain disease stage. The dynamics of these compartments
are governed by ordinary differential equations, usually with unknown
parameters that describe the rates at which individuals move among
different stages of disease. The total size of the population is known
and commonly denoted as 𝑁 (Roosa & Chowell, 2019). The basic
compartmental model used for describing a transmission disease is the
SIR model, in which the population is divided into three classes:

• Susceptible: individuals who have no immunity and may become
infected if exposed.

• Infected and infectious: an exposed individual becomes infected
after contracting the disease. Since an infected individual has the
ability to transmit the disease, he/she is also infectious.

• Recovered: individuals who are immune to the disease and do not
affect its transmission.

Another class of models, called SEIR, include an additional compart-
ment to account for the existence of a latent period after the transmis-
sion:

• Exposed: individuals vulnerable to contracting the disease when
they come into contact with it.
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Table 1
List of SIR models and their main features.

ID Ref. States Parameters Output ICS Input Equations

6 Zheng (2020) S, I, R 𝛽, 𝛾, K
(1) 𝐼

(2) 𝐾𝐼

100000

100

0

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁

�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − 𝛾𝐼

�̇�(𝑡) = 𝛾𝐼

7 Zheng (2020) S, I, R, Q 𝛽, 𝛾, 𝛿
(1) 𝑄

(2) 𝐼, 𝑅,𝑄

1000

10

0

0

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁

�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − 𝛾𝐼 − 𝛿𝐼

�̇�(𝑡) = 𝛾𝐼

�̇�(𝑡) = 𝛿𝐼

13 Maier and Brockmann (2020) S, I, R, X 𝛽, 𝛼, k,
k0, C(𝑡0)

NX

1 − 𝐼(𝑡0) −𝑋(𝑡0)

𝐼0𝐶(𝑡0)∕(𝑋0𝑁)

𝐶(𝑡0)∕𝑁

𝑅0

�̇�(𝑡) = −𝛼𝑆𝐼 − 𝑘0𝑆

�̇�(𝑡) = 𝛼𝑆𝐼 − (𝛽 + 𝑘 + 𝑘0)𝐼

�̇�(𝑡) = (𝑘 + 𝑘0)𝐼

�̇�(𝑡) = 𝛽𝐼 + 𝑘0𝑆

15 Roda et al. (2020) S, I, R 𝛽, 𝜌, 𝜇, 𝜏, d, I0 𝜌𝐼 + 𝜏

𝑆0

𝐼0
𝑅0

�̇�(𝑡) = −𝛽𝑆𝐼

�̇�(𝑡) = 𝛽𝑆𝐼 − (𝜌 + 𝜇)𝐼

�̇�(𝑡) = 𝜌𝐼 − 𝑑𝑅

20 Giordano et al. (2020) S, I, D,
A, R, T,
H, E

𝛼, 𝛽, 𝜌, 𝜇, 𝜏
𝜖, 𝜂, 𝜉, 𝜆, 𝜎, 𝜅,
𝜃, 𝜈, 𝛾, 𝛿, 𝜁

D, R, T

𝑆0

200∕60𝑒8

20∕60𝑒8

1∕60𝑒8

2∕60𝑒8

0

0

0

�̇�(𝑡) = −𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛿𝑅)

�̇�(𝑡) = 𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛿𝑅) − (𝜖 + 𝜁 + 𝜆)𝐼

�̇�(𝑡) = 𝜖𝐼 − (𝜂 + 𝜌)𝐷

�̇�(𝑡) = 𝜁𝐼 − (𝜃 + 𝜇 + 𝜅)𝐴

�̇�(𝑡) = 𝜂𝐷 + 𝜃𝐴 − (𝜈 + 𝜉)𝑅

�̇� (𝑡) = 𝜇𝐴 + 𝜈𝑅 − (𝜎 + 𝜏)𝑇

�̇�(𝑡) = 𝜆𝐼 + 𝜌𝐷 + 𝜅𝐴 + 𝜉𝑅 + 𝜎𝑇

�̇�(𝑡) = 𝜏𝑇

21 Castro et al. (2020) S, I, D,
C, R

p, q, r
𝛽, 𝜇

(1) 𝐼

(2) 𝐶

(3) 𝐶,𝐷

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁 − 𝑝𝑆 + 𝑞𝐶

�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − (𝑟 + 𝜇)𝐼

�̇�(𝑡) = 𝑟𝐼

�̇�(𝑡) = 𝑝𝑆 − 𝑞𝐶

�̇�(𝑡) = 𝜇𝐼

19 Gaeta (2020) S, I, J,
R, U

𝛽, 𝛼, 𝜂, 𝜉
(1) 𝑅

(2) 𝐼, 𝑅

𝑆0

𝐼0
(1 − 𝜉)𝐼0∕𝜉

𝑅0

𝑈0

�̇�(𝑡) = −𝛼(𝐼 + 𝐽 )𝑆

�̇�(𝑡) = 𝛼𝜉𝑆(𝐼 + 𝐽 ) − 𝛽𝐼

�̇� (𝑡) = 𝛼(1 − 𝜉)𝑆(𝐼 + 𝐽 ) − 𝜂𝐽

�̇�(𝑡) = 𝛽𝐼

�̇� (𝑡) = 𝜂𝐽

24 Kim and Milner (1995) S, I, R 𝜇, 𝛾, 𝜙
c, K

KI 𝜎(𝑡)

�̇�(𝑡) = 𝛬 − 𝜇𝑆 − 𝑐𝜙 𝑆𝐼
𝑆 + 𝐼

�̇�(𝑡) = −𝜇𝐼 + 𝑐𝜙 𝑆𝐼
𝑆 + 𝐼

− 𝛾𝐼 − 𝐼
𝜎(𝑆 + 𝐼)
𝑆 + 𝐼

�̇�(𝑡) = −𝜇𝑅 + 𝛾𝐼 + 𝐼
𝜎(𝑆 + 𝐼)
𝑆 + 𝐼

25 Lourenco et al. (2020) y, z, A 𝛽, 𝜎,
𝜌, 𝜃

A

𝑦0
𝑧0
𝐴0

z𝑑

�̇�(𝑡) = 𝛽𝑦(1 − 𝑧) − 𝜎𝑦

�̇�(𝑡) = 𝛽𝑦(1 − 𝑧)

�̇�(𝑡) = 𝑁𝜌𝜃𝑧𝑑

26 Gallina (2012) S, I, R,
A, Q, J

𝜇1, 𝜇2, d1, d2,
d3, d4, d5, d6,
k1, k2, 𝜆, 𝛾1,
𝛾2, 𝜖𝑎, 𝜖𝑞 , 𝜖𝑗

Q, J

�̇�(𝑡) = 𝑏𝑁 − 𝑆(𝐼𝜆 + 𝜆𝑄𝜖𝑎𝜖𝑞 + 𝜆𝜖𝑎𝐴 + 𝜆𝜖𝑗𝐽 + 𝑑1)

