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Abstract
Background/objectives Evidence on the associations between lifestyle movement behaviors and obesity has been estab-
lished without taking into account the time-constrained nature of categorized, time-based lifestyle behaviors. We examined
the associations of sleep, sedentary behavior (SED), light-intensity physical activity (LPA), and moderate-to-vigorous PA
(MVPA) with body mass index (BMI) using Compositional Data Analysis (CoDA), and compared the associations between
a report-based method (24-h Physical Activity Recall; 24PAR) and a monitor-based method (SenseWear Armband; SWA).
Subjects/methods Replicate data from a representative sample of 1247 adults from the Physical Activity Measurement
Survey (PAMS) were used in the study. Participants completed activity monitoring on two randomly selected days, each of
which required wearing a SWA for a full day, and then completing a telephone-administered 24PAR the following day.
Relationships among behavioral compositional parts and BMI were analyzed using CoDA via multiple linear regression
models with both 24PAR and SWA data.
Results Using 24PAR, time spent in sleep (γ=−3.58, p= 0.011), SED (γ= 3.70, p= 0.002), and MVPA (γ=−0.53,
p= 0.018) was associated with BMI. Using SWA, time spent in sleep (γ=−5.10, p < 0.001), SED (γ= 8.93, p < 0.001),
LPA (γ=−3.12, p < 0.001), and MVPA (γ=−1.43, p < 0.001) was associated with BMI. The SWA models explained more
variance in BMI (R2= 0.28) compared with the 24PAR models (R2= 0.07). The compositional isotemporal substitution
models revealed reductions in BMI when replacing SED by MVPA, LPA (not with 24PAR) or sleep for both 24PAR and
SWA, but the effect estimates were larger with SWA.
Conclusions Favorable levels of relative time spent in lifestyle movement behaviors were, in general, associated with
decreased BMI. The observed associations were stronger using the monitor-based SWA method compared with the report-
based 24PAR method.

Introduction

Nearly one in every three US adults is considered obese, and
the prevalence is expected to increase over the next two
decades [1]. Numerous factors have contributed to the obe-
sity epidemic, but a crucial determinant is the rapid societal
and environmental changes from physically active lifestyles
to sedentary lifestyles. This transition has been attributable,
in large part, to the drastic changes in technology, the
increased reliance on motor vehicles, and the reduced activity
involved in contemporary office work [2, 3].

Estimates suggest that US adults spend almost 8 h a day
on sedentary behavior (SED) which accounts for ~55% of
waking hours per day [4]. Evidence indicates that excess
time spent sedentary has detrimental effects on cancer,
cardiovascular disease, and mortality risk in adults,
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irrespective of the accumulation of moderate-to-vigorous
physical activity (MVPA) [5]. In addition, studies have
demonstrated that obese individuals tend to spend more
time being sedentary and less time being physically active
than normal weight or overweight individuals [6, 7]. These
findings hint at the complex etiology underlying the health
impacts of SED on obesity. Research on SED is still in a
relatively early phase of development and is plagued by
measurement challenges and lack of consensus on opera-
tional definitions [8].

To date, typical studies have only investigated SED and
MVPA as salient time-use compositional behaviors relative
to weight-related outcomes. However, there are other salient
time-use compositional behaviors such as sleeping (SLEEP)
[9] and light physical activity (LPA) [10] that have been
recently recognized as predictors of cardiometabolic risk
markers. However, there is a paucity of work examining the
concurrent and compositional relationships among SLEEP,
SED, LPA, and MVPA on weight-related outcomes, parti-
cularly in a representative sample of adult populations.

Most large-scale epidemiological studies on obesity have
used self-report methods, which are known to be more
prone to measurement errors than accelerometry-based
activity monitors. Differences in activity outcomes from
report-based and monitor-based measures of PA have been
well-documented. For instance, the proportion of US adults
meeting the PA guidelines has been estimated at over 50%
with self-report data, but is <5% when assessed with
accelerometry [11]. A few studies have evaluated associa-
tions between SED and obesity with both report-based and
monitor-based measures, but findings have been incon-
sistent [12–14]. The use of count-based methods for pro-
cessing accelerometer data may contribute to some of the
equivocal findings since this approach has some limitations
for quantifying SED [15]. The use of long-term recall
measures in these studies [12–14] may also contribute to
equivocal findings, since these methods are associated with
greater measurement errors than short-term recall methods
[16]. The types of measures being compared and the
sophistication of the data processing methods can dramati-
cally influence activity and health outcomes, so additional
research is needed to better understand the relationships
between lifestyle behaviors and weight-related outcomes.
The use of Compositional Data Analysis (CoDA) offers
advantages for evaluating these relationships since it can
account for the compositional properties of time-based
behaviors [17–20]. More specific to obesity research, CoDA
enables the impact of differences in time allocation on
weight status to be empirically evaluated.

