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Effects of surgical face masks 
on cardiopulmonary parameters 
during steady state exercise
J. Lässing1,4*, R. Falz1,4, C. Pökel1, S. Fikenzer2, U. Laufs2, A. Schulze1, N. Hölldobler1, 
P. Rüdrich3 & M. Busse1

Wearing face masks reduce the maximum physical performance. Sports and occupational activities 
are often associated with submaximal constant intensities. This prospective crossover study 
examined the effects of medical face masks during constant-load exercise. Fourteen healthy men (age 
25.7 ± 3.5 years; height 183.8 ± 8.4 cm; weight 83.6 ± 8.4 kg) performed a lactate minimum test and a 
body plethysmography with and without masks. They were randomly assigned to two constant load 
tests at maximal lactate steady state with and without masks. The cardiopulmonary and metabolic 
responses were monitored using impedance cardiography and ergo-spirometry. The airway resistance 
was two-fold higher with the surgical mask (SM) than without the mask (SM 0.58 ± 0.16 kPa l−1 vs. 
control [Co] 0.32 ± 0.08 kPa l−1; p < 0.01). The constant load tests with masks compared with those 
without masks resulted in a significantly different ventilation (77.1 ± 9.3 l min−1 vs. 82.4 ± 10.7 l min−1; 
p < 0.01), oxygen uptake (33.1 ± 5 ml min−1 kg−1 vs. 34.5 ± 6 ml min−1 kg−1; p = 0.04), and heart rate 
(160.1 ± 11.2 bpm vs. 154.5 ± 11.4 bpm; p < 0.01). The mean cardiac output tended to be higher with 
a mask (28.6 ± 3.9 l min−1 vs. 25.9 ± 4.0 l min−1; p = 0.06). Similar blood pressure (177.2 ± 17.6 mmHg 
vs. 172.3 ± 15.8 mmHg; p = 0.33), delta lactate (4.7 ± 1.5 mmol l−1 vs. 4.3 ± 1.5 mmol l−1; p = 0.15), and 
rating of perceived exertion (6.9 ± 1.1 vs. 6.6 ± 1.1; p = 0.16) were observed with and without masks. 
Surgical face masks increase airway resistance and heart rate during steady state exercise in healthy 
volunteers. The perceived exertion and endurance performance were unchanged. These results may 
improve the assessment of wearing face masks during work and physical training.
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VC	� Vital capacity
V̇A	� Alveolar ventilation
VD	� Dead space volume
VE	� Minute ventilation
VE/VO2	� Refers to the number of liters of ventilation per liter of oxygen consumed
VE/V̇CO2	� Refers to the number of liters of ventilation per liter of carbon dioxide
VO2	� Oxygen uptake
VT	� Tidal volume
W	� Watts

During the coronavirus disease pandemic, face masks are widely recommended in medical and public areas1,2. 
Wearing face masks should reduce virus transmission3–6. However, the evidence of its usefulness for reducing 
respiratory virus infections is heterogeneous3,7,8. Besides its potential virus preventive effects, the use of face 
masks has shown increased respiratory resistance9. In addition, Fikenzer et al. showed a reduction in maximal 
physical capacity and ventilation. Occupational or physical stress may therefore be higher when using face masks 
and may be accompanied by an increased perception of exertion or dyspnea in patients10.

Respiratory protective devices or additional external breathing resistance showed similar effects on exer-
cise capacity and ventilation11,12. Less marked, though comparable, results were obtained with the use of 
mouthguards13–16.

Maximum physical stress rarely occurs in occupational settings17. Rather, physical activity with medium or 
submaximal intensity is the norm. Even in leisure sports, constant-load exercise is often chosen for training. To 
date, no data exist on the effects of face masks on cardiopulmonary parameters during continuous exercise. Such 
data may allow the assessment of training and workloads associated with the use of medical masks. Specifically, 
possible cardiopulmonary overload due to the use of face masks could be avoided.

In summary, information on the effects of face masks during continuous exercise is lacking. Therefore, this 
randomized crossover study was aimed at assessing the effects of face masks on cardiopulmonary and metabolic 
effects at maximal lactate steady state (MLSS). Owing to the first known effects of using face masks18, a stronger 
cardiopulmonary response should be expected in the tests with masks.

