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Abstract
In the Nidovirales order of the Coronaviridae family, where

the coronavirus (crown-like spikes on the surface of the

virus) causing severe infections like acute lung injury and

acute respiratory distress syndrome. The contagion of this

virus categorized as severed, which even causes severe

damages to human life to harmless such as a common cold.

In this manuscript, we discussed the SARS-CoV-2 virus

into a system of equations to examine the existence and

uniqueness results with the Atangana–Baleanu derivative

by using a fixed-point method. Later, we designed a system

where we generate numerical results to predict the outcome

of virus spreadings all over India.
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1 INTRODUCTION

The on-going pandemic of COVID-19, viral pneumonia break out in late 2019 in Wuhan, China, which

has its spread worldwide across 210 nations named as “SARS-CoV-2.” It is raging around the world

with an immense toll in terms of human, economic, and social impact. Within a short span, it raises

an alert in every country all over the world like a pandemic disease, which urges every nation to

forecast their precautionary actions to control and contain the wild spread of the virus as the severity

of the disease will harm human life badly. Since the novel coronavirus is new to the world to forecast

some impact of the pandemic situation and to build a mitigation plan the similarity effects of Severe

Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome epidemics in 2003 and

Numer Methods Partial Differential Eq. 2020;1–16. wileyonlinelibrary.com/journal/num © 2020 Wiley Periodicals LLC 1

https://orcid.org/0000-0002-1896-8867
https://orcid.org/0000-0003-0214-1280
https://orcid.org/0000-0001-5769-4320


2 LOGESWARI ET AL.

2009 were used for study and analysis. From the study of the initial spread of COVID-19, many of

the mathematical models were came into the act from contributors across the world to determine the

severity of the spread. Whenever a contagious disease extends its tributary, it follows certain patterns

of spread which widely help us to identify and monitor the dynamics of the disease outbreaks. The

method we used to estimate the spread of the disease is a factor that drives us to finalize the measures

to get rid of infectious diseases. The outbreak of the disease within the country or state for time is

usually nonlinear, which propels us to design the system where we can study those dynamic nonlinear

phenomena. By this system, we can able to define the transmission of such contagious disease, which

helps us to interpret the remedial measures to stop or contain the spread of contagious disease.

In recent years, fractional differentiation has been drawing increasing attention in the study of social

and physical behaviors where scaling power law of fractional order appears universal as an empirical

description of such complex phenomena. The fractional-order models are more adequated than the

previously used integer-order models because fractional-order derivatives and integrals describe the

memory and hereditary properties of different phenomena [1].

Koca [2] investigated the Ebola virus spreading within a particular place of the population by

AB-derivative. Dokuyucu and Dutta [3] discussed the model for Ebola virus with the Caputo deriva-

tive without a singular kernel in the fractional order. Dong et al. [4] derived a model for the granular

SEIR epidemic with fractional order. Babaei et al. [5] investigated the impact of therapy treatments on

the control of HIV/AIDS spread in prisons, and there is no cure, or some treatment methods are avail-

able. Baleanu et al. [6] studied a Rubella disease model with Caputo–Fabrizio derivative. Danane et al.

[7] discussed Hepatitis B virus infection with antibody immune response. Bekiros and Kouloumpou

[8] described the infectious disease dynamics with the SBDiEM model. Moore et al. [9] studied the

Caputo–Fabrizio derivative to the treatment compartment for the HIV/AIDS. Xiao and Chen [10] ana-

lyzed a predator–prey model with the disease. Ucar [11] discussed the existence and uniqueness result

for a smoking model with nonsingular derivatives. Agarwal and Singh [12] modeled the transmission

dynamics of the Nipah virus of fractional order. Khan et al. [13] studied the Caputo–Fabrizio deriva-

tive for modeling the dynamics of hepatitis. Veeresha et al. [14] analyzed the numerical solution of

Schistosomiasis disease in biological phenomena. Khan et al. [15] used the nonsingular Mittag–Leffler

Law for the HIV-TB co-infection model. For more references to the AB-derivative, the reader can refer

References [16–26].