To fill the gaps in this field of research, it is critical to
understand the extent to which the choice of measurement
tools affects the interplay of time-use compositional beha-
viors of SLEEP, LPA, SED, and MVPA in relation to BMI

at the population level. Therefore, the purposes of this study
were (1) to determine the relationships between movement-
related time-use components and BMI using CoDA, and (2)
to examine whether the observed CoDA associations vary
by type of assessment methods in a representative sample of
adults.

Materials/subjects and methods

This research is an ancillary study of the Physical Activity
Measurement Survey (PAMS) project, a cross-sectional
survey study that has examined relationships between
monitor-based and report-based measures of PA [21, 22]
and SED [23, 24]. The data collection for the PAMS project
was carried out across eight consecutive, 3-month quarters
(i.e., 2 years) to capture seasonal/weather variations. Parti-
cipants completed replicate trials consisting of 24-h activity
monitor use, followed by a 24-h recall survey on two ran-
domly selected days within one of the quarters of data
collection. The PAMS project was approved by the local
Institutional Review Board and is described in greater detail
elsewhere [21–24]. Each participant provided signed writ-
ten informed consent prior to participation.

Participants

The PAMS project employed a multi-level stratified sam-
pling technique to recruit a representative sample of adults
across four counties (two rural and two urban) in Iowa,
USA. Adults included in a purchased sample pool from
Survey Sampling International were contacted via random
digit dialing. The inclusion criteria were adults aged
between 20 and 75 years, and capable of walking and
completing surveys either in English or Spanish. The
exclusion criteria were adults with any critical medical
conditions preventing them from engaging in PA. The
sampling and characteristics have been previously descri-
bed, but the present study necessitated the use of replicate
samples so the final sample included 1247 participants (See
Supplementary Fig. 1).

Instruments

Two established measurement tools were used to obtain
both monitor-based and report-based measures of move-
ment behaviors.

SenseWear Armband Mini (SWA)

The SWA (BodyMedia, Inc., Pittsburgh, PA) is a non-
invasive pattern-recognition monitoring tool that utilizes
multiple sensors (heat flux, galvanic skin response, skin
temperature, near body temperature) as well as a tri-axial
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accelerometer. The SWA provides a variety of activity
parameters (i.e., activity time, MET, Kcal, speed, and dis-
tance) for every minute. The accuracy of the SWA for
adults has been tested in previous studies [25–27]. Data
from the SWA were processed using the latest version of
Software v8.0 (coupled with the proprietary
algorithms v5.2).

24 physical activity recall (24PAR)

The 24PAR is a self-report tool designed to assess activity
time, energy expenditure, and context of activities per-
formed in the previous day. The 24PAR was administered
over the telephone by trained interviewers using a
computer-assisted telephone interview system programmed
with the Blaise software. The 24PAR interview requires
each participant to report on the past day’s activities in
episodes of at least 5 minutes. The accuracy of 24PAR has
been tested for assessing activity time and energy expen-
diture [25, 28, 29].

Data collection

The PAMS project used a 24-h monitoring protocol to
directly link data from the SWA to the data from the
24PAR. Participants wore the SWA for 24-h on a randomly
selected day, and completed the 24PAR assessment the
following day to recall and report on activities performed in
the previous day (i.e., the same day as the SWA monitoring
day). Field staff members were sent to each participant’s
home (the day before the SWA monitoring day) to provide
detailed descriptions of the PAMS protocol, and distribute a
SWA monitor. The staff also provided each participant an
activity log to record any activities performed while the
SWA was not worn. A follow-up visit to the participant’s
home occurred the day after the monitoring day to collect
the SWA monitor used. Participants completed a second
trial on another randomly selected day (at least 12 days after
the first measurement trial) to obtain replicate measures
from both the SWA and 24PAR.

