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Abstract
The availability of intensive care beds during the COVID-19 epidemic is crucial
to guarantee the best possible treatment to severely affected patients. In this
work we show a simple strategy for short-term prediction of COVID-19 intensive
care unit (ICU) beds, that has proved very effective during the Italian outbreak
in February to May 2020. Our approach is based on an optimal ensemble
of two simple methods: a generalized linear mixed regression model, which
pools information over different areas, and an area-specific nonstationary
integer autoregressive methodology. Optimal weights are estimated using a
leave-last-out rationale. The approach has been set up and validated during
the first epidemic wave in Italy. A report of its performance for predicting ICU
occupancy at regional level is included.
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1 INTRODUCTION

Italy has been under pressure to properly manage the recent COVID-19 epidemic emerged from China in December 2019.
Its quick spread required a global response to prepare health systems worldwide. In its present form, COVID-19 seems
to have very challenging characteristics (see, e.g., Del Sole et al., 2020; Girardi et al., 2020; Peeri et al., 2020): it is highly
infectious and, despite having a benign course in the vast majority of patients, it requires hospital admission and even
intensive care for a far from negligible proportion of infected.
In Italy, particularly in the two regions of Lombardia and Veneto, the COVID-19 infection emerged in February 2020

with a basic reproductive number 𝑅0 between 3 and 4 (Flaxman et al., 2020). At the beginning of the coronavirus outbreak,
Italy was one of the countries with the lowest amount of acute care beds per person in Europe. The resources of the
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national health system were not designed to face a large-scale epidemic. The national health system was equipped with
a total number of approximately 5200 beds, that was substantially increased very quickly during the spread of the disease
(Remuzzi & Remuzzi, 2020). This reversed a trend that started years ago, especially after financial crises, according to
which resources allocated to the national health system were progressively cut.
In general, intensive care units (ICUs) are characterized by a rather low number of beds with high turnover. Most of the

patients stay in intensive care only for one or few days (Diekmann, Heesterbeek, & Britton, 2013), even if some of them
can stay months. However, ICU length of stay (LOS) due to COVID-19 infection was rather long: a recent study (Grasselli
et al., 2020a) involving 1591 patients admitted in ICUs in Lombardia reported a median LOS of nine days (6–13 [95% CI]).
Long LOS implied a slower turnover, and increased the risk of collapse of the national ICU system. Indeed, in the absence
of measures to flatten the epidemic curve, the number of ICU beds available in Italy would have achieved very quickly
100% occupation, leaving several thousand patients short of the cures needed (see also Remuzzi & Remuzzi, 2020, for a
discussion).
It is now clear that measures like social distancing, use of masks, contact tracing, and a wide access to diagnostic testing

coupled with isolation of positives can be very effective. Nevertheless, careful and reliable planning of resources can also
aid substantially in controlling the consequences of the epidemics, and likely increase the likelihood of early diagnoses and
better care. To respond to the looming threat of shortage of ICU beds, hospitals urgently need to establish and implement
policies that more fairly allocate these scarce resources. If hospitals can plan in advance how many ICU beds shall be
made available for the nearly following days, capacity can be increased (or decreased) to match the demand. This would
avoid the ethical dilemma of severe triaging patients and not admitting thosewhose lives are not worth saving (White & Lo,
2020). In this work, we propose one statistical tool of this sort, which can be used to accurately forecast the ICU occupation
for the next one to five days. Beds demand in intensive care depends on two factors: the number of COVID-19 patients
needing intensive care and duration of their hospitalization. Unfortunately, these data are not made available during the
Italian outbreak. Public data include, anyway, daily ICU occupation by region, which we use as a proof of concept.
Existing approaches to forecast ICU occupancy aremainly based on exponential models fitted to daily numbers of occu-

