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Abstract

All the above-ground organs of a plant are derived from stem cells that reside in shoot apical 

meristems (SAM). Over the last 25 years, the genetic pathways that control the proliferation of 

stem cells within the SAM, and the differentiation of their progenitors into lateral organs, have 

been described in great detail. However, longstanding questions regarding the importance of 

communication between cells within the SAM and lateral organs have, until recently, remained 

unanswered. In this review, we describe recent investigations into the extent, nature and 

significance of signaling both to and from the SAM.
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Introduction

The growth and architecture of a plant shoot depend on the activity of shoot apical 

meristems (SAMs). These structures are stably maintained by the precisely controlled 

balance between cell proliferation and differentiation, but are also capable of responding to 

endogenous and environmental cues that influence their growth and the types of organs they 

produce. The degree to which the SAM regulates shoot development autonomously, or acts 

in response to extrinsic factors that originate outside the SAM, is a classic question in plant 

biology. Half a century ago, Ian Sussex [1] asked: ‘are … meristems to be considered as 

organizer regions whose functional changes represent changes initiated within the meristem 

itself, or are they simply plastic regions in which new cells are molded into organs and 

tissues in response to stimuli proceeding from other sources?’ At the time, data from 

microsurgical, shoot culture, and hormone treatment studies suggested that the SAM was 

largely autonomous of neighboring tissues and organs. However, with the benefit of modern 
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molecular tools, it has become apparent that apical meristems typically function as signaling 

integrators, coordinating cues from elsewhere in the plant and from the environment.

The structure and activity of the SAM, and the regulatory networks that determine these 

features, have been reviewed extensively recently [2,3]. SAMs possess several distinct 

functional domains (Figure 1). Stem cells—which divide to produce additional stem cells as 

well as cells that will differentiate—reside within the central zone (CZ). Cells derived from 

the CZ are displaced laterally to the peripheral zone (PZ), where they differentiate into 

lateral organs, or basally to the rib zone (RZ), where they differentiate into cells of the stem. 

Stem cell proliferation within the SAM is maintained by the activity of members of two 

distinct families of homeobox gene: WUSCHEL-LIKE (WOX) and KNOTTED-LIKE 
(KNOX). In Arabidopsis, WUSCHEL (WUS) is expressed in the ‘Organizing Center’ of the 

CZ (Figure 1), where it promotes the division of stem cells. The expression domain of WUS 
is restricted by the activity of the signaling peptide CLAVATA3 (CLV3), which regulates 

WUS in a negative feedback loop. Therefore loss-of CLV3 function leads to an expansion of 

the SAM, whereas loss-of WUS function leads to meristem termination. The Arabidopsis 
KNOX gene SHOOT MERISTEMLESS (STM) is expressed more broadly in the SAM, and 

acts to maintain stem cells in an undifferentiated state. Both WUS and STM are necessary 

for meristem maintenance throughout the ontogeny of individual meristems, and within 

different developmental contexts, i.e. SAMs in the vegetative and reproductive phases of a 

plant life cycle. In this review we detail how core developmental processes in the SAM are 

influenced by extrinsic genetic and metabolic factors, describe examples of environmental 

signals that are perceived both within and without the SAM, and provide an update on a 

longstanding hypothesis regarding extrinsic signaling by the SAM on lateral organs.

Regulation of developmental transitions by extrinsic factors

The best described example of an extrinsically regulated change in the activity of the SAM 

is floral induction (Figure 2A). It has been known for many years that inductive 

photoperiods trigger production of a mobile ‘florigen’ in leaves, which moves to the SAM to 

initiate flowering [4]. This signal is now known to be a small protein encoded by the 

FLOWERING LOCUS T (FT) gene. FT moves from leaves to the SAM via the phloem [5–

8], where it interacts with the locally expressed bZIP transcription factor FLOWERING 

LOCUS D (FD) to induce the transition from a vegetative to an inflorescence meristem 

[9,10]. Recently it was shown that FT enhances, but is not necessary, for the binding of FD 

to its targets and that phosphorylation of FD, presumably by two calcium-dependent kinases, 

is required for this interaction [11,12]. It has also been suggested that leaves regulate floral 

induction at the SAM via the hormone, gibberellin (GA) [13,14], a hypothesis that is 

supported by the identification of GA-transporters and mobile forms of GA [15,16]. 