Data processing

Upon completion of the SWA monitoring protocol, the
SWA data were downloaded using the proprietary algo-
rithms/software. The SWA provides MET values for every
minute, so the standard MET-derived criteria were applied
to classify each minute into different intensity categories:
≤1.5MET for SED, 1.5 <MET < 3.0 for LPA, and ≥3.0MET
for MVPA. Classified minutes were aggregated to obtain
total daily activity minutes of the respective intensities.
SWA-determined sleep time (SLEEP) was subtracted from

the total categorized sedentary time to produce SED for
the SWA.

The PAMS protocol used a reduced listing of 270 codes
from the Compendium of PA [21, 30] to assign predicted
MET values to each reported activity from the 24PAR
interview. The same standard MET criteria were used for
the 24PAR data to classify each reported activity into the
different intensities. The corresponding estimate of SED
from the 24PAR was obtained by subtracting self-reported
SLEEP time from the sum of all minutes reported for the
27 specific sedentary activities (i.e., ≤1.5MET). LPA time
for 24PAR was estimated by subtracting SLEEP, SED, and
MVPA time from 1440 minutes. To obtain more stable
estimates of each movement behavior, the average values
from the two independent days of testing were computed for
each participant. Body Mass Index (BMI) was calculated as
measured weight (kg)/height squared (m2). Individuals with
BMI ≥ 30 and BMI < 30 were classified as obese and non-
obese, respectively. Key covariates controlled for in the
statistical models included gender (i.e., male and female),
age (years), ethnicity (i.e., White, Black, and Other), annual
income (i.e., <$25,000/year, between $25,000 and $75,000/
year, >$75,000/year), employment (i.e., full-time, part-time,
and unemployed/retired/full-time homemaker), education
background (i.e., <high school, some college/post-high
school, and college/graduate), marital status (i.e., married/
living as married, divorced/separated/widowed, and single/
never married), current smoking status (i.e., smoker and
non-smoker), and the measurement day of the week
(i.e., 2 weekdays, 2 weekend days, and 1 weekday and
1 weekend day).

Methods for Compositional Data Analyses (CoDA)

The following CoDA procedures have been adopted from
prior published work [19, 31–33]. Minutes per day in
SLEEP, SED, LPA, and MVPA were converted to % of
wear-time in each respective compositional part so that the
sum was equal to 100%. The geometric mean (in min/day)
was calculated for all parts and the sum of each part was
adjusted to 1440 minutes. Therefore, the compositional
value represents % time-use out of a 24-h day. Composi-
tional data occupy a quotient space which can be repre-
sented in a D-part simplex with four compositional parts
(4-part simplex) [19, 31]. However, in order to analyze the
data in real space, log-ratio data transformations needed to
be performed. Isometric Log Ratio coordinates (ILRs) were
calculated using the following equations:

ILR1 ¼
ffiffiffi
3
4

r
ln

SLEEP

SED � LPA� MVPAð Þ13

 !
; ð1Þ
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ILR2 ¼
ffiffiffi
2
3

r
ln

SED

LPA �MVPAð Þ12

 !
; ð2Þ

ILR3 ¼
ffiffiffi
1
2

r
ln

LPA
MVPA

� �
: ð3Þ

ILR1 expresses time in SLEEP to time in all other non-
SLEEP behaviors. ILR2 is the ratio of SED in relation to
LPA and MVPA. Finally, ILR3 is the ratio of LPA to
MVPA. These 3 ILRs were included in the linear regression
models described below to obtain the corresponding para-
meter estimates. However, the inference about the primary
contrast of interest in this set of analyses (i.e., SLEEP
relative to the three non-SLEEP behaviors) was based
purely on ILR1. As such, additional ILRs were calculated
through a parallel set of equations by permutating the
compositional parts in a sequential manner to obtain para-
meter estimates for the other three major behaviors of
interest: SED (ILRs 4–6), LPA (ILRs 7–9) and MVPA
(ILRs 10–12) [17].