�̇�(𝑡) = 𝑘1𝐴 − (𝛾1 + 𝜇2 + 𝑑2)𝐼

�̇�(𝑡) = 𝛾1𝐼 + 𝛾2𝐽 − 𝑑3𝑅

�̇�(𝑡) = 𝑆(𝐼𝜆 + 𝜆𝑄𝜖𝑎𝜖𝑞 + 𝜆𝜖𝑎𝐴 + 𝜆𝜖𝑗𝐽 ) − (𝑘1 + 𝜇1 + 𝑑4)𝐴

�̇�(𝑡) = 𝜇1𝐴 − (𝑘2 + 𝑑5)𝑄

�̇� (𝑡) = 𝑘2𝑄 + 𝜇2𝐼 − (𝛾2 + 𝑑6)𝐽

22 Hethcote, Zhien, and Shengbing (2002) S, I, Q, R d, 𝜖, 𝛽
𝛾, 𝛿, 𝛼1, 𝛼2

Q

�̇�(𝑡) = 𝐴 − 𝛽𝑆𝐼 − 𝑑𝑆

�̇�(𝑡) = 𝛽𝑆𝐼 − 𝐼(𝛾 + 𝑑 + 𝛿 + 𝛼1)

�̇�(𝑡) = 𝛿𝐼 − (𝜖 + 𝑑 + 𝛼2)𝑄

�̇�(𝑡) = 𝛾𝐼 + 𝜖𝑄 − 𝑅

(continued on next page)
These idealized models differ from the reality. Contact tracing,

screening, or changes in habits are some differences that are not consid-

ered in basic SIR or SEIR models, but are important for evaluating the
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effects of an intervention. Furthermore, it is not only important to en-
rich the information about the behaviour of the population; the charac-
teristics of the disease must also be taken into account. These additional
details can be incorporated to the model as new parameters, functions,
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𝑑

Table 1 (continued).
ID Ref. States Parameters Output ICS InputEquations

27 Raimúndez et al. (2020) S, A, I,
R, D

𝛾, 𝛿, k,
𝜁0, 𝛽0

(1) 𝐼, 𝑅

(2) 𝑅,𝐷

(3) 𝐼, 𝑅,𝐷

𝑆0

𝐴0

𝐼0
𝑅0

𝐷0

g(t)

�̇�(𝑡) = −𝛽0𝑔𝑆𝐼∕𝑁 − 𝜁0𝑔𝑆𝐴∕𝑁

�̇�(𝑡) = 𝛽0𝑔𝑆𝐼∕𝑁 + 𝜁0𝑔𝑆𝐴∕𝑁 − 𝑘𝐴

�̇�(𝑡) = 𝑘𝐴 − (𝛾 + 𝛿)𝐼

�̇�(𝑡) = 𝛾𝐼

�̇�(𝑡) = 𝛿𝐼

28 Raimúndez et al. (2020) S, A, I,
R, RR, D

𝛾, 𝛿, k,
𝜈, 𝜁0, 𝛽0

(1) 𝐼, 𝑅

(2) 𝑅,𝐷

(3) 𝐼, 𝑅,𝐷

𝑆0

𝐴0

𝐼0
𝑅0

𝑅𝑅0

𝐷0

g(t)

�̇�(𝑡) = −𝛽0𝑔𝑆𝐼∕𝑁 − 𝜁0𝑔𝑆𝐴∕𝑁

�̇�(𝑡) = 𝛽0𝑔𝑆𝐼∕𝑁 + 𝜁0𝑔𝑆𝐴∕𝑁 − 𝑘𝐴

�̇�(𝑡) = 𝑘𝐴 − (𝛾 + 𝛿)𝐼

�̇�(𝑡) = 𝛾𝐼
̇𝑅𝑅(𝑡) = 𝜈𝐴

�̇�(𝑡) = 𝛿𝐼

29 Franco (2020) s, i R0 i
𝑁 − 2∕𝑒6

2∕𝑒6

�̇�(𝑡) = −𝑅0𝑠𝑖

�̇�(𝑡) = (𝑅0𝑠 − 1)𝑖

30 Franco (2020) s, i R0, 𝜅 i
𝑁 − 2∕𝑒6

2∕𝑒6

�̇�(𝑡) = −
𝑅0𝑠𝑖
1 + 𝜅𝑖

�̇�(𝑡) =
(

𝑅0𝑠
1 + 𝜅𝑖

− 1
)

𝑖

35 Fosu, Opong, and Appati (2020) S, L, I,
Q, R

𝛾, 𝛽, 𝜂,
𝛿, 𝜃1, 𝛼1,
𝛼2

Q, L

�̇�(𝑡) = 𝜇𝑁 − 𝛽𝑆𝐼 − (𝛾 + 𝜂)𝑆 + 𝛿𝐿

�̇�(𝑡) = 𝜂𝑆 − (𝛾 + 𝛿)𝐿

�̇�(𝑡) = 𝛽𝑆𝐼 − (𝛾 + 𝜃1 + 𝛼1)𝐼

�̇�(𝑡) = 𝜃1𝐼 − (𝛾 + 𝛼2)𝑄

�̇�(𝑡) = 𝛼1𝐼 + 𝛼2𝑄 − 𝛾𝑅

37 Gevertz, Greene, Hixahuary Sanchez Tapia, and Sontag (2020) Sd, Sn, Ad,
An, I, R

𝜖𝑠, 𝜖𝑖, f,
h1, h2, 𝛽𝑖, 𝛿,
𝛽𝑎, 𝛾𝑎𝑖, 𝛾𝑖𝑟

Sd, I

0

1 − 10−5

0

0

10−5

0

̇𝑆𝑑(𝑡) = −𝜖𝑠𝛽𝑎(𝐴𝑛 + 𝜖𝑎𝐴𝑑 )𝑆𝑑 − ℎ1𝑆𝑑 + ℎ2𝑆𝑛 − 𝜖𝑠𝛽𝑖𝑆𝑑𝐼
̇𝑆𝑛(𝑡) = −𝛽𝑖𝑆𝑛𝐼 − 𝛽𝑎(𝐴𝑛 + 𝜖𝑎𝐴𝑑 )𝑆𝑛 + ℎ1𝑆𝑑 − ℎ2𝑆𝑛