Although there is considerable evidence that GA regulates flowering time, whether GA acts 

in the leaves or in the SAM, as well as the functional significance of mobile GA, is still 

unclear because GA synthesized within the SAM can also affect flowering time [17].

Communication between leaves and the SAM is also important for the regulation of the 

transition between the juvenile and adult phases of vegetative growth (vegetative phase 

change) [18]. Traditionally, it was thought that the phase identity of the vegetative shoot (i.e. 
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juvenile versus adult) was determined by factors operating endogenously within the SAM 

[19]. However, more recent work has shown that this transition is promoted by signaling 

from pre-existing leaves, via repression of the master regulator of vegetative phase change, 

miR156 [20]. This leaf-derived signal consists, at least in part, of carbohydrates because 

exogenous application of glucose delays vegetative phase change, represses miR156 

expression, and compensates for the loss of leaf primordia [21,22] (Figure 2A). Evidence 

that leaves regulate the activity of the SAM is also provided by the finding that a leaf-

expressed miR156-resistant version of SPL9 is able to regulate the rate of leaf initiation in 

the SAM [23], although whether the endogenous SPL9 protein moves intercellularly within 

the shoot apex remains to be demonstrated.

Conversely, recent work has shown that the SAM is important for the specification of leaf 

identity early in shoot development [24**]. In Arabidopsis, constitutive expression of 

miR156 within the SAM regulates leaf identity and represses its direct targets in leaf 

primordia. These observations suggest that this is because miR156 is able to diffuse from the 

SAM into leaf primordia [24**]. These and the results of other region-specific gene 

expression experiments suggest that the control of vegetative identity shifts spatially from 

the SAM to leaves over time. More generally, while miRNA movement within the SAM 

regulates core genetic networks [25*,26], the extent of miRNA mobility across the shoot 

apex appears strictly controlled [27**].

Regulation of SAM size and maintenance by extrinsic factors

Short-range signaling

As described in the introduction, the SAM is initiated and maintained by transcription 

factors (WUS and STM) that are expressed exclusively within the SAM. The distribution 

and activity of these transcription factors is regulated by molecules that are produced locally 

within the SAM, and by molecules produced by surrounding organs and tissues. Several of 

these molecules act to repress the growth of the SAM. For example, although a basal level of 

auxin signaling is required for the maintenance of the SAM [28*], a combination of 

experimental approaches and mathematically modelling suggest that the growth of the 

meristem is repressed by auxin produced by lateral organs [28**] (Figure 2B). As lateral 

organs are stronger auxin sources than the SAM, it is predicted that basipetal auxin flow 

from leaves competitively inhibits the export of auxin from the SAM, and restricts meristem 

size [29**]. This model is supported by analyses of yabby (yab) mutants, which non-

autonomously increase meristem size [30], possibly because they reduce the export of auxin 

from leaves [29**]. In maize, there is evidence that leaf primordia non-autonomously 

repress the growth of the SAM through their production of the CLV3-like peptide, FCP1. 