ILR4 ¼
ffiffiffi
3
4

r
ln

SED
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ILR5 ¼
ffiffiffi
2
3

r
ln

SLEEP

LPA �MVPAð Þ12

 !
; ð5Þ

ILR6 ¼
ffiffiffi
1
2

r
ln

LPA
MVPA

� �
; ð6Þ

ILR7 ¼
ffiffiffi
3
4

r
ln

LPA

SLEEP� SED�MVPAð Þ13

 !
; ð7Þ

ILR8 ¼
ffiffiffi
2
3

r
ln

SLEEP

SED �MVPAð Þ12

 !
; ð8Þ

ILR9 ¼
ffiffiffi
1
2

r
ln

SED
MVPA

� �
; ð9Þ

ILR10 ¼
ffiffiffi
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ILR12 ¼
ffiffiffi
1
2

r
ln

SED
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Therefore, the ILRs from Eqs. (1–3) were entered into
each linear model to obtain the parameter estimate for ilr

SLEEP, the ILRs from Eqs. (4–6) were entered into each

linear model to obtain the parameter estimate for ilr SED, the
ILRs from Eqs. (7–9) were entered into each linear model to
obtain the parameter estimate for ilr LPA, and the ILRs from
Eqs. (10–12) were entered into each linear model to obtain
the parameter estimate for ilr MVPA. Because of the per-
mutation principle, each respective linear model with 4
compositional parts (SLEEP, SED, LPA, MVPA) will have
the same estimated fit, intercept, and p value for all cov-
ariates per permutation [17]. This process was carried out
using the modeling procedures described below for both
24PAR and SWA.

Statistical analyses

Arithmetic and geometric means for the four behavior
compositional parts were reported. Compositional mean bar
plots were created to display the log ratio of geometric
means, per obesity strata (non-obese, obese), to the mean of
the whole sample [17, 32, 33]. Bar plots were derived for
both 24PAR and SWA. Compositional variation matrices
were used to communicate the variation of the calculated
pair-wise log ratios (e.g., ln (SED/MVPA)) [17, 32, 33].
A variation coefficient closer to 0 would indicate that there
is higher co-dependency between two respective composi-
tional parts. Higher co-dependency suggests that there is
smaller variability in the log ratio between the two com-
positional parts within the sample [17, 32, 33]. Total var-
iance within the matrices was calculated by dividing
the sum of the variances on either side of the diagonal by
D= 4 [19, 31].

To examine the relationship among SLEEP, SED, LPA,
MVPA, and BMI, multiple linear regression models were
employed. Separate models were employed for 24PAR
and SWA. Four permutations were used to calculate
parameter estimates for each of the four compositional
parts. Parameter estimates (gamma coefficients) and cor-
responding 95% confidence intervals were reported.
Models were adjusted for age, sex, ethnicity, income,
employment, education, marital status, smoking status,
and the measurement day of the week. Model fit was
examined using the coefficient of determination (R2). A
series of logistic regression models combined with the
same sequential permutation procedure was performed to
examine the relationships of the compositional parts with a
binary BMI-determined obesity status outcome (defined
using the 30 kg/m2 cut point).

Because parameter estimates for ILRs are difficult to
interpret in the context of units of change in the raw
behaviors [17, 33], compositional isotemporal substitution,
as recommended and outlined by Dumuid et al. [20], was
used to determine how reallocation of time spent between
behaviors is associated with changes in BMI. Means for
each compositional part were used to predict BMI values
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from which BMI change values could be calculated based
on a new composition (e.g., reallocating 10 min from SED
to MVPA). Data using compositional isotemporal sub-
stitution were used to derive plots indicating how reallo-
cation of time in the ratio between any two compositional
parts, with a fixed relative amount of the third and fourth
compositional part, is associated with a predicted change in
BMI (via the adjusted linear model) and the odds of obesity
(via the adjusted logistic model). Technical details of this
specific CoDA calculation have been described elsewhere
[32]. All analyses had a statistical significance level set at p
< 0.05 and were carried out using STATA v15.0 statistical
software package (StataCorp LLC, College Station, TX).

Results

Table 1 summarizes the physical/socio-demographic char-
acteristics of the non-obese and obese individuals. About
44.4% of the participants were obese. There were significant
differences between non-obese and obese groups on
income, education, and smoking status (p < 0.05). There
were no significant differences between non-obese and
obese groups on gender, age, ethnicity, employment status,
marital status, and measurement day of the week.