pied critical care beds out of confirmed cases (Grasselli, Pesenti, & Cecconi, 2020b; Sebastiani,Massa, &Riboli, 2020) or on
SIR (susceptible, infectious, recovered) models (Giordano et al., 2020). Both approaches are subject to certain limitations
in our opinion. An obvious limitation of the former approach includes ascertainment bias due to the use of counts of con-
firmed cases, and inappropriate modeling assumptions (including, for instance, a Gaussian assumption for log-counts).
A model of the SIR family may on the other hand be a very appropriate option. However, SIR-based models require the
possibility to precisely estimate several characteristics of the epidemics, which are still mostly unknown, and it is well
known that changing even slightly the initial conditions can lead to very different results. This is even more difficult as
the exposed population is only partially observed (Böhning, Rocchetti, Maruotti, & Holling, 2020; Chen, Lu, & Chang,
2020; Yue, Clapham, & Cook, 2020).
Our approach is based on optimally combining two forecasting methods. The first is based on Poisson mixed effects

regression; the second one is a region-specific time-series model for counts, taking into account time dependence over
time. The count outcome is appropriately modeled as a Poisson conditionally on observed time trends and unobserved
heterogeneity including dependence, as implied by random effects or by the auto-regressive structure of the time-series
models, and the averaged predictions give an optimal balance between pooling information over different areas (which
targets a low variance prediction) and adaptation at the specific area (which targets a low bias prediction).
The rest of the paper is as follows: in the next section, we give a description of the available data. In Section 3, we

describe our method for prediction of the next-day ICU occupancy. We mention here that we have validated our method
during the outbreak, by repeatedly producing ICU predictions with the current data, and waiting for the official data for
the next five days. An illustration of the performance of our approach is given in Section 4. Some concluding remarks are
in Section 5.

2 DATA

On January 31, 2020, the ItalianGovernment declared the state of emergency for sixmonths as a consequence of the health
risk associated with COVID-19 infection.
To inform citizens and make the collected data available, the Department of Civil Protection developed an interactive

geographic dashboard (accessible at the addresses http://arcg.is/C1unv (desktop) and http://arcg.is/081a51 (mobile))
and built a daily updated data github-repository (CC-BY-4.0 license), with a large number of variables; among them the
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F IGURE 1 Regional time series of ICU admission from February 24, 2020, until April 16, 2020. Notice some of the regional evolutions:
dashed (highest) line, Lombardia; dotted line, Piemonte; longdash-dotted, Emilia Romagna; dash-dotted line, Veneto

F IGURE 2 Italian regional population size. Notice the most populated region Lombardia with about 10 million inhabitants (black), fol-
lowed by Lazio andCampaniawith 5.8million inhabitants (dark gray), and to below onemillion inhabitants regionsUmbria (882,015), Basilicata
(562,869), Molise (305,617), and Valle D’Aosta (125,666) (white)

intensive care defined as number of hospitalized patients in ICUs available at the regional level (20 Italian regions). In
Figure 1, the regional time series of ICU admissions from February 24 until April 16, 2020, are reported and it appears
that several sources of heterogeneity affect the data. The epidemic started at different times across regions, starting from
the North of the country and evolved very differently in each region, leading to trajectories of different shapes. Population
size is also very different across Italian regions (Figure 2), which are also characterized by different economic and social
structures. Moreover, a further heterogeneity source relates to the ICU capacity. In Italy, the health system is regional
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F IGURE 3 ICU rate of occupancy during the
COVID-19 epidemic in the Italian regions. Regions are
ordered geographically from North to South

based, so in practice there are 20 different health systems and management choices, local authorities and local policy
makers play a fundamental role in the definition of health services capacities, with very few national directives.
During the epidemic some of the northern regions went beyond the capacity of the local system. Figure 3 reports the

regional rate of occupancy (occupancy over capacity1) during the epidemic. Regions are ordered geographically fromNorth
to South showing the North–South gradient of the epidemic evolution mostly affecting the northern regions. It is rather
clear that the health systems of northern regions were under pressure for a longer period and this reflects the difference in
the spread of the epidemic. A regional model that takes into account different sources of heterogeneity and the different
timing in the spread of the epidemic is thus required.

3 METHODS

In order to produce accurate forecastswe combined twomethods, one based on jointmodeling all regions through amixed-
effects generalized linear regressionmodel, and the other one based on separatelymodeling each region as a nonstationary
time series of counts, which uses an integer-valued autoregression specification, with covariates. The first approach pools
information over regions, reducing variance of the final prediction; the second instead can be expected to have a lower bias
due to the fact that each time series is modeled separately, hence more parameters are used. The final predictions are then
averaged with weights chosen through a leave-last-out method. Furthermore, in order to focus more on the recent trends,
we always set 𝑇 = 15, that is, we use the last two weeks of data to make predictions and ignore previous measurements.