Atangana [27] constructed a model for the effect of lockdown by proposing new fractal frac-

tional differential and integral operators. Khan and Atangana [28] discussed the novel coronavirus

(2019-nCov) with AB-derivative. Shaikh et al. [29, 30] described and analyzed the pandemic spread-

ing of COVID-19, the outbreak in India with fractional derivative. Arino and Portet [31] described

the spreading of COVID-19 in the population by the SLIAR epidemic model. Abdo et al. [32] stud-

ied the existence and stability of the novel coronavirus (COVID-19) model. Fanelli and Piazza [33]

analyzed of the spreading of COVID-19 in China, Italy, and France. Memon et al. [34] discussed the

epidemiological system using real incidence data from Pakistan. Valentim et al. [35] described a frac-

tional calculus to improve tumor growth models. Luo et al. [36] investigated an epidemic model for

pulse vaccination strategy. Gao et al. [37] analyzed the pulse vaccination and saturation incidence of a

delayed epidemic model. Veeresha et al. [38, 39] discussed the q-homotopy analysis transform method

and fractional natural decomposition method in COVID-19 model, and refer References 40–56 for

models.

Here, we investigate the mathematical model for spreading of COVID-19 virus in the world with

Atangana–Baleanu fractional derivative. Consider the following systems:
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(ABC
0 D𝜁

t )(Sp(t)) = Δb − 𝜆dSp −
𝛼ISp(Ip+𝛽AAp)

N
− 𝛾QSSpQp

(ABC
0 D𝜁

t )(Ep(t)) =
𝛼ISp(Ip+𝛽AAp)

N
+ 𝛾QSSpQp − (1 − 𝜙A)𝛿RIEp − 𝜙A𝜇EIEp − 𝜆dEp

(ABC
0 D𝜁

t )(Ip(t)) = (1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip

(ABC
0 D𝜁

t )(Ap(t)) = 𝜙A𝜇EIEp − (𝜌RA + 𝜆d)Ap

(ABC
0 D𝜁

t )(Rp(t)) = 𝜎RIIp + 𝜌RAAp − 𝜆dRp

(ABC
0 D𝜁

t )(Qp(t)) = 𝜅IQIp + 𝜈AQAp − 𝜂QQp

with Sp(0) = S0, Ep(0) = E0,

Ip(0) = I0, Ap(0) = A0,

Rp(0) = R0, Qp(0) = Q0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)

where 0<𝜁 < 1, N represents the total population of people, Sp(t) represents susceptible people, Ep(t)
represents exposed people, Ip(t) represents infected people, Ap(t) represents asympotically infected

people, Rp(t) represents recovered or removed people, Qp(t) represents people in the reservoir or mar-

ket (people affected directly by seafood), Δb and 𝜆d represent birth and natural death rate, 𝛼I is disease

transmission coefficient, 𝛽A is transmission multiple (asymptomatically infected), 𝛾QS is disease trans-

mission coefficient from seafood places to suspectiable people, 𝜙A is proposition of asymptomatic

infection, 𝜎RI is removal rate, 𝜌RA is recovery rate, 𝜂Q is removing rate of viruses from the seafood

market, 𝜇EI is transmission rate of becomes infected, 𝛿RI is transmission rate after completing the incu-

bation period, 𝜈AQ is asymptotically infected directly contributing the virus from market, and 𝜅IQ is

infected symptoms of the virus from market.

In Section 2, we described about essential results and propositions, which will be important for

main problems. In Section 3, we derived the solution for the system of Equation (1.1). In Section 4, we

discussed the existence results. Uniquness results for the above system of equation derived in Section 5.

In last section, we illustrate the numerical solutions for Equations (1.1) by using AB-derivative in

graphical method.

2 PRELIMINARIES

• The left R–L integral is [1, 57]

(0I𝜁x)(t) = 1

Γ(𝜁) ∫
t

0

(t − s)𝜁−1x(s)ds, (2.1)

where 𝜁 > 0.