This conclusion is based on in situ data suggesting that FCP1 is expressed in leaf primordia, 

and the observation that expressing FCP1 specifically in leaf primordia reduces WUS 
expression and represses the growth of the SAM [31]. However, a transcriptomic survey of 

the maize SAM has found evidence for FCP1 expression within the CZ, indicating it likely 

functions at least in part SAM-autonomously [32*]. A third example is provided by the 

diffusible miRNAs, miR165/miR166, which repress the expression of a group of HD-ZIP III 

transcription factors essential for the specification of the apical domain of the embryo and 
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the initiation and maintenance of the SAM [33,34]. miR165/miR166 are expressed in cells 

surrounding the SAM, but are capable of moving into the SAM and repressing HD-ZIP III 

expression in this domain [35,36]. They are prevented from doing so by ARGONAUTE10 

(AGO10) [34], which is expressed in the SAM and provasculature [37,38] and specifically 

sequesters miR165/miR166 [39], causing them to become hyper-susceptible to degradation 

by SMALL RNA DEGRADING NUCLEASE family members [40]. Thus, meristem 

activity is exogenously maintained by the coordinated degradation of specific miRNAs.

In contrast to these examples of negative regulation of the SAM by lateral organs and 

tissues, a role for lateral organs in promoting meristem maintenance has recently been 

described in the liverwort Marchantia polymorpha [41**]. Naramoto et al identified the gene 

LATERAL ORGAN SUPRESSOR1 (MpLOS1) in a mutant screen for regulators of 

organogenesis. Mplos1 mutants produce unusual green outgrowths in place of transparent 

scales and, in addition, fail to maintain an apical meristem. MpLOS1 expression is restricted 

to lateral organs and the MpLOS1 protein does not appear to move into the apical meristem, 

suggesting that MpLOS1 promotes meristem maintenance non-cell autonomously. Whether 

it does so indirectly—by promoting the differentiation of lateral organs—or in a more direct 

fashion, remains to be determined. Interestingly, homologs of MpLOS1 in angiosperms are 

also important for the differentiation of lateral organs and, in eudicots at least, their 

expression domain is restricted to the flanks of the SAM [42–44]. Although it is beyond the 

scope of this review, it should be noted that meristem boundaries are critical for isolating 

proliferating stem cells from differentiation programs in lateral organs, and are required for 

SAM establishment and axillary meristem formation [reviewed by 45,46].

Long range signaling

The plant hormone cytokinin (CK) maintains the growth of the SAM by promoting the 

expression of the transcription factor, WUS, via CLV-dependent and independent 

mechanisms. Although mathematical models suggest that CK biosynthesis and signaling 

within the SAM are sufficient for its function [47–49], the transport of CK precursors from 

the root has also been shown to affect WUS expression and SAM size [50**,51] (Figure 

2B). In Arabidopsis, acropetal transport of CK-precursors requires the activity of the ATP-

binding cassette transporter ABCG14 in the root [52,53]. Root-derived trans-zeatin and 

trans-zeatin riboside both affect leaf development, but only trans-zeatin riboside is able to 

regulate the activity of the SAM [51]. Movement of CKs up the shoot is dependent on nitrate 

levels in the soil, providing a potential mechanism by which shoot growth can be regulated 

by nutrient availability [50**,54].

Additional evidence that root signals regulate the activity of the SAM is provided by 

mutations in the gene BYPASS1 (BPS1), which terminate the growth of the SAM by 

diminishing CK signaling in the SAM and repressing WUS expression [55]. The exact 

mechanism of this effect is still unknown, but it has been attributed to a mobile, root-

synthesized signal [56] that is dependent on carotenoid biosynthesis [57]. Unknown seed-

derived signals, in combination with an endogenous age-dependent pathway, also lead to the 

termination of apical growth through repression of WUS activity [58*,59].
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Intrinsic and extrinsic environmental regulation of SAM activity

In nature, plants modify their growth and development to adapt to varying environmental 

conditions. Although many of these responses involve changes in the activity of the SAM 

(e.g. the timing of developmental transitions, the rate of leaf initiation, branching patterns), it 

is usually unclear if the environmental stimulus is perceived directly by the SAM, or 

perceived elsewhere in the plant and transmitted to the SAM. For example, cold-induced 

repression of the floral suppressor FLC occurs in both the SAM and leaves [60], while the 

mechanism for cold-induced SAM-termination in Brassica oleracea seedlings is unknown 

[61].