Materials and methods
Ethical approval and study group.  This study was approved by the Ethical Committee of the Medical 
Faculty of Leipzig University (382/20-ek) and was conducted in accordance with the latest revision of the Decla-
ration of Helsinki. Participants were excluded from the tests if they had orthopedic, metabolic, or cardiorespira-
tory diseases.

Written informed consent was obtained from all participants. The study comprised 14 active and healthy 
men (age: 25.7 ± 3.5 years; height: 183.8 ± 8.4 cm; weight: 83.6 ± 8.4 kg; BMI, 24.7 2.6. All participants trained 
for at least 4 h per week. Exclusion criteria were cardiac, pulmonary, or inflammatory diseases, sports inactivity, 
or any other medical contraindication at the time of the examination. Participants did not perform any physical 
exercise 24 h before the examinations. The subjects were advised to consume a defined amount of carbohydrates 
(men 10 g per kg BW) within 24 h prior all tests to ensure that glycogen conditions remained stable.

Study design.  A prospective, randomized, crossover design was used to examine the effects of disposable 
surgical face mask type II (SMs) (Suavel Protec Plus, Meditrade, Kiefersfelden, Germany) compared with no 
masks (control [Co]). These masks are specified by the manufacturer as Fleece 3-layer with rubber loops and an 
integrated nose clip. The masks were tested according to DIN EN 14683. The SM was worn under a spirometry 
mask (spirometric silicone masks, Cosmed, Italy) both in the body plethysmography (Fig. 1) and in the constant 
load tests.

The participants were tested three times during a 2-week period (pre-examination and two constant-load 
tests). Figure 1 presents the timeline of the study. The examination was conducted in an air-conditioning per-
formance lab with constant temperature and humidity.

The pre-examination included a medical history, questionnaire (sports activity, smoking, and alcohol con-
sumption), height and weight measurement, an electrocardiogram (Cardiax, Mesa Medizintechnik GmbH, Ger-
many), and body plethysmography. The participants then performed a double incremental cycle ergometer test 
(DIET; the first and the second exercise period interrupted due to a 5 min recovery period) until exhaustion to 
assess the maximal power output (Pmax) and the MLSS due to the lactate minimum in the second load period19,20.

Subsequently, all participants were required to perform two constant-load tests (with and without mask) at 
the MLSS workload determined in the DIET in a randomized order (block randomization) at the same time of 
the day. The MLSS is an index of the highest oxidative metabolic rate that can be sustained during continuous 
exercise. Therefore, the cardiopulmonary and metabolic exposure of the participants should be comparable. All 
tests were performed on a semi-recumbent revolution independent cycle ergometer (Ergometrics 900, Ergoline 
GmbH, Bitz, Germany) at 60 to 70 revolutions per minute.

Body plethysmography.  Body plethysmography measurements (ZAN500 Body, nSpire Health GmbH, 
Germany) were performed with multi-use silicone face masks with a headgear (K4b2, Cosmed, Italy) (Fig. 1). 
The test person agreed on his written informed consent to publish the image (Fig. 2) in an online open-access 
publication. In addition to the standard parameters of lung function, airway resistance (RAW) was determined.
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The examinations were performed in a randomized order with and without a surgical mask. After each test, 
a break of 5 min was provided to allow the breathing muscles to recover. A pulse oximeter (Pulox Fingertip 
Pulsoximeter, Novidion GmbH, Germany) was used to monitor possible respiratory complications.

As shown in Fig. 2, subjects were required to sit upright, keep their head in a straight line, and maintain this 
position for all tests. The performance of body plethysmography was standardized according to the recommenda-
tions of the German Respiratory League and the German Society for Pneumology and Respiratory Medicine21.

Double incremental exertion test (DIET)/lactate minimum test.  The DIET to determine the maxi-
mum load and the lactate minimum was performed without a SM. The test participants started the step test at 
50 W and increased by 15 W min−1 until the maximum load was reached. The maximum wattage value in the 
first part of the DIET was assumed to be the achieved wattage, which was cycled for one min with a minimum 
frequency of 60 revolutions per minute. This was followed by a 5-min active recovery phase during which 25% 
of the maximum power was used, followed by the second part of the step test (increment: 15 W min−1) up to the 
maximum possible load. Spirometry (K4b2, Cosmed, Italy), thoracic impedance (PhysioFlow, Manatec Biomedi-
cal Inc., France), and a vector electrocardiogram (Cardiac PC-EKG, MESA Medizintechnik GmbH, Germany) 
were synchronized and run simultaneously during the complete time. Blood lactate samples (20 µL; analyzed 

Figure 1.   Timeline of the study; Pre-examination: informed consent, medical history, body plethysmography, 
DIET double incremental cycle ergometer test to detect the lactate minimum, Constant-load-test with and 
without mask: in randomized order, impedance cardiography, blood pressure, ergo-spirometry and blood lactate 
concentration.