3.1 Random effects modeling of longitudinal count data

We start assuming that the observed daily ICU admissions for region 𝑖 at day 𝑡, 𝑦𝑖𝑡, are realizations of independent Poisson
random variables 𝑌𝑖𝑡 with parameter 𝜇𝑖𝑡, ∀𝑖 = 1,… , 𝐼, 𝑡 = 1, … , 𝑇. The interest is in modeling 𝜇𝑖𝑡 as a nonlinear function
of time, taking into account unobserved heterogeneity and region-specific effects. A simple way to deal with these features

1 Notice that in Figure 3 we use the capacity on April 16, 2020, that was augmented in the northern regions to face the COVID-19 emergency.
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is through a generalized linear mixed model (GLMM) (Breslow & Clayton, 1993) with linear predictor

log(𝜇𝑖𝑡) = (𝛽0 + 𝑏0𝑖) + (𝛽1 + 𝑏1𝑖) × 𝑡 + (𝛽2 + 𝑏2𝑖) × 𝑡2 + log(𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠𝑖), (1)

where a canonical link has been adopted, the offset term log(𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠𝑖) accounts for different population exposures,
represents the vector of shared fixed-effects regression parameters, and 𝐛𝑖 = (𝑏0𝑖, 𝑏1𝑖, 𝑏2𝑖) represents the random coeffi-
cients, that is, the region-specific intercept and slopes, with

𝐛𝑖∼𝑁(𝟎, 𝚺𝐵).

The observed counts are assumed independent given the three-dimensional random vector 𝐛𝑖 . The likelihood function
is obtained integrating out the 𝐛𝑖 in (2)

𝐿(𝜷, 𝚺𝐵; 𝐲) =

𝐼∏
𝑖=1

⎧⎪⎨⎪⎩∫ℜ3

𝑇∏
𝑡=1

𝜇
𝑦𝑖𝑡
𝑖𝑡

𝑦𝑖𝑡!
exp(−𝜇𝑖𝑡)

1

∣ 2𝜋𝚺𝐵 ∣
1

2

exp

(
−
1

2
𝐛𝑇
𝑖
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⎫⎪⎬⎪⎭
. (2)

Various alternative parametric specifications have been proposed for the random terms; but only in the case of log-
gamma distributed additive random effects the above integral has an analytical solution, leading to the well-known nega-
tive binomial model. In all other cases, the integral in (2) has no analytical solution, and approximate methods should be
used in order to estimate the parameters 𝜷 and 𝚺𝐵. Here, a Laplace approximation has been used first of all to speed up
computations. Adaptive Gaussian quadrature may represent a slightly more accurate option, at the expense of a higher
computational burden. Indeed, an important disadvantage of this approach lies in the required computational effort,
which is exponentially increasing with the dimension of the random parameter vector. Other alternatives are based on
series expansion of the random effects distribution as in Gurmu and Elder (2000) or the hierarchical likelihood approach
introduced by Lee, Nelder, and Pawitan (2017). Cameron and Johansson (1997) discuss an alternative approach based on
series expansion of the Poisson distribution with application to both over- and underdispersed count data. Further possi-
ble solutions are represented by simulation methods such as Markov chain Monte Carlo methods (Chib & Winkelmann,
2001) or simulated maximum likelihood methods (Munkin & Trivedi, 1999).
Predictions are based on the posterior estimates of the random effects and the maximum-likelihood estimate (MLE)

of the fixed-effect parameters. Predictions intervals are found through nonparametric block bootstrap using 500 repli-
cates. Block bootstrap involves resampling regions, and once a region is included its entire time series is used for model
estimation of the resampled data. This is done to preserve the dependency structure of the data.
It is worthmentioning that the specific covariance structure among the random effects has been chosen on the grounds

of model selection using the Bayesian information criterion (BIC). In our data, the best covariance structure, which has
been then used for all estimates and predictions, has turned out to be:

𝚺𝐵 =

⎡⎢⎢⎢⎣
𝜎20 𝜎01 0

𝜎01 𝜎21 0

0 0 𝜎22

⎤⎥⎥⎥⎦
. (3)

3.2 Region-specific integer-valued autoregression modeling

At the second step, we fit and obtain predictions for regional time series separately. In other words, 20 different models
are fitted, as time-series models for counts.
Let again 𝑌𝑖𝑡 be the daily number of ICU admissions and let 𝐱𝑖𝑡 = (𝑡0, 𝑡1, … , 𝑡𝑟𝑖 )𝑇 denote an (𝑟𝑖 + 1)-dimensional time-

varying covariate vector, consisting of a polynomial specification of time; notice that this vector is region specific, so
different polynomial specifications can be selected for different regions.Wemodel𝑌𝑖𝑡 as a conditional Poisson distribution
where the expectation 𝜇𝑖𝑡 at time 𝑡 depends on both past counts and past covariates:

𝜇it = 𝛼0𝜇it−1 + 𝛼1𝑦it−1 + 𝛄𝑇𝐱it−1, 𝑡 > 1, (4)
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where the coefficients 𝛼0 and 𝛼1 represent the effects of the expectation 𝜇𝑖𝑡−1 of the previous day and the number of ICU
admissions of the previous day 𝑦𝑖𝑡−1, respectively.
Note that the model defined by (4) belongs to the INGARCHX family (Agosto, Cavaliere, Kristensen, & Rahbek, 2016;

Chen & Lee, 2016; Fokianos, Rahbek, & Tjøstheim, 2009). An alternative approach would be to examine the log-linear
INGARCH model of Fokianos (2011). However, the linear model has significant advantages in terms of interpretation,
since it allows for an additive decomposition of the expectation. Under the Poisson assumption, equation (4) corresponds
to a GARCH-typemodel (Bollerslev, 1986) for the conditional variance of the process; hence the name INGARCHhas been
used frequently in the literature (though there is some debate on this terminology, see, e.g., Tjøstheim, 2012).
For each region, we compare stationary, linear, quadratic, and cubic trends (i.e., 𝑟 = 0, 1, 2, 3). We select the best model

specification for each one separately, according to the BIC.
Parameters in Equation (4) are estimated via conditional maximum quasi-likelihood estimation, using the function

tsglm in the tscount R package. If the Poisson assumption holds true, then we obtain an ordinary ML estimator. Predic-
tion intervals are approximated numerically through a parametric bootstrap procedure: parameter estimates are plugged
in, and several randomdraws aremade fromPoisson distributionswith the resulting parameter. The approximated predic-
tion intervals are obtained from the empirical 2.5% and 97.5% quantiles of the boostrap-based predictions. See Liboschik,
Fokianos, and Fried (2017) for more details.

3.3 Model averaging

Let 𝑦̂(𝐺𝐿𝑀𝑀)
𝑖𝑇+1

denote the prediction obtained for the 𝑖-th region (𝑖 = 1, … , 20 for the Italian case) and time 𝑇 + 1 with the
GLMMmethod, and 𝑦̂(𝐼𝑁𝐴𝑅)

𝑖𝑇+1
the prediction obtained with the integer autoregressive method. The final prediction is

𝑦iT+1 = 𝑤iT+1𝑦
(GLMM)
iT+1 + (1 − 𝑤iT+1)𝑦

(INAR)
iT+1 (5)

for some 𝑤𝑖𝑇+1 ∈ (0, 1).
One could simply fix 𝑤𝑖𝑇+1 = 0.5, but this would not lead to any optimality properties of the resulting final prediction

𝑦̂𝑖𝑇+1. In order to approximate the optimal 𝑤𝑖𝑇+1, we use a strategy that is based on estimation of an explicitely optimal
weight for time 𝑇, which is possible since 𝑦𝑖𝑇 is observed. We then set 𝑤𝑖𝑇+1 as this weight in the hope that in one day
the optimal weight has not changed much. We thus first repeat model estimation excluding 𝑦𝑖𝑇 for 𝑖 = 1, … , 𝐼; obtaining
leave-last-out predictions 𝑦̂(𝐺𝐿𝑀𝑀)

𝑖𝑇
and 𝑦̂(𝐼𝑁𝐴𝑅)

𝑖𝑇
; and then we solve the optimization problem

𝑤𝑖𝑇+1 = arg inf
𝑥∈(0,1)

|||𝑥𝑦̂(𝐺𝐿𝑀𝑀)
𝑖𝑇

+ (1 − 𝑥)𝑦̂
(𝐼𝑁𝐴𝑅)
𝑖𝑇

− 𝑦𝑖𝑇
|||.