• The left R–L derivative is [1, 57]

(0D𝜁x)(t) = 𝑑

dt

(
1

Γ(1 − 𝜁) ∫
t

0

(t − s)−𝜁x(s)ds
)
,

where 0<𝜁 < 1.

• The Caputo derivative is [1, 57]

(C
0 D𝜁x)(t) = 1

Γ(1 − 𝜁) ∫
t

0

(t − s)−𝜁x′(s)ds,

where 0<𝜁 < 1.

• The Caputo AB-derivative is [58]
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(ABC
0 D𝜁x)(t) = B(𝜁)

1 − 𝜁 ∫
t

0

x′(s)E𝜁

[
−𝜁 (t − s)𝜁

1 − 𝜁

]
ds,

where 𝜁 ∈ [0, 1], x′ ∈H′(a, b), a≤ b, and B(𝜁) is a normalizing positive function satisfying

B(0) = B(1) = 1.

• The associative fractional integral of (2.1) is

(AB
0 I𝜁x)(t) = 1 − 𝜁

B(𝜁)
x(t) + 𝜁

B(𝜁)
(0I𝜁x)(t), (2.2)

where 0I𝜁 is the left R–L integral given in (2.1).

Proposition 2.1 For 0<𝜁 < 1, we conclude that [59, 60]

( AB
0 I𝜁 ( ABC

0 D𝜁x))(t) = x(t) − x(0)E𝜁 (𝜆t𝜁 ) − 𝜁

1−𝜁
x(0)E𝜁,𝜁+1(𝜆t𝜁 )

= x(t) − x(0).

3 SOLUTION PART

By using AB-fractional integral on both side of (1.1)

AB
0 I𝜁 (ABC

0 D𝜁
t )(Sp(t)) = AB

0 I𝜁
[
Δb − 𝜆dSp −

𝛼ISp(Ip+𝛽AAp)
N

− 𝛾QSSpQp

]
AB
0 I𝜁 (ABC

0 D𝜁
t )(Ep(t)) = AB

0 I𝜁
[
𝛼ISp(Ip+𝛽AAp)

N
+ 𝛾QSSpQp − (1 − 𝜙A)𝛿RIEp − 𝜙A𝜇EIEp − 𝜆dEp

]
AB
0 I𝜁 (ABC

0 D𝜁
t )(Ip(t)) = AB

0 I𝜁 [(1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip]
AB
0 I𝜁 (ABC

0 D𝜁
t )(Ap(t)) = AB

0 I𝜁 [𝜙A𝜇EIEp − (𝜌RA + 𝜆d)Ap]
AB
0 I𝜁 (ABC

0 D𝜁
t )(Rp(t)) = AB

0 I𝜁 [𝜎RIIp + 𝜌RAAp − 𝜆dRp]
AB
0 I𝜁 (ABC

0 D𝜁
t )(Qp(t)) = AB

0 I𝜁 [𝜅IQIp + 𝜈AQAp − 𝜂QQp].

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
By using proposition, we get

Sp(t) − Sp(0) = AB
0 I𝜁

[
Δb − 𝜆dSp −

𝛼ISp(Ip+𝛽AAp)
N

− 𝛾QSSpQp

]
Ep(t) − Ep(0) = AB

0 I𝜁
[
𝛼ISp(Ip+𝛽AAp)

N
+ 𝛾QSSpQp − (1 − 𝜙A)𝛿RIEp − 𝜙A𝜇EIEp − 𝜆dEp

]
Ip(t) − Ip(0) = AB

0 I𝜁 [(1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip]
Ap(t) − Ap(0) = AB

0 I𝜁 [𝜙A𝜇EIEp − (𝜌RA + 𝜆d)Ap]
Rp(t) − Rp(0) = AB

0 I𝜁 [𝜎RIIp + 𝜌RAAp − 𝜆dRp]
Qp(t) − Qp(0) = AB

0 I𝜁 [𝜅IQIp + 𝜈AQAp − 𝜂QQp].

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
substitute the initial conditions to the above system of equation becomes