�̇�𝑑(𝑡) = 𝜖𝑠𝛽𝑖𝑆𝑑𝐼 + 𝜖𝑠𝛽𝑎(𝐴𝑛 + 𝜖𝑎𝐴𝑑 )𝑆𝑑 + ℎ2𝐴𝑛 − 𝛾𝑎𝑖𝐴𝑑 − ℎ1𝐴

�̇�𝑛(𝑡) = 𝛽𝑖𝑆𝑛𝐼 + 𝛽𝑎(𝐴𝑛 + 𝜖𝑎𝐴𝑑 )𝑆𝑛 + ℎ1𝐴𝑑 − 𝛾𝑎𝑖𝐴𝑛 − ℎ2𝐴𝑛

�̇�(𝑡) = 𝑓𝛾𝑎𝑖(𝐴𝑑 + 𝐴𝑛) − 𝛿𝐼 − 𝛾𝑖𝑟𝐼

�̇�(𝑡) = (1 − 𝑓 )𝛾𝑎𝑖(𝐴𝑑 + 𝐴𝑛) + 𝛾𝑖𝑟𝐼
3
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or extra compartments. Compartments such as asymptomatic, quaran-
tined, isolated, and hospitalized have been widely used in COVID-19
models. From 29 articles, most of which are very recent (Castro et al.,
2020; Chatterjee, Chatterjee, Kumar, & Shankar, 2020; Dohare, 2020;
Eikenberry et al., 2020; Fosu et al., 2020; Franco, 2020; Gaeta, 2020;
Gevertz et al., 2020; Giordano et al., 2020; Hubbs, 2020; Jia et al.,
2020; Liangrong, Yang, Zhang, Zhuge, & Hong, 2020; Lopez & Rodo,
2020; Lourenco et al., 2020; Maier & Brockmann, 2020; McGee, 2020;
Pribylova & Hajnova, 2020; Rahman & Kuddus, 2020; Raimúndez et al.,
2020; Roda et al., 2020; Sameni, 2020; Shi, Cao, & Feng, 2020; Zha
et al., 2020; Zheng, 2020), we have collected 36 models. Depending
on whether they have an exposed compartment or not, they can be
broadly classified as belonging to the SIR or SEIR families. However,
most of these models include additional compartments.

3.1. SIR models

Susceptible individuals become infected with an incidence of:

−𝛽𝑆𝐼

where 𝛽 = 𝑝𝑐 is the transmission rate, 𝑐 is the contact rate and 𝑝
the probability that a contact with a susceptible individual results in
a transmission (Martcheva, 2015). Individuals who recover leave the
infectious class at rate 𝛾, where 1∕𝛾 is the average infectious period.
The set of differential equations describing the basic SIR model is given
by:

�̇�(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)

�̇�(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝑅(𝑡)

�̇�(𝑡) = 𝛾𝑅(𝑡)

(6)

As mentioned above, compartmental models can be extended to
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consider further details. We have found models that incorporate the
following features: asymptomatic individuals, births and deaths, delay-
time, lock-down, quarantine, isolation, social distancing, and screening.
Fig. 1 shows a classification of the SIR models reviewed in this article,
and Table 1 lists them along with their equations. Multiple output
choices have been considered in the study of the structural identifia-
bility and observability of some models. In such cases the observations
are listed in the Output column.

.2. SEIR models

Individuals in the SEIR model are divided in four compartments:
usceptible (S), Exposed (E), Infected (I) and Recovered (R). Compared
o the SIR models, the additional compartment 𝐸 allows for a more
ccurate description of diseases in which the incubation period and the
atent period do not coincide, i.e. the period between which an infected
ecomes infectious. This is why SEIR models are in principle best suited
o epidemics with a long incubation period such as COVID-19 (Franco,
020).

Susceptible individuals move to the exposed class at a rate 𝛽𝐼(𝑡),
here 𝛽 is the transmission rate parameter. Exposed individuals be-

ome infected at rate 𝜅, where 1∕𝜅 is the average latent period. Infected
ndividuals recover at rate 𝛾, where 1∕𝛾 is the average infectious period.

Thus, the set of differential equations describing the basic SEIR
odel is:

�̇�(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)

�̇�(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜅𝐸(𝑡)

�̇�(𝑡) = 𝜅𝐸(𝑡) − 𝛾𝐼(𝑡)
(7)
�̇�(𝑡) = 𝛾𝐼(𝑡)
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Fig. 1. Classification of SIR models. Each block represents a model structure. The basic, three-compartment SIR model structure is on top of the tree. Every additional block is
labelled with the additional feature that it contains with respect to its parent block. The darkness of the shade indicates the number of additional features with respect to the
basic SIR model.
Existing extensions of SEIR models may incorporate some of the
following features: asymptomatic individuals, births and deaths, hospi-
talization, quarantine, isolation, social distancing, screening and lock-
down. Fig. 2 shows a classification of the models found in the literature;
Table 2 lists them along with their equations.

4. Results and discussion

We analysed the structural identifiability and observability of the 17
SIR model structures (a total of 98 model versions considering the
different output configurations and time-varying parameter assump-
tions) and 19 SEIR models (with a total of 157 model versions) listed
in Tables 1 and 2. The detailed results for each model are given in
Appendix, which reports the structural identifiability of each parame-

ter and the observability of each state, for every model version. In the
remainder of this section we provide an overview of the main results.

4.1. General patterns

The general patterns regarding state observability are as follows.
The recovered state (R) is almost never observable unless it is directly
measured (D.M.) as output; the only exceptions are two SEIR models,
31 and 38, for which R is observable under the assumption of time-
varying parameters. The susceptible state (S), in contrast, is observable
in roughly two thirds of the models (SIR: 65/98, SEIR: 103/157); this
is also true for the exposed state (E) in the SEIR models. The infected
state (I) is included in most studies among the outputs, either directly
(D.M.) or indirectly measured (as part of a parameterized measurement
function). When it is not considered in this way, its observability is
generally similar to that of S (in 18/157 model versions I is not an
output and it is observable in 13/18).

The transmission and recovery rates (𝛽, 𝛾) are the two parameters
common to all SIR models. The transmission rate is identifiable in
59/98 model versions, and 𝛾 in 51/98 and its derivatives in 12/98. SEIR
models have a third parameter in common, the latent period (𝜅). It is
identifiable in most of the models (145/157), as well as the recovery
rate (111/157). The transmission rate is identifiable in 101/157 model
versions, but it is not identifiable in any SEIR model version that
accounts for social distancing (numbers 34 and 61); we found no clear
pattern in the other models.
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4.2. The effect of time-varying parameters

The transmission rate 𝛽, the recovery rate 𝛾, and in SEIR models the
latent period 𝜅, can vary during an epidemic as a result of changes in
the population’s behaviour (Chen, Lu, Chang, & Liu, 2020; Liangrong
et al., 2020), the introduction of new drugs or new medical equip-
ment (Liangrong et al., 2020), or the reduction of the period duration
as a result of high temperatures (Li & Zhao, 2019). To account for such
variations, the present study has considered both the constant and the
time-varying cases, by including the corresponding variables either in
the constant parameter vector 𝜃 or in the unknown input vector 𝑤(𝑡),
respectively, as described in Remark 1. Changing a parameter from
constant to time-varying naturally influences structural identifiability
and observability. This effect is graphically summarized in Figs. 3–
7, which represent classes of models in tree form and classify them
according to their observability. Each model is shaded with a colour,
according to the observability of the parameter studied. Some models
include different rates for different population groups: for example,
they may consider two different transmission rates for symptomatic and
asymptomatic individuals. For those models, each rate may have differ-
ent observability properties when considered time-varying parameters;
in such cases the model is depicted between two colour blocks (see for
example the SIR 20 model in Fig. 3).