The rationale is that of selecting the weight that minimizes, for each region, the absolute difference between the final
prediction at time 𝑇 (when temporarily ignoring 𝑦𝑖𝑇), and the actually observed count at time 𝑇.
It should be noticed here that for the first few days, when𝑇 < 15, wemake theweight-homogeneity assumption𝑤𝑖𝑇+1 =

𝑤𝑗𝑇+1 for all 𝑖 ≠ 𝑗. We do so since when 𝑇 < 15, the time series are too short and final weights are therefore too variable.
The homogeneity assumption allows us to pool information over different regions at the weight estimation stage. For
reasons of simplicity final prediction intervals are obtained as the weighted average of the limits of prediction intervals
for 𝑦̂(𝐺𝐿𝑀𝑀)

𝑖𝑇+1
and 𝑦̂(𝐼𝑁𝐴𝑅)

𝑖𝑇+1
. It is straightforward to use Jensen’s inequality to show that this conservatively guarantees the

nominal level.

4 RESULTS

The reliability of our approach can be assessed by checking the next-day performance as: (i) median absolute error over
the 20 Italian regions, (ii) mean relative error over the 20 Italian regions, (iii) proportion of prediction intervals that do not
contain the actually observed occupancy, (iv) proportion of observed occupancies above the upper limit of the prediction
interval. For illustrative purposes, we discuss in this section predictions related to the next day, for days fromMarch 17 to
April 27.
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F IGURE 4 Daily median relative prediction error (a), daily mean absolute prediction error (b), daily coverage of prediction intervals (c),
and daily coverage of upper limits of prediction intervals (d) for our ensemble prediction method for ICU occupation in the 20 Italian regions

The daily absolute error has a median of four beds, with first quartile one and third quartile eight. The daily relative
error over the 20 regions has first quartile 2%, median 5%, third quartile 12%. Its mean is 9.2%. For prediction intervals, we
used a nominal level of 99%. Of the 840 intervals produced, 99.4% indeed contained the observed ICU occupation. Figure 4
summarizes the main results. We report a plot of the next-day performance for each day since March 17. It can be seen
that after the first two weeks, when data available were scarce and a unique weight was used, the absolute and relative
errors decreased substantially. Furthermore, coverage of the prediction intervals was always very close to 100%, with only
one occasion in which one region reported an ICU occupation above the predicted upper limit. Overall, the approach is
rather effective and needs just few data points to produce accurate estimates.
Just to corroborate the results, we provide an example of the forecasts shown daily at

𝚑𝚝𝚝𝚙𝚜 ∶ ∕∕𝚜𝚝𝚊𝚝𝚐𝚛𝚘𝚞𝚙𝟷𝟿.𝚜𝚑𝚒𝚗𝚢𝚊𝚙𝚙𝚜.𝚒𝚘∕𝚂𝚝𝚊𝚝𝙶𝚛𝚘𝚞𝚙𝟷𝟿 − 𝙴𝚗𝚐.

On April 9, we published the forecasts displayed in Table 1 on the web, along with 99% prediction intervals. In the same
table, the regional systems capacities are reported. On April 10, we checked how well the ensemble approach performs.
Overall, the performance of the proposal is more than satisfactory. The observed values are all into the 99% prediction
intervals, whose length is reasonable and ensures a good representation of the uncertainty surrounding the forecasts. The
upper bound of the prediction interval can be used as the worst possible scenario for a specific day and resources should
be allocated accordingly to guarantee optimal health services. In the example only Trentino Alto Adige seems to show an
alarming situation with prediction interval’s upper bound coinciding with the system capacity. To be fair, the prediction
interval for Puglia is rather wide. However, this is not surprising, as patients were transferred from northern regions to
Puglia for a few days, and daily bursts in the time series of ICU admissions were observed.
In the following plot (Figure 5), we provide a focus on some regions, those whose health systems were under pressure

for the longest time. The prediction intervals were slightly wide but reasonable, for instance, for Lombardia, the most
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TABLE 1 Forecast and observed ICU beds at the regional level: April 10 together with 99% prediction intervals and regional capacity