The best characterized examples of exogenous regulation of SAM activity concern the 

effects of light. The effects of light on the activity of the SAM can be partitioned into direct 

light-signaling effects and those mediated by the derivatives of photosynthesis [62]. The 

proliferation of the SAM, as well as changes in its pattern of differentiation, require both and

—when deprived of light and sugar—meristematic growth, organogenesis, and 

developmental transitions are severely affected. As noted above, light (specifically, 

photoperiod) regulates flowering through its effect on the synthesis of FT in leaves. In 

addition, low red:far red light ratios, which recapitulate shade conditions, promote the 

expression of FT [63]. More generally light, and metabolic pathways dependent on light, 

regulate the activity of the SAM through their effects on cytokinin signaling and the 

TARGET OF RAP (TOR) kinase complex, which promote WUS expression [62,64–66] 

(Figure 2B). Light perception appears to take place in the leaves, rather than the SAM, as 

transgenic activation of light signaling, or exposure to high light in leaves (but not the 

SAM), promotes cell proliferation in the shoot apex [62,65]. However, the identity of the 

putative light-induced factor that non-cell autonomously regulates meristem development is 

unknown. In terms of sugar signaling, WUS activity requires metabolizable sugars, 

suggesting that sugars function as an energy source rather than as signaling molecules [62]. 

Although the SAM does not appear to be photosynthetically active [62,67], the sucrose-

signaling regulator TREHALOSE-6-PHOSPHATE SYNTHASE1 is expressed within the 

SAM [68,69]. Therefore, despite depending on extrinsic sources of sugar, the SAM can 

regulate sugar-signaling networks intrinsically.

It has recently been demonstrated that SAM-activity is dependent on the endogenous 

perception and regulation of its own oxygen environment. Oxygen is excluded from the CZ, 

which limits the oxygen-dependent proteolysis of the HD-ZIP III interactor LITTLE 

ZIPPER 2 [70**]. A general role for oxygen derivatives in the regulation of the SAM is 

supported by the mutant phenotypes of SAM-expressed redox regulators [71–73], and the 

non-uniform accumulation and effects of reactive oxygen species within the SAM [74]. 

Localized temperature manipulation experiments in cucumber suggest the SAM may also 

interpret temperature signals to regulate leaf initiation [75].

Extrinsic regulation by the SAM?

A classic hypothesis in plant biology is that the SAM non-cell autonomously regulates 

dorsoventral patterning in leaves [76]. Based on microsurgical experiments in potato and 
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tomato, it has been proposed that a SAM-derived signal is required to correctly induce leaf 

dorsoventrality [76,77]. However, evidence from laser-ablation of cells in the SAM has 

recently led to an alternative interpretation of these microsurgical experiments [78**]. 

Caggiano et al demonstrated that wounding disrupts the adjacent expression domains of 

dorsoventral specificity factors REVOLUTA (REV) and KANADI1 (KAN) in the SAM, and 

the boundary of auxin signaling that separates them. In accordance with previous hypotheses 

[79,80], the authors propose that dorsoventral patterning of leaves does not require a mobile 

signal from the SAM, but instead maintenance of boundaries between key regulators during 

leaf initiation. It has also been suggested that dorsoventral patterning is dependent on the 

flow of auxin from the dorsal side of leaf primordia to the SAM [81,82]. Whether or not 

asymmetric auxin signaling establishes leaf polarity, and how to test this experimentally 

(particularly with regard to genetic auxin sensors), have recently been of some debate 

[83,84].

Conclusion and outlook

Although the function of the SAM depends on integrating extrinsic signals, the core 

regulatory networks that coordinate stem cell proliferation appear to operate with minimal 

external input. The relative independence of these networks is demonstrated by the limited 

range of signals to which they are susceptible (Table 1). Plant hormones, microRNAs, sugars 

and small proteins are all able to extrinsically regulate SAM activity, whereas there is little 

support for extrinsic regulation by larger proteins. The extent to which external factors can 

regulate the activity of the SAM may therefore depend on their size, which could determine 

their ability to enter the SAM. Smaller molecules may be able to travel symplastically from 

the vasculature to the SAM, but this may be impossible for larger proteins. On the other 

hand, transcription factors such as WUS and STM move readily within the SAM [85,86], 

suggesting that once inside the SAM intercellular movement of larger proteins is less 

restricted.