Sp(t) − S0 = AB
0 I𝜁

[
Δb − 𝜆𝑑Sp −

𝛼ISp(Ip+𝛽AAp)
N

− 𝛾QSSpQp

]
Ep(t) − E0 = AB

0 I𝜁
[
𝛼ISp(Ip+𝛽AAp)

N
+ 𝛾QSSpQp − (1 − 𝜙A)𝛿RIEp − 𝜙A𝜇EIEp − 𝜆𝑑Ep

]
Ip(t) − I0 = AB

0 I𝜁 [(1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆𝑑)Ip]
Ap(t) − A0 = AB

0 I𝜁 [𝜙A𝜇EIEp − (𝜌RA + 𝜆𝑑)Ap]
Rp(t) − R0 = AB

0 I𝜁 [𝜎RIIp + 𝜌RAAp − 𝜆𝑑Rp]
Qp(t) − Q0 = AB

0 I𝜁 [𝜅IQIp + 𝜈AQAp − 𝜂QQp].

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(3.1)
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Consider (for simplicity, we replace),

Z1(t, Sp) = Δb − 𝜆dSp −
𝛼ISp(Ip + 𝛽AAp)

N
− 𝛾QSSpQp

Z2(t,Ep) =
𝛼ISp(Ip + 𝛽AAp)

N
+ 𝛾QSSpQp − (1 − 𝜙A)𝛿RIEp − 𝜙A𝜇EIEp − 𝜆dEp

Z3(t, Ip) = (1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip

Z4(t,Ap) = 𝜙A𝜇EIEp − (𝜌RA + 𝜆d)Ap

Z5(t,Rp) = 𝜎RIIp + 𝜌RAAp − 𝜆dRp

Z6(t,Qp) = 𝜅IQIp + 𝜈AQAp − 𝜂QQp.

By using the above consideration in system of Equation (3.1), we get

Sp(t) − S0 = AB
0 I𝜁Z1(t, Sp)

Ep(t) − E0 = AB
0 I𝜁Z2(t,Ep)

Ip(t) − I0 = AB
0 I𝜁Z3(t, Ip)

Ap(t) − A0 = AB
0 I𝜁Z4(t,Ap)

Rp(t) − R0 = AB
0 I𝜁Z5(t,Rp)

Qp(t) − Q0 = AB
0 I𝜁Z6(t,Qp).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(3.2)

Using (2.2) in (3.2), we get

Sp(t) − S0 = 1−𝜁
B(𝜁)

Z1(t, Sp) + 𝜁

B(𝜁) 0I𝜁Z1(t, Sp)

Ep(t) − E0 = 1−𝜁
B(𝜁)

Z2(t,Ep) + 𝜁

B(𝜁) 0I𝜁Z2(t,Ep)

Ip(t) − I0 = 1−𝜁
B(𝜁)

Z3(t, Ip) + 𝜁

B(𝜁) 0I𝜁Z3(t, Ip)

Ap(t) − A0 = 1−𝜁
B(𝜁)

Z4(t,Ap) + 𝜁

B(𝜁) 0I𝜁Z4(t,Ap)

Rp(t) − R0 = 1−𝜁
B(𝜁)

Z5(t,Rp) + 𝜁

B(𝜁) 0I𝜁Z5(t,Rp)

Qp(t) − Q0 = 1−𝜁
B(𝜁)

Z6(t,Qp) + 𝜁

B(𝜁) 0I𝜁Z6(t,Qp).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(3.3)

The above system of Equations (3.3) is the solution of the systems of Equations (1.1).