Figure 2.   Body plethysmography measurements with spirometry masks.
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by Super GL, Dr. Müller Gerätebau GmbH, Germany), blood pressure (Riva – Rocci) (BP), and the rating of 
perceived exertion (RPE) were recorded every 3 min in the initial segment of the DIET. During the second part 
of the step test, lactate was measured every minute. At the end of the test, lactate was measured in the first, third, 
and fifth minutes. The lactate values of the two-step test were represented as third-order polynomial function, 
and the physiological lactate minimum test was determined as described by Tegtbur et al.20,22. The individually 
determined MLSS and the wattage thus determined were used as workload for the two constant load tests.

Constant‑load tests (30 min).  Prior to the test, 5 min were recorded to determine the resting values. The 
constant-load tests were performed after a 5-min warm-up phase at 50% of the maximal workload in the DIET. 
Subsequently, the test subjects were required to cycle the determined workload in the DIET at MLSS for 30 min 
at a minimum frequency of 60 rpm. The two tests were performed randomly with and without a face mask. The 
surgical masks were worn under the spirometry mask and were applied immediately prior to exercise. Spirom-
etry and thoracic impedance measurements were synchronized and recorded simultaneously during the entire 
exercise period.

Measurements during the constant‑load tests/calculations.  Cardiac output (CO), stroke volume 
(SV), and heart rate (HR), measured using impedance cardiography; (Physioflow, Manatec Biomedical, Mach-
eren, France), oxygen consumption ( VO2 ), and respiratory parameters (minute ventilation [VE], tidal volume 
[VT], respiratory rate [RR]) were monitored continuously at rest, during stress, and during recovery (K4b2, 
Cosmed, Italy). Capillary blood samples (20 µl) to measure the blood lactate concentration, blood pressure 
(Riva-Rocci method), oxygen saturation (Pulox Fingertip Pulsoxymeter, Novodion GmbH, Germany), and RPE 
(from 1 to 10, if 10 was total exhaustion) were observed at rest and every 5 min during each constant load test 
and at 1, 3, and 5 min of recovery. Blood samples were drawn from the earlobe and analyzed immediately via 
the enzymatic-amperometric method (Super GL, Dr. Mueller Geraetebau GmbH, Freital, Germany). The arte-
riovenous oxygen difference (avDO2) was calculated using Fick’s principle with avDO2 = oxygen uptake ( VO2)/
CO. Cardiac work (CW) was measured in J and calculated according to the formula CW = SV × systolic blood 
pressure (SBP). The MLSS in the constant-load tests was maintained if the lactate concentration did not increase 
by more than 1 mmol l−1 in the last 20 min of the minimum test22. The displayed lactate concentration change 
over time (LAC∆) is the average during 30 min of exercise minus the rest lactate. The calculation of alveolar 
ventilation ( V̇A ) was performed according to the spirometrically recorded parameters, which were used in the 
following calculations (Bohr formula):

where V̇A = alveolar ventilation; VT = tidal volume; VD = dead space volume; RR = respiratory rate.

where FeCO2 = fractional carbon dioxide concentration; FetCO2 = end-tidal fractional carbon dioxide 
concentration.

Statistical analyses.  All values are presented as means with standard deviation. GraphPad Prism 8 (Graph-
Pad Software Inc., California, US) was used for the statistical evaluation and preparation of graphs. The values 
of the maximum power output (DIET) was based on the last load step of the first part of DIET and are only 
shown descriptively (no statistical analysis). For statistical analysis, the continuously collected data of spirometry 
and thoracic impedance and the punctual measurements of blood pressure, blood lactate concentration, rat-
ing of perceived exertion, and oxygen saturation were averaged for the exercise period (30 min constant load). 
The data were assessed for outliers using the "Rout Method". The False Discovery Rate (FDR) was specify with 
Q = 0.5%. The mean values of all parameters were assessed for a normal distribution using the Kolmogorov–
Smirnov test. If a normal distribution was evident, statistical comparisons were made using a paired Student’s 
t-test (parameters of body plethysmography and mean values of constant load test). The significance level was set 
at α = 0.05. Non normal distribution parameters were analyzed with the Wilcoxon Matched-Pairs Signed Ranks 
test (parameter: RPE).