Table 2 communicates the Arithmetic and Geometric
means for SLEEP, SED, LPA, and MVPA for 24PAR and
SWA. The majority of the day was spent in SED, followed

Table 1 Characteristics of the
participants for all and by weight
status: non-obesity (n= 694)
and obesity (n= 553).

All Non-obesity Obesity p value

Gender, n (%)

Female 714 (57.3) 398 (57.4) 316 (57.1) 0.942

Male 533 (42.7) 296 (42.6) 237 (42.9)

Age, years 50.1 (12.5) 49.5 (13.0) 50.8 (11.8) 0.0686

BMI, kg/m2 30.4 (7.4) 25.5 (3.0) 36.7 (6.4)

Ethnicity, n (%)

White 1,116 (89.5) 626 (90.2) 490 (88.6) 0.156

Black 95 (7.6) 45 (6.5) 50 (9.0)

Other 36 (2.9) 23 (3.3) 13 (2.4)

Income, n (%)

<$25,000/yr 223 (17.9) 115 (16.6) 108 (19.5) 0.023a

From $25,000 up to $75,000/yr 606 (48.6) 324 (46.7) 282 (51.0)

>$75,000/yr 418 (33.5) 255 (36.7) 163 (29.5)

Employment, n (%)

Full time 741 (59.4) 401 (57.8) 340 (61.5) 0.142

Part time 168 (13.5) 105 (15.1) 63 (11.4)

Unemployed/retired/full time homemaker 338 (27.1) 188 (27.1) 150 (27.1)

Education, n (%)

Less than high school 51 (4.1) 25 (3.6) 26 (4.7) <0.001a

High school diploma/some college 708 (56.8) 363 (52.3) 345 (62.4)

College/graduate school 488 (39.1) 306 (44.1) 182 (32.9)

Marital status, n (%)

Married/living as married 820 (65.7) 460 (66.3) 360 (65.1) 0.787

Divorced/separated/widowed 224 (18.0) 120 (17.3) 104 (18.8)

Single/never married 203 (16.3) 114 (16.4) 89 (16.1)

Current Smoking status, n (%)

Yes 235 (18.9) 151 (21.8) 84 (15.2) 0.003a

No 1,012 (81.1) 543 (78.2) 469 (84.2)

Measurement Day of week, n (%)

2 Weekdays 702 (56.3) 389 (56.1) 313 (56.6) 0.558

2 Weekend days 97 (7.8) 59 (8.5) 38 (6.9)

1 Weekday + 1 Weekend day 448 (35.9) 246 (35.4) 202 (36.5)

24PAR 24-h physical activity recall, SWA SenseWear Armband, SLEEP time sleeping, SED sedentary time,
LPA light physical activity, MVPA moderate-to-vigorous physical activity.
aIndicates significant relationships based on the Chi-square tests (an alpha level = 5%).
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by SLEEP, LPA, and MVPA. Table 3 communicates the
compositional variation matrices using 24PAR and SWA.
Coefficients within the variation matrices ranged from 0.21
to 1.56. In general, coefficients were higher for the SWA
compared with the 24PAR, indicting greater independence
between compositional parts. This is reflected in the higher
total variation observed using SWA (1.51) compared with
24PAR (1.23). The highest coefficient was the log ratio
variance between SED and MVPA using SWA (indicating
high independence between parts) and the smallest was the
log ratio variance between SED and SLEEP using 24PAR
(indicating high co-dependence between parts). Descriptive
differences comparing Geometric means between non-
obese and obese individuals using 24PAR (i.e., left panel)

and SWA (i.e., right panel) are presented in Fig. 1. Obese
individuals spent more time in SED and less time in LPA
and MVPA. Group contrasts for SLEEP were negligible.
Greater contrasts between non-obese and obese groups were
observed using SWA.