T(Sp(t)) = 1−𝜁
B(𝜁)

Z1(t, Sp) + 𝜁

B(𝜁) 0I𝜁Z1(t, Sp)

T(Ep(t)) = 1−𝜁
B(𝜁)

Z2(t,Ep) + 𝜁

B(𝜁) 0I𝜁Z2(t,Ep)

T(Ip(t)) = 1−𝜁
B(𝜁)

Z3(t, Ip) + 𝜁

B(𝜁) 0I𝜁Z3(t, Ip)

T(Ap(t)) = 1−𝜁
B(𝜁)

Z4(t,Ap) + 𝜁

B(𝜁) 0I𝜁Z4(t,Ap)

T(Rp(t)) = 1−𝜁
B(𝜁)

Z5(t,Rp) + 𝜁

B(𝜁) 0I𝜁Z5(t,Rp)

T(Qp(t)) = 1−𝜁
B(𝜁)

Z6(t,Qp) + 𝜁

B(𝜁) 0I𝜁Z6(t,Qp).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (3.4)
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4 EXISTENCE SOLUTIONS

Theorem 4.1 The kernels Z1, Z2, Z3, Z4, Z5, and Z6 satisfy the Lipschitz condition and
contraction if the following inequality holds:

0 ≤ a1 < 1

0 ≤ a2 < 1

0 ≤ a3 < 1

0 ≤ a4 < 1

0 ≤ a5 < 1

0 ≤ a6 < 1.

Proof. Consider Z1(t, Sp) = Δb − 𝜆dSp −
𝛼ISp(Ip+𝛽AAp)

N
− 𝛾QSSpQp.

Let Sp and Sp1 be two function, so we have following:

||Z1(t, Sp) − Z1(t, Sp1)|| = || [Δb − 𝜆dSp −
𝛼ISp(Ip + 𝛽AAp)

N
− 𝛾QSSpQp

]

−
[
Δb − 𝜆dSp1 −

𝛼ISp1(Ip + 𝛽AAp)
N

− 𝛾QSSp1Qp

] ||
≤ || [Δb − 𝜆dSp −

𝛼ISpIp

N
−

𝛼ISp𝛽AAp

N
− 𝛾QSSpQp

]

−
[
Δb − 𝜆dSp1 −

𝛼ISp1Ip

N
−

𝛼ISp1𝛽AAp

N
− 𝛾QSSp1Qp

] ||
≤ ||Δb −

[
𝜆d −

𝛼IIp

N
−

𝛼I𝛽AAp

N
− 𝛾QSQp

]
Sp

−
(
Δb −

[
𝜆𝑑 −

𝛼I Ip

N
−

𝛼I𝛽AAp

N
− 𝛾QSQp

]
Sp1

) ||
≤ ||Δb − lSp − Δb + lSp1||
≤ a1||Sp(t) − Sp1(t)||

where l = 𝜆d −
𝛼IIp

N
− 𝛼I𝛽AAp

N
− 𝛾QSQp.

Consider u = maxt∈ J || Sp(t)||, v = maxt∈ J ||Ep(t)||, w = maxt∈ J || Ip(t)||,
x = maxt∈ J ||Ap(t)||, y = maxt∈ J ||Rp(t)||, and z = maxt∈ J ||Qp(t)||. Hence, the Lipschitz

condition is satisfied for Z1 and if 0≤ a1 < 1, then it is also a contraction for Z1.

Similarly, the other kernels satisfy the Lipschitz condition as follows:

||Z2(t,Ep) − Z2(t,Ep1)|| ≤ a2||Ep(t) − Ep1(t)||||Z3(t, Ip) − Z3(t, Ip1)|| ≤ a3||Ip(t) − Ip1(t)||||Z4(t,Ap) − Z4(t,Ap1)|| ≤ a4||Ap(t) − Ap1(t)||||Z5(t,Rp) − Z5(t,Rp1)|| ≤ a5||Rp(t) − Rp1(t)||||Z6(t,Qp) − Z6(t,Qp1)|| ≤ a6||Qp(t) − Qp1(t)||. ▪

Theorem 4.2 Let M̃ ⊂ H be bounded and l, m, n, k, p, q> 0 such that||Sp(t2) − Sp(t1)|| ≤ C1||t2 − t1||||Ep(t2) − Ep(t1)|| ≤ C2||t2 − t1||
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||Ip(t2) − Ip(t1)|| ≤ C3||t2 − t1||||Ap(t2) − Ap(t1)|| ≤ C4||t2 − t1||||Rp(t2) − Rp(t1)|| ≤ C5||t2 − t1||||Qp(t2) − Qp(t1)|| ≤ C6||t2 − t1||
where Sp,Ep,Tp,Ap,Rp,Qp ∈ M̃. Then T(M̃) is compact.