Regardless of how transport into the SAM is regulated, the exclusion of sRNAs and proteins 

that could lead to the mis-expression of SAM regulators is critical to ensuring balanced 

meristematic growth. Understanding the cellular and spatial mechanisms by which access to 

the SAM, and to subdomains within the SAM, is regulated is an important avenue of future 

research. Recent transcriptome [32*] and translatome [87*] maps of domains in the shoot 

apex make it easier to identify localized patterns of gene expression, and facilitate 

predictions about whether genes function non-cell autonomously across the shoot apex. 

These predictions can be tested using domain specific-expression approaches [24**,27**]. 

Such techniques will also be useful in elucidating the contribution of the SAM to the 

perception and interpretation of environmental signals.
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Figure 1. Functional domains of the SAM
LP – leaf primordia, PZ – peripheral zone, RZ – rib zone, OC – organizing center, SC – stem 

cells. The SC and OC together define the SAM central zone (CZ). WOX gene family 

expression (e.g. WUS) is associated with the OC, whereas CLE family expression (e.g. 

CLV3) is associated with SC.
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Figure 2. Mobile regulators in the shoot apex
Simplified genetic networks regulating A) Vegetative phase change (red) and floral induction 

(black), B) Phyllotaxy (red) and meristem maintenance (black). Arrows represent positive 

regulation, flat lines represent negative regulation, blue circle represents the SAM 

(vegetative in A, vegetative or inflorescence in B), dashed lines depict movement into the 

SAM.
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Table 1

A summary of the plant-derived and environmental signals that regulate SAM growth. Unless specified, gene 

products encoded by Arabidopsis loci.

Molecular signal Direction Effect References

Protein FT From leaves to the SAM Induction of flowering [5–8]

SPL9 From leaves to the SAM Repress leaf initiation [23]

AHP6 From leaves to the SAM Reinforce phyllotactic patterning [88]

MpLOSI From lateral organs to the apical meristem Promotes meristem maintenance [41]

ZmFCPI From lateral organs to the apical meristem Limit SAM size [30]

miRNA
miR156

From the SAM to leaves Repress adult identity [24]

miR165/miR166 From provasculature into the SAM Repress SAM growth (butnormally excluded) [35,36,39]

Hormone GA From leaves to the SAM Induction of flowering [13,14]

Auxin From leaves to the SAM Induce dorsoventral patterning in leaves [78]

From leaves to the SAM Limit SAM size [29]

CK From roots to the SAM Promote SAM growth in response to nitrate [50,51]

Nutritional
Sugar

From leaves to the SAM Induction of vegetative phase change [21,22]

Into the SAM Sugar is required for SAM proliferation [62,65]

Unknown bypass From roots to the SAM Represses SAM growth [55,56]

Seed-derived From seed to the SAM Terminate flower production [58,59]

AhPHAN- dependent From leaves to the
SAM

Promote SAM maintenance [89]

Environmental signal Site of perception Effect References

Light (quantity) Leaves Low light delays production of adult traits [90,91]

Leaves Light is required for SAM
proliferation

[62,64,65]

Light (quality) Leaves Shade promotes flowering and represses leaf initiation [63,92,93]

Leaves Shade promotes SAM size [94]

Temperature Shoot apex Leaf initiation rate increases with (sub-maximal) 
temperature

[75,95]

Unknown Cold temperatures inhibit SAM growth [61]

Leaves and SAM Induction of flowering by vernalization [60]

Oxygen SAM Low oxygen concentrations promote SAM activity [70]

SAM Reactive oxygen species regulate stem cell maintenance [74]
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