Table 4 shows the unadjusted and adjusted parameter
estimates (gamma-coefficients and 95% confidence inter-
vals) from the linear regression models performed using the
CoDA approach. Using 24PAR, after adjusting for potential
confounding variables, time spent in SLEEP (p = 0.011),
SED (p = 0.002), and MVPA (p = 0.018) were all sig-
nificantly associated with BMI. Specifically, individuals
who had a higher log ratio of SLEEP or MVPA over other
compositional parts tended to have lower BMI. Conversely,
individuals who had a higher log ratio of SED over other
compositional parts tended to have higher BMI. The
adjusted 24PAR model R2 was 0.075. Using SWA, all ILRs
in the adjusted model were statistically significant pre-
dictors of BMI; the corresponding coefficients were larger
compared with those using 24PAR. Specifically, individuals
who had a higher log ratio of SLEEP, LPA, or MVPA over
other compositional parts tended to have lower BMI (p <
0.001). Individuals who had a higher ratio of SED over
other compositional parts tended to have higher BMI (p <
0.001). The adjusted SWA model R2 was 0.283.

Figure 2 was derived using the compositional iso-
temporal substitution method outlined in Dumuid et al. [20]
indicating how reallocating time from SED to SLEEP, LPA
or MVPA is associated with a change in BMI for data from
both the 24PAR and SWA. Specific BMI change values for
10- and 30-min reallocation of time are presented in Table 5
using values reported in Fig. 2. Using 24PAR, a 10-min
reallocation from SED to MVPA and from SED to SLEEP
was associated with 0.05- and 0.10-unit lower BMI,
respectively. Using SWA, a 10-min reallocation from SED
to MVPA or LPA was associated with 0.14-unit lower BMI;
and 0.18-unit lower BMI for a 10-min reallocation from
SED to SLEEP (Table 5). The effect estimates were larger,
indicating stronger associations, when using data from
SWA compared with 24PAR. An identical trend of asso-
ciations was observed for 30-min reallocation (Table 5 and
Fig. 2). Results from the logistic regression models using
BMI as a categorical variable (e.g., obesity versus non-
obesity) also identified stronger associations when reallo-
cating time between behaviors using SWA than 24PAR
(See Supplementary Fig. 2 and Supplementary Table 1).

Discussion

This study is the first empirical investigation to use the
CoDA procedures to examine the associations of lifestyle
behaviors as compositional parts with weight status using

Table 2 Arithmetic and geometric compositional means for the four
compositional parts (in minutes/day and % of total day).

Arithmetic mean Compositional mean

Minutes/day % Minutes/day %

24-h Physical Activity Recall (24PAR)

SLEEP 361.4 25.1% 377.3 26.2%

SED 705.6 49.0% 733.0 50.9%

LPA 266.4 18.5% 253.4 17.6%

MVPA 106.6 7.4% 76.3 5.3%

SenseWear Armband (SWA)

SLEEP 296.6 20.6% 299.5 20.8%

SED 819.4 56.9% 874.1 60.7%

LPA 246.2 17.1% 224.6 15.6%

MVPA 77.7 5.4% 41.8 2.9%

SLEEP time sleeping; SED sedentary time; LPA light physical activity;
MVPA moderate-to-vigorous physical activity.

Table 3 Compositional variation matrices.

SLEEP SED LPA MVPA

24-h Physical Activity Recall (24PAR)

SLEEP 0

SED 0.21 0

LPA 0.57 0.65 0

MVPA 1.10 1.17 1.22 0

SenseWear Armband (SWA)

SLEEP 0

SED 0.30 0

LPA 0.75 0.78 0

MVPA 1.49 1.56 1.17 0

Lower cell values indicate greater co-dependence between composi-
tional parts; higher cell values indicate greater independence between
compositional parts.

Total variance: 24PAR = 1.23, SWA = 1.51.

SLEEP time sleeping, SED sedentary time, LPA light physical activity,
MVPA moderate-to-vigorous physical activity.
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both a report- and monitor-based assessment method. When
time-use compositional behaviors were assessed using the
24PAR, only relative time spent in SLEEP, SED, and
MVPA (not LPA) had significant associations with BMI.
The compositional isotemporal substitution modeling sug-
gests that replacing SED by either SLEEP or MVPA is
associated with lower BMI. These findings add much value
to previous research which examined obesity in relation to
self-reported MVPA or SED as individual, non-dependent
behavioral constructs using traditional regression models
[14, 34–36]. Another unique advantage of this study is the
ability to compare outcomes from both report-based and
monitor-based data with CoDA.