Results
Results of body plethysmography.  Body plethysmography analyses showed significant differences 
among the lung function parameters (Table 1).

The respiratory work were calculated from the peak flow and airway resistance (RAW) and showed significant 
differences (Co 3.0 ± 0.7 kPa vs. SM 4.6 ± 1.2 kPa, p < 0.01, n2

p = 0.71).

Incremental exertion test/lactate minimum test.  The maximum values of DIET are shown in 
Table 2. The average duration of DIET was 17:42 ± 2:42 min, and the participants reached an average Pmax of 
300.7 ± 40.5 W, which corresponds to a relative power of 3.70 ± 0.63 W kg−1. The lactate minimum in this test was 
202.69 ± 25.95 W with an LAC of 6.48 ± 1.35 mmol l−1.

Constant load tests.  There were visible changes resting values for VE, BP, CO, and inspiration time (Ti) 
(VE: Co 13.82 ± 5.79  l  min−1 vs. SM 10.14 ± 2.78  l  min−1; RR: Co 19.44 ± 4.33  bpm vs. SM 16.58 ± 4.90  bpm; 
Ti: Co 1.34 ± 0.21  s vs. SM 1.63 ± 0.31  s). The resting lactate values were lower with SMs than with Co (Co 
0.92 ± 0.26 mmol l−1 vs. SM 0.79 ± 0.25 mmol l−1). There were no visible differences in the hemodynamics. Fig-

V̇A = (VT − VD) ∗ RR

VD = VT ∗ FetCO2 − (FeCO2/FetCO2)
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ure 3 shows the time course of HR, CO, SV, and BP in the two constant-load tests. Table 2 shows the results of the 
constant-load tests. Thirteen participants completed 30 min of exercise in both tests. One test participant could 
not perform the test with a SM because of subjectively perceived breathing distress.

Table 2 shows the average values of the constant load tests (30 min) and the peak values of the DIET.

Discussion
The main finding of this randomized crossover study was that the use of SMs during constant exercise was 
associated with significant changes in the values of the pulmonary and cardiac parameters as compared without 
the use of face masks (Figs. 3 and 4). Body plethysmography revealed a two-fold higher RAW when masks were 
used. However, the VO2 and avDO2 was reduced when SMs were used. Despite these cardiopulmonary changes, 

Table 1.   Results of body plethysmography. The values are given as means and standard deviations. Co control; 
SM surgical mask; FEV1 forced expiratory volume in 1 s; PEF peak expiratory flow; RAW​ airway resistance; VC 
vital capacity; n2

p partial eta-squared. *Significant differences from the control.

Co SM p-value n2
p

FEV1 (l) 4.66 ± 0.61 4.18 ± 0.69  < 0.01* 0.84

PEF (l s−1) 9.50 ± 1.19 8.07 ± 1.25  < 0.01* 0.71

RAW (kPa l−1) 0.32 ± 0.08 0.58 ± 0.16  < 0.01* 0.79

VC (l) 6.00 ± 0.72 5.65 ± 0.65  < 0.01* 0.82

Table 2.   Mean values with and without SMs during the 30 min continuous tests (n = 13; excluding the 
warm-up and recovery phase). Values are given as the means and standard deviations. The values are presented 
as means and standard deviations. DIET double incremental exercise test; Co control; SM surgical mask; 
IET incremental exertion test; VO2 oxygen uptake; V̇CO2 carbon dioxide production; VE minute ventilation; 
VE/VO2 refers to the number of liters of ventilation per liter of oxygen consumed; VE/V̇CO2 refers to the 
number of liters of ventilation per liter of carbon dioxide V̇A alveolar ventilation; RR respiratory rate; VT tidal 
volume; Ti inspiratory time; Te expiratory time; SBP systolic blood pressure (5-min interval); DBP diastolic 
blood pressure (5-min interval); SV stroke volume; CO cardiac output; HR heart rate; avDO2 arteriovenous 
oxygen difference; RER respiratory exchange ratio, LAC blood lactate concentration (5-min interval); SO2% 
oxygen saturation RPE rating of perceived exertion (5-min interval); n2

p. *Significant differences from control.