Proof. Let

W1 = max
0≤t≤1 0≤Sp<l

Z1(t, Sp(t)),

W2 = max
0≤t≤1 0≤Ep<m

Z2(t,Ep(t)),

W3 = max
0≤t≤1 0≤Ip<n

Z3(t, Ip(t)),

W4 = max
0≤t≤1 0≤Ap<k

Z4(t,Ap(t)),

W5 = max
0≤t≤1 0≤Rp<p

Z5(t,Rp(t)),

W6 = max
0≤t≤1 0≤Qp<q

Z6(t,Qp(t)),

∃ a constants l, m, n, k, p, q> 0 such that ||Sp(t) || < l, ||Ep(t) || <m, ||Ip(t) || < n,||Ap(t) || < k, ||Rp(t) || < p, ||Qp(t) || < q. For all Sp,Ep, Ip,Ap,Rp,Qp ∈ M̃, we get

||TSp(t)|| = ||1 − 𝜁

B(𝜁)
Z1(t, Sp) +

𝜁

B(𝜁) 0I𝜁Z1(t, Sp)||
≤ 1 − 𝜁

B(𝜁)
||Z1(t, Sp)|| + 𝜁

B(𝜁)
|| 1

Γ(𝜁) ∫
t

0

(t − s)(𝜁−1)Z1(s, Sp)ds||
≤ 1 − 𝜁

B(𝜁)
||Z1(t, Sp)|| + 𝜁

B(𝜁)
(t − 0)𝜁
𝜁Γ(𝜁)

||Z1(s, Sp)ds||
≤ 1 − 𝜁

B(𝜁)
||Z1(t, Sp)|| + (t − 0)𝜁

B(𝜁)Γ(𝜁)
||Z1(s, Sp)ds||

≤
(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

) ||Z1(s, Sp)ds||
≤
(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W1.

Similarly,

||TEp(t)|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W2

||TIp(t)|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W3

||TAp(t)|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W4

||TRp(t)|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W5

||TQp(t)|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
W6.
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Consequently, T(M̃) is bounded.

Next, to examine t1 < t2 and Sp(t),Ep(t), Ip(t),Ap(t),Rp(t),Qp(t) ∈ M̃ and then for

every 𝜀> 0 if ||t2 − t1 || <𝛿, we get

||TSp(t2) − TSp(t1)|| = ||1 − 𝜁

B(𝜁)
[Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))]

+ 𝜁

B(𝜁) 0I𝜁 [Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))]||
≤ 1 − 𝜁

B(𝜁)
||Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))||

+ 𝜁

B(𝜁)

[
∫

t2

0

(t2 − s)(𝜁−1)Z1(s, Sp(s))ds − ∫
t1

0

(t1 − s)(𝜁−1)Z1(s, Sp(s))ds
]

≤ 1 − 𝜁

B(𝜁)
||Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))||

+ 𝜁

B(𝜁)
||Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))|| (t2 − t1)𝜁

𝜁Γ(𝜁)

≤
(

1 − 𝜁

B(𝜁)
+ (t2 − t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))||. (4.1)

Similarly,

||TEp(t2) − TEp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z2(t2,Ep(t2)) − Z2(t1,Ep(t1))||
||TIp(t2) − TIp(t1)|| ≤ (

1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z3(t2, Ip(t2)) − Z3(t1, Ip(t1))||
||TAp(t2) − TAp(t1)|| ≤ (

1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z4(t2,Ap(t2)) − Z4(t1,Ap(t1))||
||TRp(t2) − TRp(t1)|| ≤ (

1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z5(t2,Rp(t2)) − Z5(t1,Rp(t1))||
||TQp(t2) − TQp(t1)|| ≤ (

1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

) ||Z6(t2,Qp(t2)) − Z6(t1,Qp(t1))||.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(4.2)