The monitor-based estimates of SLEEP, SED, and MVPA
from the SWA were found to be more strongly associated
with BMI, compared with 24PAR. The weaker associations
with 24PAR may be indicative of the larger measurement
error associated with 24PAR due to the recall bias [37] and
social desirability and approval bias [38]. In support, large
error in exposure variables (e.g., behaviors) is known to lead
to reductions in effect estimates [39]. In addition, the com-
positional isotemporal substitution modeling with SWA
demonstrated reduced BMI when SED was replaced not only
by SLEEP or MVPA time but also by LPA time. These
results suggest that reductions in obesity can be achieved
by substituting sedentary time with light-intensity lifestyle

Fig. 1 Geometric mean barplots (24PAR-Left, SWA-Right)
showing time spent sleeping, in sedentary behavior, in light phy-
sical activity, and in moderate-to-vigorous physical activity, stra-
tified by obesity status. Each bar represents the geometric mean of the
specific group (gk), expressed in terms of a ratio measured on a
logarithmic scale to the geometric mean of the entire sample for each
behavior (ln gk/g). A ratio of 0 reflects that the geometric means of the

specific group and the entire sample are equal. Positive and negative
values show that the group geometric mean is larger and smaller,
respectively, than the entire sample, 24PAR stands for 24-h Physical
Activity Recall, SLEEP is time sleeping, SED stands for Sedentary
Time, LPA stands for Light Physical Activity, MVPA stands for
Moderate-to-Vigorous Physical Activity.

Table 4 Parameter estimates from the Body Mass Index multiple linear regression models using compositional data analyses (reported as gamma-
coefficients).

Assessment Method Isometric Log Ratio
Predictor

Unadjusted Model γ—coefficient
(95% CI)

Adjusted Model γ—coefficient
(95% CI)

p value

24-h Physical Activity Recall
(24PAR)

ilr SLEEP/SED*LPA*MVPA −3.38a (−6.14, −0.63) −3.58a (−6.29, −0.79) 0.011

ilr SED/SLEEP*LPA*MVPA 3.58a (1.26, 5.91) 3.70a (1.37, 5.99) 0.002

ilr LPA/SLEEP*SED*MVPA 0.27 (−0.61, 1,14) 0.41 (−0.51, 1.31) 0.541

ilr MVPA/SLEEP*SED*LPA −0.47a (−0.91, −0.03) −0.53a (−0.99, −0.09) 0.018

SenseWear Armband (SWA) ilr SLEEP/SED*LPA*MVPA −5.62a (−6.95, −4.30) −5.10a (−6.40, −3.84) <0.001

ilr SED/SLEEP*LPA*MVPA 9.24a (7.83, 10.66) 8.93a (7.57, 10.31) <0.001

ilr LPA/SLEEP*SED*MVPA −3.36a (−4.11, −2.62) −3.12a (−3.85, −2.40) <0.001

ilr MVPA/SLEEP*SED*LPA −0.74a (−1.08, −0.38) −1.43a (−1.80, −1.06) <0.001

Models were adjusted for age, sex, ethnicity, income, employment, education, marital status, smoking status, and measurement day of the week.

Outcome is Body Mass Index (kg/m2).

SLEEP time sleeping, SED sedentary time, LPA light physical activity, MVPA moderate-to-vigorous physical activity, ilr isometric log ratio, 95%
CI 95% confidence interval.
aBold and denotes statistical significance (an alpha level = 5%).
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activities (i.e., standing, slow walking). Promoting changes
in MVPA time is relatively more difficult, since it requires
adoption of more purposive, higher intensity activities (e.g.,
sports, brisk walking, or running). From a public health
perspective, encouraging shifts from SED to LPA may be a
more efficient and practical prevention strategy than pro-
moting shifts from SED to MVPA to attenuate the obesity
epidemic. However, replacing SED with both LPA and
MVPA may have a more significant impact on energy
expenditure than just replacing SED with LPA alone.