Co SM p-value n2
p DIET

Pulmonary parameters

VO2(ml min−1 kg−1) 34.49 ± 5.79 33.05 ± 4.96 0.04* 0.31 44.79 ± 9.12

V̇CO2 (ml min−1) 2685 ± 278 2575 ± 310 0.04* 0.30 3958 ± 560

VE (l min−1) 82.42 ± 10.66 77.05 ± 9.26  < 0.01* 0.61 141.83 ± 22.73

VE/V̇O2 (l min−1/l min−1) 29.34 ± 4.41 28.50 ± 3.42 0.19 0.14 38.75 ± 7.12

VE/V̇CO2 (l min−1/l min−1) 30.80 ± 3.81 30.01 ± 3.33 0.26 0.10 35.90 ± 3.87

V̇A (l min−1) 60.88 ± 7.48 57.38 ± 6.55 0.01* 0.42 102,65 ± 17,71

Ti (s) 0.89 ± 0.14 1.01 ± 0.13  < 0.01* 0.73 0.63 ± 0.11

Te (s) 0.98 ± 0.21 0.95 ± 0.17 0.14 0.17 0.66 ± 0.17

VT (l) 2.49 ± 0.35 2.45 ± 0.36 0.48 0.04 2.98 ± 0.59

RR (bpm) 34.03 ± 7.29 32.09 ± 5.40 0.02* 0.37 49.08 ± 11.23

Hemodynamic parameters

SBP (mmHg) 172.3 ± 15.8 177.2 ± 17.6 0.33 0.08 210.4 ± 26.9

DBP (mmHg) 74.6 ± 6.4 72.3 ± 9.1 0.20 0.13 77.5 ± 13.7

CO (l min−1) 25.93 ± 4.04 28.59 ± 3.94 0.06 0.27 32.06 ± 4.62

SV (ml) 168.4 ± 30.87 178.8 ± 25.67 0.22 0.12 176.02 ± 26.91

HR (bpm) 154.5 ± 11.4 160.1 ± 11.2  < 0.01* 0.59 183.0 ± 11.4

CW (J) 29,049 ± 6165 31,866 ± 6770 0.14 0.17 37,040 ± 6964

avDO2 (%) 11.11 ± 1.84 9.59 ± 1.44 0.02* 0.38 11.74 ± 2.13

LAC∆ (mmol l−1) 4.27 ± 1.46 4.71 ± 1.42 0.26 0.11 9.01 ± 1.79

RER 0.95 ± 0.05 0.95 ± 0.05 0.97 – 1.08 ± 0.11

RPE (1–10) 6.6 ± 1.1 6.9 ± 1.1 0.16 0.16 10

SO2 (%) 95.22 ± 0.71 95.32 ± 0.83 0.73 0.01 –

Mean power output (Watt) 202.7 ± 26.0 202.7 ± 26.0 1.0 – 300.71 ± 40.52

Exercise duration (min) 30 ± 0 30 ± 0 1.0 –
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the constant load tests at maximal lactate steady state were completed with exception of one test subject when 
using masks.

Pulmonary function.  Body plethysmography revealed an increased RAW and reduced forced expiratory 
volume in 1  s, VC, and peak expiratory flow with SMs. Respiratory protective devices and respiratory filters 
have similar effects9,11. Exercise studies showed that an increased RAW can also significantly reduce VE under 
stress and can decrease work performance11,12,16,18. Similar results were also shown in studies with mouthguards 
where a slightly increased RAW and reduced respiratory parameters were observed at rest and during exercise16. 
A reduced RR with corresponding changes in Ti was observed. The expiratory time and VT were not affected 
by the use of masks. The extended Ti is probably a compensatory mechanism that stabilizes VT under these 
conditions13,14. Francis and Brasher assumed that a mechanism similar to the “pursed lip” type of breathing in 
pulmonary obstructive patients extends the respiratory cycle time and thus promotes gas exchange. As a result, 
the alveolar V̇A is significantly reduced by using a mask. Therefore, the displayed reduction in oxygen uptake is 
expected.