Changing 𝛽 from a constant to a time-varying parameter (or equiv-
alently an unknown input) does not change its observability nor that of
the other variables in SIR models. In contrast, this is not the case with
the recovery rate 𝛾, for which a somewhat counter-intuitive result may
be obtained: by changing 𝛾 from a constant to a continuous function
of time with at least a non-zero derivative, its model can become more
observable and identifiable — despite the fact that it is an unknown
function. An example of this is the SIR model 15: if 𝛾 is constant
the model has only one identifiable parameter, 𝜏, and no observable
states; if 𝛾 is time-varying with at least one non-zero derivative, two
parameters become identifiable (𝛽, 𝜇), two states become observable
(I, S), and 𝛾 itself is observable. In the other models, when 𝛾 is not
identifiable as a constant nor observable as an unknown input, its
successive derivatives are observable.

For the SEIR models, the consideration of the 𝛽 parameter as an
unknown input function follows a similar trend to that of the SIR
models with the exception of model 38, which gains both observability
and identifiability and becomes FISPO. Considering the recovery rate
𝛾 (Fig. 7) or the latent period 𝜅 (Fig. 6) individually as time-varying
parameters generally leads to greater observability, except for model
31(1). As an example, in model 39(2) one of the unknown inputs
becomes observable, three states become observable (S, E, I), and three
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Fig. 2. Classification of SEIR models. Each block represents a model structure. The basic, four-compartment SEIR model structure is on top of the tree. Every additional block
is labelled with the additional feature that it contains with respect to its parent block. The darkness of the shade indicates the number of additional features with respect to the
basic SEIR model.
Fig. 3. Observability of 𝛽 (transmission rate) in SIR models. Models in which 𝛽 is observable are shown in green, and non-observable in red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
parameters become identifiable (𝛾, 𝜇𝑖, 𝛽); or the 16(2) model, in which
both its input and three states (S, E, I) become observable and two
parameters (𝜇, 𝛽) become identifiable.

Besides the transmission rate, latent period, and recovery rate,
other rates (screening, disease-related deaths, and isolation) have also
been considered as time-varying parameters in some studies. The ob-
servability of most models is not modified if these parameters are
allowed to change in time; the exception being 8 models which gain
observability. An example is the SEIR model 41(1), which has seven
parameters, seven states, and one output. Assuming constant parame-
ters, five of them are structurally identifiable (𝜅, 𝛼, 𝛽, 𝛾1, 𝛾2) and two
are unidentifiable (q, 𝜌), while there are three observable states (I, J,
C) and four unobservable states (S, E, A, R) (Roosa & Chowell, 2019).
However, when the parameter 𝜌 (which describes the proportion of
exposed/latent individuals who become clinically infectious) is consid-
ered time-varying, all parameters become identifiable (including 𝜌) and
six states become observable (all except R, which is never observable
unless it can be directly measured, as we have already mentioned).

The fact that allowing an unknown quantity to change in time can
improve its observability – and also the observability of other variables
in a model – may seem paradoxical. An intuitive explanation can be
447
obtained from the study of the symmetry in the model structure. The
existence of Lie symmetries amounts to the possibility of transforming
parameters and state variables while leaving the output unchanged,
i.e. their existence amounts to lack of structural identifiability and/or
observability (Yates, Evans, & Chappell, 2009). The STRIKE-GOLDD
toolbox used in this paper includes procedures for finding Lie symme-
tries (Massonis & F. Villaverde, 2020). Let us use the SIR 15 model as an
example. This model has five parameters (𝜏, 𝛽, 𝜌, 𝜇, d), of which only
𝜏 is identifiable if assumed constant. The model contains the following
symmetry:

𝜇∗ = 𝜇 + 𝜖𝜌,

where 𝜖 is the parameter of the Lie group of transformations. Thus,
there is a symmetry between 𝜌 and 𝜇 that makes them unidentifiable:
changes in one parameter can be compensated by changes in the other
one. However, if 𝜌 is time-varying and 𝜇 is constant, the latter cannot
compensate the changes of the former, and the symmetry is broken.
Indeed, if 𝜌 is considered time-varying the model gains identifiability
(not only 𝜇, but also 𝜏 and 𝛽 become identifiable) and observability (S,
I and 𝜌 become observable).
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Table 2
List of SEIR models and their main features.

ID Ref. States Parameters Output ICS Input Equations

2 Roosa and Chowell (2019) S, E, I, R 𝛽, 𝛾, k, K
(1) 𝐶
(2) 𝐾𝐶

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁
�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − 𝑘𝐸
�̇�(𝑡) = 𝑘𝐸 − 𝛾𝐼
�̇�(𝑡) = 𝛾𝐼
�̇�(𝑡) = 𝑘𝐸

34 Chitnis (2017) S, E, I, R 𝛽, 𝛾, 𝜇,
𝜖, r, K

KI

�̇�(𝑡) = 𝛬 − 𝑟𝛽𝑆𝐼∕𝑁 − 𝜇𝑆
�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − 𝜖𝐸 − 𝜇𝐸
�̇�(𝑡) = 𝜖𝐸 − 𝛾𝐼 − 𝜇𝐼
�̇�(𝑡) = 𝛾𝐼 − 𝜇𝑅