The direct contrast between 24PAR and SWA herein
adds to findings from past research [12–14] which attempted
to examine the differences in associations between MVPA
or SED and metabolic risk factors according to the use of
different PA assessment methods. However, none of them
[12–14] used the CoDA to address the time-constraint nature
of lifestyle behaviors. Moreover, they [12–14] used vastly
different methodologies (i.e., types of self-report tools,
sedentary activities, accelerometry count cut-offs, popula-
tions), which makes it challenging to make a fair comparison
across all investigations. However, a distinguishable feature
of the present research is the use of pattern-recognition
monitors and the 24PAR, both of which are known to be
more accurate than traditional accelerometers [40] and long-
term recalls [21], respectively. Further investigations are
needed to better understand the implications of utilizing
different measurement tools in identifying associations
among lifestyle behaviors and BMI using CoDA.

The strengths of the study include the large, representative
nature of the sample, the use of CoDA to examine the rela-
tionships between time-use compositional behaviors and
BMI, and robust analyses controlling for several potential
confounding variables. However, there are some limitations
of this study that should be considered when interpreting the
results. First, given that this study capitalized on cross-
sectional data, no causal inferences can be drawn. The
directions of causal relationships among SLEEP, SED, LPA,
MVPA, and BMI can still not be determined [41, 42]. There
has been only few research [43] using the CoDA to investi-
gate the longitudinal associations of objectively measured
time-use compositional behaviors with adiposity, so more
prospective cohort studies incorporating objective, repetitive
measures of movement behaviors are needed to determine the
true relationships of constrained time-use compositional
behaviors relative to various adiposity indicators [44].
Another limitation is the assessment across only two days,
which may not capture the routine activity levels of the par-
ticipants. However, the two measurement days were ran-
domly selected, and the data were collected over a 2-year time
span to adjust for the potential weather/seasonal variation in
activity patterns. Nevertheless, there could still be day-to-day
variability for each participant that incorrectly characterizes
individual profiles. These errors would tend to be random
across the sample so results would likely be stronger if more
days were assessed. The majority of the participants were
Caucasian (89%), and individuals in the present study were
relatively physically active (i.e., about 1 h/day MVPA in non-
obese and 2 h/day of MVPA in obese individuals), so it may
be premature to assume that these relationships hold in other
populations. Another limitation is that the results are only
capturing the associations of lifestyle activities with BMI. The
lack of information about dietary intake limits our ability to
fully understand energy balance and weight control.

Fig. 2 Change in Body Mass Index (kg/m2) for every 10-min
reallocation of time-use compositional behavior using 24-h Phy-
sical Activity Recall and SenseWear Armband. SLEEP is time
sleeping; SED stands for Sedentary Time; LPA stands for Light
Physical Activity; MVPA stands for Moderate-to-Vigorous Physical
Activity. Note: Dashed lines are 24PAR; solid lines are SWA; LPA
not shown for 24PAR due to non-significance.

Table 5 Predicted changes in Body Mass Index (BMI) (kg/m2)
following 10-min and 30-min reallocation between behaviors using
compositional isotemporal substitution.

10-min reallocation 30-min reallocation

24-h Physical Activity Recall (24PAR)

SED to MVPA −0.05 −0.14

MVPA to SED 0.06 0.21

SED to SLEEP −0.10 −0.27

SLEEP to SED 0.09 0.28

SenseWear Armband (SWA)

SED to MVPA −0.14 −0.35

MVPA to SED 0.18 0.84

SED to LPA −0.14 −0.40

LPA to SED 0.15 0.46

SED to SLEEP −0.18 −0.53

SLEEP to SED 0.18 0.57

24PAR LPA not shown because of no statistical significance.

SLEEP time sleeping, SED sedentary time, LPA light physical activity,
MVPA moderate-to-vigorous physical activity.
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Conclusions

The compositional associations among the time-use compo-
sitional behaviors of SLEEP, SED, MVPA, with BMI are
much stronger using SWA compared to 24PAR. BMI had
strong associations with relative time-use within monitor-
based estimates of LPA, but not with self-reported LPA.
Replacing SED by SLEEP, LPA (not with 24PAR), or
MVPA was associated with reduced BMI, but the effect
estimates were much weaker when using 24PAR compared
with SWA. This may be attributable to the substantial mea-
surement errors inherent in 24PAR. Error in report-based
measures of constrained time-use compositional behaviors
may obscure the clinically important obesity associations.
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