Regions Observed Forecast
Prediction
interval (𝟗𝟗%) Capacity

Abruzzo 53 57 48–91 115
Basilicata 15 17 8–29 49
Calabria 14 13 5–23 107
Campania 90 87 60–107 586
Emilia-Romagna 349 347 301–397 629
Friuli Venezia Giulia 33 34 19–48 127
Lazio 201 197 155–225 675
Liguria 151 142 111–173 186
Lombardia 1202 1202 1053–1305 1408
Marche 127 120 94–151 193
Molise 4 4 0–11 31
Piemonte 394 392 348–451 560
Puglia 80 79 41–159 289
Sardegna 26 24 13–38 123
Sicilia 62 62 51–94 392
Toscana 256 240 203–283 464
Trentino Alto Adige 128 128 100–157 157
Umbria 39 37 28–63 70
Valle d’Aosta 16 18 9–32 45
Veneto 257 259 216–299 938
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F IGURE 5 Observed (black) and predicted (gray)
values with 99% prediction intervals for the three
northern regions Lombardia, Piemonte, and Veneto

severely affected region, the median length was 20% of the predicted occupancy. Median difference between upper limit
of the prediction interval and total available beds in the region is 4.6% in Veneto. We also report data and estimates for
Piemonte. This is because the news overlooked the situation in Piemonte, mainly focusing on Lombardia and Veneto.
However, while Veneto was more effective at containing the epidemic, the health system in Piemonte was (and partially
still is) under pressure, with a decay in the ICU occupancy much slower than in the other regions.
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F IGURE 6 Length of daily 99% prediction intervals for the three northern regions Lombardia, Piemonte, and Veneto

In Figure 6 we show the dynamic of the 99% prediction intervals during the considered time window. It is clear how the
uncertainty reduces as far as the amount of available information increases. This behavior is common to all Italian regions.

5 CONCLUSIONS

We estimated the occupancy of ICU beds at the regional level in Italy during the COVID-19 outbreak. The resulting esti-
mates are obtained as a combination of two approaches, which address different data features, that is, heterogeneity and
time-dependence, merged via ensembling. The proposed approach is data driven, no simulated scenarios are required,
and it is based on rather simple modeling assumptions. We have discussed in this paper only one-day-ahead predictions,
but our approach can also be easily extended to three-day and five-day horizons.
Wehavehere used 99%prediction intervals for a specific reason:we are actually communicating, every day, 20 prediction

intervals (one for each Italian region). We thus use Bonferroni inequality to guarantee coverage for all regions for at least
95% of our days. It shall be noted that we should actually use 99.75% prediction intervals. In our implementation, we
have used 99% intervals since these are more simple to interpret by practitioners, and additionally the coverage is slightly
conservative due to the use of Jensen’s inequality.
From the beginning of this emergency in Italy, the ICUbed capacitywas identified as amajor bottleneck, to bemonitored

to avoid the increase in the fatality rate. Accordingly, strong efforts have been dedicated to this issue from government and
planners. Our approach was able to predict the demand of ICU beds since the very beginning, showing an improvement
in its behavior as long as more data were available. These information and predictions were shown and freely available on
a daily basis on the StatGroup-19 Facebook page (https://www.facebook.com/StatGroup-19-100907671547894). A correct
communication of the evolution of the epidemic is crucial to properly inform the general public, and avoid any unmoti-
vated concern.

https://www.facebook.com/StatGroup-19-100907671547894
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As a by-product conclusion drawn from this analysis, we noticed that the regional health systems, though under pres-
sure, were able to properly satisfy the demand for critical care. This might be related to the restrictions imposed by the
government, which effectively reduced the spread of the COVID-19 in regions with a low number of ICU beds.
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