16 Roda et al. (2020) S, E, I, R 𝛽, 𝜌, 𝜇, d,
𝜖, 𝜏, 𝐸0, 𝐼0

(1) 𝜌𝐼 + 𝜏
(2) 𝜇𝐼

𝑆0

𝐸0

𝐼0
𝑅0

�̇�(𝑡) = −𝛽𝑆𝐼
�̇�(𝑡) = 𝛽𝑆𝐼 − 𝜖𝐸
�̇�(𝑡) = 𝜖𝐸 − (𝜌 + 𝜇)𝐼
�̇�(𝑡) = 𝜌𝐼 − 𝑑𝑅

51 McGee (2020) S, E, I, De,
Di, R, F

q, 𝜇𝑖, 𝜇𝑑 ,
𝜎, 𝜎𝑑 , 𝜃𝑒, 𝜃𝑖,
𝛾, 𝛾𝑑 , 𝛽, 𝛽𝑑 ,
𝜙𝑖, 𝜙𝑒, 𝜇0

(1) 𝐷𝑒,𝐷𝑖, 𝐹
(2) 𝐷𝑖, 𝐹

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁 − 𝑞𝛽𝑑𝑆𝐷𝑖∕𝑁 + 𝜈𝑁 − 𝜇0𝑆
�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 + 𝑞𝛽𝑑𝑆𝐷𝑖∕𝑁 − 𝜎𝐸 − 𝜃𝑒𝜙𝑒𝐸 − 𝜇0𝐸
�̇�(𝑡) = 𝜎𝐸 − 𝛾𝐼 − 𝜇𝑖𝐼 − 𝜃𝑖𝜙𝑖𝐼 − 𝜇0𝐼

�̇�𝑒(𝑡) = 𝜃𝑒𝜙𝑒𝐸 − 𝜎𝑑𝐷𝑒 − 𝜇0𝐷𝑒
�̇�𝑖(𝑡) = 𝜃𝑖𝜙𝑖𝐼 + 𝜎𝑑𝐷𝑒 − 𝛾𝑑𝐷𝑖 − 𝜇𝑑𝐷𝑖 − 𝜇0𝐷𝑖
�̇�(𝑡) = 𝛾𝐼 + 𝛾𝑑𝐷𝑖 − 𝜇0𝑅
�̇� (𝑡) = 𝜇𝑖𝐼 + 𝜇𝑑𝐷𝑖

14 Lopez and Rodo (2020) S, E, I, Q,
R, D, C

𝛽, 𝛼, 𝛾,
𝛿, 𝜏

C, Q, D k(t), 𝜆(𝑡)

�̇�(𝑡) = 𝜇𝑁 − 𝛼𝑆 − 𝛽𝑆𝐼𝑁 − 𝜇𝑆
�̇�(𝑡) = 𝛽𝑆𝐼𝑁 − 𝜇𝐸 − 𝛾𝐸
�̇�(𝑡) = 𝛾𝐸 − 𝛿𝐼 − 𝜇𝐼𝜇𝑆
�̇�(𝑡) = 𝛿𝐼 − 𝜆𝑄 − 𝑘𝑄 − 𝜇𝑄
�̇�(𝑡) = 𝜆𝑄 − 𝜇𝑆
�̇�(𝑡) = 𝑘𝑄
�̇�(𝑡) = 𝛼𝑆 − 𝜇𝐶 − 𝜏𝐶

61 Hubbs (2020) S, E, I, R p, 𝛼, 𝛽, 𝛾, K KI

�̇�(𝑡) = −𝑝𝛽𝑆𝐼
�̇�(𝑡) = 𝑝𝛽𝑆𝐼 − 𝛼𝐸
�̇�(𝑡) = 𝛼𝐸 − 𝛾𝐼
�̇�(𝑡) = 𝛾𝐼

5 Pribylova and Hajnova (2020) S, E, I,
R, A

𝜇1, 𝜇2, 𝛾, 𝛽, p I

�̇�(𝑡) = −𝛽𝑆(𝐼 + 𝐴)
�̇�(𝑡) = 𝛽𝑆(𝐼 + 𝐴) − 𝛾𝐸
�̇�(𝑡) = 𝛾𝑝𝐸 − 𝜇1𝐼
�̇�(𝑡) = 𝛾(1 − 𝑝)𝐸 − 𝜇2𝐴
�̇�(𝑡) = 𝜇1𝐼 + 𝜇2𝐴

1 Zha et al. (2020) S, E, I,
R, Q

𝜙, 𝛽, 𝛾, w Q

�̇�(𝑡) = −𝛽𝑆𝐼
�̇�(𝑡) = 𝛽𝑆𝐼 −𝑤𝐸
�̇�(𝑡) = 𝑤𝐸 − 𝜙𝐼 − (1 − 𝜙)𝛾𝐼
�̇�(𝑡) = 𝛾𝑄 + (1 − 𝜙)𝛾𝐼
�̇�(𝑡) = −𝛾𝑄 + 𝜙𝐼

3 Liangrong et al. (2020) S, E, I, R
Q, D, P

𝛼, 𝛽, 𝛾, 𝛿
𝐸0, 𝐼0

Q, R, D

𝑆0

𝐸0

𝐼0
𝑄0

𝑅0

𝐷0

𝑃0

𝜆(𝑡), 𝜅(𝑡)

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁 − 𝛼𝑆
�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 − 𝛾𝐸
�̇�(𝑡) = 𝛾𝐸 − 𝛿𝐼
�̇�(𝑡) = 𝛿𝐼 − 𝜆𝑄 − 𝜅𝑄
�̇�(𝑡) = 𝜆𝑄
�̇�(𝑡) = 𝜅𝑄
�̇� (𝑡) = 𝛼𝑆

(continued on next page)
4.3. Applying the results in practice: an illustrative example

Let us now illustrate how the results of this study may be applied
in a realistic scenario. We use as an example the model SIR 26, which
has 6 states (S, I, R, A, Q, J) and 16 parameters (𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5,
𝑑6, 𝑘1, 𝑘2, 𝜆, 𝛾1, 𝛾2, 𝜖𝑎, 𝜖𝑞 , 𝜖𝑗 , 𝜇1, 𝜇2); its equations are shown in
Table 1. This model includes the following additional features with
respect to the basic SIR model: birth/death, asymptomatic individuals
(A), quarantine (Q), and isolation (J). In its original publication two
448

states were measured (Q, J). With these two states as outputs the model
has five identifiable parameters (𝑑1, 𝑑5, 𝜖𝑞 , 𝑘2, 𝜇1) and two observable
states (A, I); thus, there are two unobservable states (S, R) and ten
unidentifiable parameters.

If we are interested in estimating e.g. the number of susceptible
individuals (S), this model would not be appropriate. How should we
proceed in that scenario?

One way of improving observability could be by including more
outputs (option 1). For example, since there is a separate class for
asymptomatic individuals (A), the infected compartment (I) considers

only individuals with symptoms, and we could assume that they can be
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Table 2 (continued).