However, the increased RAW values lead to a changed exercise breathing pattern in healthy volunteers with a 
slowed restriction of VO2

11,18. We can assume that patients with pulmonary obstructive disease are exposed to 
far greater restrictions than when wearing a SM10. These results show a clear effect of wearing SMs on pulmonary 
parameters at rest and during exercise (Fig. 4).

Cardiac function.  In the present study, the use of SMs resulted in a significantly increased HR, a physiologi-
cally substantial nevertheless not significant increased SV, and tendency toward an increased CO. The increased 
HR during constant-load exercise with a mask might be the result of increased work of breathing or muscle 
affarences19. By contrast, other studies with oxygen-enriched air in patients with chronic obstructive pulmonary 
disease showed a decrease in heart rate23. Furthermore, increased respiratory muscle work due to reflex mecha-
nisms could also be responsible for the increase in CO9,24.

Ryan et al.25 showed that under resting conditions, increased RAW can lead to a significant increase in SV. The 
observed prolonged Ti and increased RAW suggest a change in pulmonary regulation when using a SM. Prolonged 
or higher negative pleural pressure is assumed to improve the transmural pressure difference of the extrathoracic 
and intrathoracic vessels25,26. This may increase venous blood return and improve SV16,18,25–27. Use of a mouth-
guard increased the RAW, prolonged the Ti, and increased the SV during physical stress16. Similar results were 
reported in a study by Fikenzer et al.18, which showed a trend toward an increased SV when using a SM, with a 
reduced VE and significantly extended Ti. In contrast to the present results, Fikenzer et al. showed significantly 

Figure 3.   Graphs showing the mean cardiac responses (n = 13) during the continuous load test with (SM) and 
without (Co) a surgical mask. (A) HR: heart rate; (B) SV: stroke volume; (C) CO: cardiac output; (D) SBP & 
DBP: systolic & diastolic blood pressure. Rest values were determined immediately prior to exercise.
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lower maximum heart rate values when a SM was used during incremental exercise. However, constant load 
exercise was performed in the present study, and the results may therefore not be comparable.

Perceived exertion and metabolic response.  The subjective perceived stress (Borg scale) showed no 
significant difference between the performances during the constant load tests. During incremental exercise, 
the difference in perceived stress and performance with and without masks was determined18. A limitation of 
the perceived and completed performance due to the wearing of SMs was not observed in our study. The LAC∆ 
tended to be higher (10.6% not statistically significant) and avDO2 was reduced when SMs were used.

The reduced avDO2 in physical stress is consistent with the findings of other studies18 with face masks. Pre-
sumably, VO2 was lower because of the decreased V̇A . The reduced tissue oxygenation due to ventilatory obstruc-
tion was speculated to be responsible for the higher lactate values and cardiac drive from the working muscles19. 
The present results refer to young healthy men and can therefore be considered as a reference for this cohort.

Limitations of the study.  The study group was small and consisted of healthy men. Therefore, the data 
cannot be transferred to other populations. Thus, an assessment of the effect of face masks in older people and in 
patients with lung and heart diseases is limited. This study is the first crossover study to date that compared the 
acute cardiopulmonary effects during constant load (MLSS) with and without medical face masks. The cardiac 
parameters measured using impedance cardiography can be overestimated with absolute values28. However, 
thoracic impedance cardiography is well established for the quantification of individual changes in SV and CO29. 
The fact that the SM was worn under the spirometry mask because of a definitive seal between the SM and the 
face must also be taken into account. This changes the natural position of the SM and might have influenced the 
results.

Conclusion
In the healthy young men (age, 25.7 ± 3.5 years) in this study, the use of surgical face masks was associated with 
a significant increase in airway resistance, reduced oxygen uptake, and increased heart rate during continu-
ous exercise. Despite these changes, the endurance performance and perceived stress remained unchanged as 
compared with the performance without a SM. These data are useful for the assessment of the effects of SMs 
in occupational and sports settings. Further studies in the elderly and in persons with pulmonary or cardiac 
diseases are necessary.

Figure 4.   The graphs show the mean cardiac responses (n = 13) during the continuous load test with 
and without a surgical mask. (A) VE: minute ventilation; (B) VO2: oxygen uptake; (C) LAC: blood lactate 
concentration; (D) RPE: rating of perceived exertion (D). The rest values were determined immediately prior to 
exercise.
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