4 Sameni (2020) S, E, I,
R, P

𝛼𝑒, 𝛼𝑖, 𝜌,
𝛽, 𝜇, 𝜅, 𝑒0

(1) 𝑆 + 𝑣𝑠(𝑡)
(1) 𝐼 + 𝑣𝑖(𝑡)
(1) 𝑅 + 𝑣𝑟(𝑡)
(1) 𝑃 + 𝑣𝑝(𝑡)
(2) 𝑃

𝑁 − 𝑒0
𝑒0
0
0
0

𝑣𝑠(𝑡)
𝑣𝑖(𝑡)
𝑣𝑟(𝑡)
𝑣𝑝(𝑡)

�̇�(𝑡) = −𝛼𝑒𝑆𝐸 − 𝛼𝑖𝑆𝐼
�̇�(𝑡) = 𝛼𝑒𝑆𝐸 + 𝛼𝑖𝑆𝐼 − 𝜅𝐸 − 𝜌𝐸
�̇�(𝑡) = 𝜅𝐸 − 𝛽𝐼 − 𝜇𝐼
�̇�(𝑡) = 𝛽𝐼 + 𝜌𝐸
�̇� (𝑡) = 𝜇𝐼

8 Eikenberry et al. (2020) S, E, I, R
A, H, D

𝛿, 𝛼, 𝜂,
𝜎, 𝛾𝑎, 𝛾𝑖, 𝛾ℎ
𝛷, 𝐸0, 𝑅0, 𝐴0
𝐻0, 𝐷0

D, H, I

1𝑒6
𝐸0

50
𝐴0

𝐻0

𝑅0

𝐷0

𝛽(𝑡)

�̇�(𝑡) = −𝛽(𝐼 + 𝜂𝐴)𝑆∕𝑁
�̇�(𝑡) = 𝛽(𝐼 + 𝜂𝐴)𝑆∕𝑁 − 𝜎𝐸
�̇�(𝑡) = 𝛼𝜎𝐸 −𝛷𝐼 − 𝛾𝑖𝐼
�̇�(𝑡) = (1 − 𝛼)𝜎𝐸 − 𝛾𝑎𝐴
�̇�(𝑡) = 𝛷𝐼 − 𝛿𝐻 − 𝛾ℎ𝐻
�̇�(𝑡) = 𝛾𝑖𝐼 + 𝛾𝑎𝐴 + 𝛾ℎ𝐻
�̇�(𝑡) = 𝛿𝐻

38 Shi et al. (2020) S, E, I,
Sq, Eq, H, R

c, q, 𝜆, 𝛽
𝛿𝑖, 𝛿𝑞 , 𝛼, 𝛾𝑖
𝛾ℎ, 𝜃

(1) 𝐼, 𝑅
(2) 𝐻, 𝑣𝑖𝐼, 𝑣𝑟𝑅
(3) 𝑆𝑞,𝐸𝑞

𝜎(𝑡)

�̇�(𝑡) = −(𝑐𝛽 + 𝑐𝑞(1 − 𝛽))𝑆(𝐼 + 𝜃𝐸) + 𝜆𝑆𝑞
�̇�(𝑡) = 𝑐𝛽(1 − 𝑞)𝑆(𝐼 + 𝜃𝐸) − 𝜎𝐸
�̇�(𝑡) = 𝜎𝐸 − (𝛿𝑖 + 𝛼 + 𝛾𝑖)𝐼
̇𝑆𝑞(𝑡) = 𝑐𝑞(1 − 𝛽)𝑆(𝐼 + 𝜃𝐸) − 𝜆𝑆𝑞

�̇�𝑞(𝑡) = 𝑐𝑞𝛽𝑆(𝐼 + 𝜃𝐸) − 𝛿𝑞𝐸𝑞

�̇�(𝑡) = 𝛿𝑖𝐼 + 𝛿𝑞𝐸𝑞 − (𝛼 + 𝛾ℎ)𝐻

�̇�(𝑡) = 𝛾𝑖𝐼 + 𝛾ℎ𝐻

41 Roosa and Chowell (2019) S, E, A,
I, J, R, C

𝛽, k, 𝛾1
𝛾2, 𝛼, 𝜌, q

(1) 𝐶
(2) 𝐽 , 𝐼

�̇�(𝑡) = −𝛽𝑆(𝐼 + 𝐽 + 𝑞𝐴)∕𝑁
�̇�(𝑡) = 𝛽𝑆(𝐼 + 𝐽 + 𝑞𝐴)∕𝑁 − 𝑘𝐸
�̇�(𝑡) = 𝑘(1 − 𝜌)𝐸 − 𝛾1𝐴
�̇�(𝑡) = 𝑘𝜌𝐸 − (𝛼 + 𝛾1)𝐼
�̇� (𝑡) = 𝛼𝐼 − 𝛾2𝐽
�̇�(𝑡) = 𝛾1(𝐴 + 𝐼) + 𝛾2𝐽
�̇�(𝑡) = 𝛼𝐼

39 McGee (2020) S, E, I,
De, Di, R, F

q, 𝜇𝑖, 𝜇𝑑 ,
𝜎, 𝜎𝑑 , 𝜃𝑒, 𝜃𝑖,
𝛾, 𝛾𝑑 , 𝛽, 𝛽𝑑 ,
𝜙𝑖, 𝜙𝑒

(1) 𝐹 ,𝐷𝑖
(2) 𝐹 ,𝐷𝑒,𝐷𝑖

�̇�(𝑡) = −𝛽𝑆𝐼∕𝑁 − 𝑞𝛽𝑑𝑆𝐷𝑖∕𝑁
�̇�(𝑡) = 𝛽𝑆𝐼∕𝑁 + 𝑞𝛽𝑑𝑆𝐷𝑖∕𝑁 − 𝜎𝐸 − 𝜃𝑒𝜙𝑒𝐸
�̇�(𝑡) = 𝜎𝐸 − 𝛾𝐼 − 𝜇𝑖𝐼 − 𝜃𝑖𝜙𝑖𝐼

�̇�𝑒(𝑡) = 𝜃𝑒𝜙𝑒𝐸 − 𝜎𝑑𝐷𝑒
�̇�𝑖(𝑡) = 𝜃𝑖𝜙𝑖𝐼 + 𝜎𝑑𝐷𝑒 − 𝛾𝑑𝐷𝑖 − 𝜇𝑑𝐷𝑖
�̇�(𝑡) = 𝛾𝐼 + 𝛾𝑑𝐷𝑖
�̇� (𝑡) = 𝜇𝑖𝐼 + 𝜇𝑑𝐷𝑖

17 Chatterjee et al. (2020) S, E, I,
R, Q, D

𝛽, 𝜖, 𝛾, d,
q, qt

(1) 𝐷
(2) 𝑄,𝐷
(3) 𝐷, 𝐼,𝑄

249
𝐸0

𝑞𝑄0

𝑄0

23
5

�̇�(𝑡) = −𝛽𝑆𝐼
�̇�(𝑡) = 𝛽𝑆𝐼 − 𝜖𝐸
�̇�(𝑡) = 𝜖𝐸 − 𝛾𝐼 − 𝑑𝐼 − 𝑞𝐼
�̇�(𝑡) = 𝑞𝐼 − 𝑞𝑡𝑄 − 𝑑𝑄
�̇�(𝑡) = 𝛾𝐼 + 𝑞𝑡𝑄
�̇�(𝑡) = 𝑑𝐼 + 𝑑𝑄

18 Jia et al. (2020) S, E, I, A,
R, Q, D

𝛽, 𝜃, 𝜆, 𝜎,
𝜌, 𝜖𝑎, 𝜖𝑖, 𝛾𝑖,
𝛾𝑎, 𝛾𝑑 , p, 𝑑𝑖, 𝑑𝑑

(1) 𝐷, 𝐼,𝑄
(2) 𝑄,𝐷
(3) 𝐷

9219849𝑒3
4142251𝑒2
3207
595
563
227
3

�̇�(𝑡) = −𝛽𝑆(𝐼 + 𝜃𝐴) − 𝑝𝑆 + 𝜆𝑄
�̇�(𝑡) = 𝑝𝑆 − 𝜆𝑄
�̇�(𝑡) = 𝛽𝑆(𝐼 + 𝜃𝐴) − 𝜎𝐸
�̇�(𝑡) = 𝜎(1 − 𝜌)𝐸 − 𝜖𝑎𝐴 − 𝛾𝑎𝐴
�̇�(𝑡) = 𝜎𝜌𝐸 − 𝛾𝑖𝐼 − 𝑑𝑖𝐼 − 𝜖𝑖𝐼
�̇�(𝑡) = 𝜖𝑎𝐴 + 𝜖𝑖𝐼 − 𝑑𝑑𝐷 − 𝛾𝑑𝐷
�̇�(𝑡) = 𝛾𝑎𝐴 + 𝛾𝑖𝐼 + 𝛾𝑑𝐷

31 Dohare (2020) S, E, I, A,
J, R

𝛼, 𝜎, h,
r, q, f, 𝛽1,
𝛽2, 𝜙, 𝛾, 𝐼0

(1) 𝐼, 𝐽
(2) 𝐼

0.9𝑁
9(𝐼0 + 𝐴0)
𝐼0
𝐼0𝑓
0
0

�̇�(𝑡) = −𝛼 𝐸 + 𝐼 + 𝐴
𝑁

𝑆 − 𝜎𝑆

�̇�(𝑡) = 𝛼 𝐸 + 𝐼 + 𝐴
𝑁

𝑆 − 𝛽1𝐸

�̇�(𝑡) = 𝛽1ℎ𝐸 + 𝛽2𝑟𝐴 − 𝜙𝑞𝐼 − 𝛾(1 − 𝑞)𝐼
�̇�(𝑡) = 𝛽1(1 − ℎ)𝐸 − 𝛽2𝑟𝐴 − 𝛾(1 − 𝑟)𝐴
�̇� (𝑡) = 𝜙𝑞𝐼 − 𝛾𝐽
�̇�(𝑡) = 𝛾(1 − 𝑞)𝐼 + 𝛾(1 − 𝑟)𝐴 + 𝛾𝐽

(continued on next page)
detected. By including ‘I’ in the output set, the structural identifiability
and observability of the model improves: six more parameters are
identifiable (𝜆, 𝜖𝑎, 𝜖𝑗 , 𝑑4, 𝑘1, 𝜇2) and the state in which we are interested
(S) becomes observable.

However, including more outputs is not always realistic. Another
possibility would then be to reduce the complexity of the model by
decreasing the number of additional features (option 2). For example,
449

𝑄

leaving out the asymptomatic compartment leads to the following
model:

̇𝑆(𝑡) = 𝑏𝑁 − 𝑆(𝐼𝜆 + 𝜆𝜖𝑞𝑄 + 𝜆𝜖𝑗𝐽 + 𝑑1)
̇𝐼(𝑡) = 𝑆(𝐼𝜆 + 𝜆𝜖𝑞𝑄 + 𝜆𝜖𝑗𝐽 ) − (𝛾1 + 𝜇1 + 𝜇2 + 𝑑2)𝐼
̇𝑅(𝑡) = 𝛾1𝐼 + 𝛾2𝐽 − 𝑑3𝑅

(̇𝑡) = 𝜇 𝐼 − (𝑘 + 𝑑 )𝑄
1 2 5
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Table 2 (continued).

32 Rahman and Kuddus (2020) S, L, I, R w, 𝛽, 𝛼,
𝛾, 𝜇

wL

�̇�(𝑡) = 𝐴 −
𝛽𝑆𝐼
1 + 𝛼𝐼

− 𝜇𝑆

�̇�(𝑡) =
𝛽𝑆𝐼
1 + 𝛼𝐼

− (𝑤 + 𝜇)𝐿

�̇�(𝑡) = 𝑤𝐿 − (𝛾 + 𝜇)𝐼
�̇�(𝑡) = 𝛾𝐼 − 𝜇𝑅

33 Fosu et al. (2020) S, L, E,
I, Q, R

𝛾, 𝛽1, 𝜂,
𝛿, 𝜉, 𝜃2,
𝜖, 𝜃1, 𝛼1, 𝛼2,

L, Q

�̇�(𝑡) = 𝜇𝑁 − 𝛽1𝑆𝐼 − (𝛾 + 𝜂)𝑆 + 𝛿𝐿 + 𝜉𝐸
�̇�(𝑡) = 𝜂𝑆 − (𝛾 + 𝛿)𝐿
�̇�(𝑡) = 𝛽1𝑆𝐼 − (𝛾 + 𝜃2 + 𝜖 + 𝜉)𝐸
�̇�(𝑡) = 𝜖𝐸 − (𝛾 + 𝜃1 + 𝛼2)𝐼
�̇�(𝑡) = 𝜃1𝐼 + 𝜃2𝐸 − (𝛾 + 𝛼2)𝑄
�̇�(𝑡) = 𝛼1𝐼 + 𝛼2𝑄 − 𝛾𝑅
Fig. 4. Observability of 𝛾 (recovery rate) in SIR models. Models in which 𝛾 is observable are shown in green. Models in which it is unobservable if constant and observable if
time-varying are shown in a green–red gradient. Finally, models in which only its time-derivatives are observable are shown in orange. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Observability of 𝛽 (transmission rate) in SEIR models. Models in which 𝛽 is observable are shown in green, and non-observable in red. Models in which it is unobservable
if constant and observable if time-varying are shown in a green–red gradient. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Observability of 𝜅 (latent period) in SEIR models. Models in which 𝜅 is observable are shown in green, and non-observable in red. Models in which it is unobservable if
constant and observable if time-varying are shown in a green–red gradient. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 7. Observability of 𝛾 (recovery rate) in SEIR models. Models in which 𝛾 is observable are shown in green, and non-observable in red. Models in which it is unobservable if
constant and observable if time-varying are shown in a green–red gradient. Finally, models in which only its time-derivatives are observable are shown in orange. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
̇𝐽 (𝑡) = 𝑘2𝑄 + 𝜇2𝐼 − (𝛾2 + 𝑑6)𝐽

The output of the model is the same, Q, J. In this case, the model
has eight identifiable parameters (𝜆, 𝜖𝑞 , 𝜖𝑗 , 𝑑1, 𝑑5, 𝜇1, 𝜇2, 𝑘2) and two
observable states (S, I).

A third possibility is to simplify the parameterization of the model
(option 3). This model considers a different death rate for every
compartment (𝑑𝑖, 𝑖 = 1,… , 6.). With some loss of generality, we
could consider a specific death rate for infected individuals, 𝑑𝐼 = 𝑑2,
and a general death rate 𝑑 for all non-infected and asymptomatic
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individuals, 𝑑 = 𝑑1 = 𝑑3 = 𝑑4 = 𝑑5 = 𝑑6. This reduction of the
number of parameters leads to a better observability to the model:
the only unidentifiable parameters are 𝑑2, 𝛾1, and 𝑘1, and the only
non-observable state is R. Thus, this option also allows to identify S.

Finally, a fourth possible course of action is to reparameterize the
model using identifiable combinations. This solution entails reducing the
number of parameters involved in the model, with new variables
consisting of e.g. the product or quotient of some parameters and/or
states. These new variables are identifiable (observable) combinations,
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although the individual variables are not independently identifiable
nor observable. There are several methods for finding identifiable
combinations, with theoretical bases including Taylor series (Evans
& Chappell, 2000), Lie Algebra (Massonis & F. Villaverde, 2020;
Merkt, Timmer, & Kaschek, 2015; Sedoglavic, 2002), Gröbner
bases (Meshkat et al., 2014), and bootstrap (Hengl, Kreutz, Timmer,
& Maiwald, 2007). These methods can be used to find functionally
related parameters and/or identifiable combinations of them. This
information provides hints for generating identifiable model repa-
rameterizations, although this step requires some user intervention.
As an example, consider the simplest SIR model 6, in which the
parameter combination 𝛽∕𝐾 is identifiable. Reparameterizing the
model in this way makes it identifiable, although it is still impossible
to estimate either the transmission rate or the ratio of reported cases.
In addition, the three states would also have to be scaled by one of
the above-mentioned parameters, thus losing their original meaning.

5. Conclusions

Our analyses have shown that a fraction of the models found in
the literature have unidentifiable parameters. Key parameters such
as the transmission rate (𝛽), the recovery rate (𝛾), and the latent
period (𝜅) are structurally identifiable in most, but not all, models.
The transmission and recovery rates are identifiable in roughly two
thirds of the models, and the latent period in almost all (> 90%) of
them. Likewise, the states corresponding to the number of susceptible
(S) and exposed (E) individuals are non-observable in roughly one
third of the model versions analysed in this paper. The number of
infected individuals (I) can usually be directly measured, but it is
non-observable in one third of the model versions in which it is
not measured. The situation is worse for the number of recovered
individuals (R), which is almost never observable unless it is directly
measured. Many models include other states in addition to S, E, I,
and R, which are not always observable either.

The transmission rate and other parameters may vary during the
course of an epidemic, as a result of a number of factors such as
changes in public policy, population behaviour, or environmental
conditions. To account for these variations, in the present study we
have considered both the constant and the time-varying parameter
case. Somewhat unexpectedly, we found that allowing for variability
in an unknown parameter often improves the observability and/or
identifiability of the model. This phenomenon might be explained
by the contribution of this variability to the removal of symmetries
in the model structure. Structural identifiability and observability
depend on which states or functions are measured. The lack of
these properties may in principle be surmounted by choosing the
right set of outputs (Anguelova, Karlsson, & Jirstrand, 2012), but the
required measurements are not always possible to perform in practice.
Epidemiological models are a clear example of this; limitations such
as lack of testing or the existence of asymptomatic individuals usually
make it impossible to have measurements of all states. An alternative
to measuring more states is to use a model with fewer compartments
and/or a simpler parameterization, thus decreasing the number of
states and/or parameters. Reducing the model dimension in this way
may achieve observability and identifiability.

Even when it is not possible (or practical) to avoid non-
observability or non-identifiability by any means, the model may
still be useful, as long as it is only used to infer its observable states
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or identifiable parameters. For example, we may be interested in
determining the transmission rate 𝛽 but not the number of recovered
individuals R; in such case it is fine to use a model in which 𝛽 is
identifiable even if R is not observable. Of course, this means that, to
ensure that a model is properly used, it is necessary to characterize
its identifiability and observability in detail, to know if the quantity
of interest is observable/identifiable.

The contribution of this work has been to provide such a detailed
analysis of the structural identifiability and observability of a large
set of compartmental models of COVID-19 presented in the recent
literature. The results of our analyses can be used to avoid the pitfalls
caused by non-identifiability and non-observability. By classifying the
existing models according to these properties, and arranging them
in a structured way as a function of the compartments that they
include, our study has answered the following question: given the
sets of existing models and available measurements, which model
is appropriate for inferring the value of some particular parameters,
and/or to predict the time course of the states of interest?
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Appendix. Detailed structural identifiability and observability
results

The tables included in the following pages report the results of the
observability and structural identifiability analyses of all the model
variants considered in this paper. Each block of rows represents one
of the following assumptions:

• All parameters considered constant (i.e. as is usually the case in
the original publications).

• Transmission rate 𝛽 considered time-varying.
• Latent period 𝜅 considered time-varying (only in SEIR models;

SIR models do not have this parameter).
• Recovery rate 𝛾 considered time-varying.
• All parameters considered time-varying.

Within each block, each row provides detailed information about
identifiable and non-identifiable parameters, observable and non-
observable states, directly measured (D.M.) states, observable and
unobservable unknown inputs (and time-varying parameters), known
inputs, and number of derivatives of the unknown inputs (and time-
varying parameters) assumed to be non-zero (nnDerW). The suffix _d
number represents the 𝑛𝑡ℎ derivative of an unknown function (e.g.
𝛽_𝑑1 is the first derivative of the time-varying parameter 𝛽).

The blank blocks in the tables of the SEIR models numbers 38
and 8 indicate that the corresponding time-varying case is already
considered in the original formulation of the model. The SIR models
29 and 30 have only been studied in their original form, i.e. without
considering time-varying parameters, because these models do not
contain the common parameters of the SIR models; instead they use
the 𝑅0 constant.
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