Consider

||Z3(t2, Ip(t2)) − Z3(t1, Ip(t1))|| = ||[(1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip(t2)]
− [(1 − 𝜙A)𝛿RIEp − (𝜎RI + 𝜆d)Ip(t1)]||

≤ (𝜎RI + 𝜆d)||Ip(t2) − Ip(t1)||
≤ C3||t2 − t1||. (4.3)

Similarly,

||Z1(t2, Sp(t2)) − Z1(t1, Sp(t1))|| ≤ C1||t2 − t1||
||Z2(t2,Ep(t2)) − Z2(t1,Ep(t1))|| ≤ C2||t2 − t1||
||Z4(t2,Ap(t2)) − Z4(t1,Ap(t1))|| ≤ C4||t2 − t1||
||Z5(t2,Rp(t2)) − Z5(t1,Rp(t1))|| ≤ C5||t2 − t1||
||Z6(t2,Qp(t2)) − Z6(t1,Qp(t1))|| ≤ C6||t2 − t1||.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4.4)
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Now, substitute the systems (4.3) and (4.4) in Equations (4.1) and (4.2), we get

||TSp(t2) − TSp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C1||t2 − t1||

||TEp(t2) − TEp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C2||t2 − t1||

||TIp(t2) − TIp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C3||t2 − t1||

||TAp(t2) − TAp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C4||t2 − t1||

||TRp(t2) − TRp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C5||t2 − t1||

||TQp(t2) − TQp(t1)|| ≤ (
1−𝜁
B(𝜁)

+ (t2−t1)𝜁

B(𝜁)Γ(𝜁)

)
C6||t2 − t1||.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
that is, ||TSp(t2)− TSp(t1) || → 0 as t2 → t1. Similarly, for all T(M̃) → 0 as t2 → t1. Thus

T(M̃) is equicontinous.

According to Arezla–Azscoli theorem, “Let Ω be compact Hausdroff Metric space.

Then M̃ ∈ C(Ω) is relatively compact iff M̃ is uniformly bounded and uniformly

continuous,” T(M̃) is compact. ▪

5 UNIQUENESS SOLUTIONS

In an earlier section, we expressed the existence solution for SARS-CoV-2 spreading predict with

AB-derivative by using a fixed-point method. Now, we proceed uniqueness results of the system (3.4)

with initial conditions.

||T(Sp1
(t)) − T(Sp2

(t))|| = ||1 − 𝜁

B(𝜁)
[Z1(t, Sp1

(t)) − Z1(t, Sp2
(t))]

+ 𝜁

B(𝜁) 0I𝜁 [Z1(t, Sp1
(t)) − Z1(t, Sp2

(t))]||
≤ 1 − 𝜁

B(𝜁)
||Z1(t, Sp1

(t)) − Z1(t, Sp2
(t))||

+ 𝜁

B(𝜁)
||Z1(t, Sp1

(t)) − Z1(t, Sp2
(t))|| (t − 0)𝜁

𝜁Γ(𝜁)

≤
(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

) ||Z1(t, Sp1
(t)) − Z1(t, Sp2

(t))||
≤
(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a1||Sp1

(t) − Sp2
(t)||.

Similarly,

||T(Ep1
(t)) − T(Ep2

(t))|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a2||Ep1

(t) − Ep2
(t)||

||T(Ip1
(t)) − T(Ip2

(t))|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a3||Ip1

(t) − Ip2
(t)||

||T(Ap1
(t)) − T(Ap2

(t))|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a4||Ap1

(t) − Ap2
(t)||
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FIGURE 1 Numerical results of the susceptible people Sp(t) with respect to time t when n varies from 1 to 3 [Color figure

can be viewed at wileyonlinelibrary.com]

||T(Rp1
(t)) − T(Rp2

(t))|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a5||Rp1

(t) − Rp2
(t)||

||T(Qp1
(t)) − T(Qp2

(t))|| ≤ (
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a6||Qp1

(t) − Qp2
(t)||.

Therefore, if the following conditions holds:(
1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a1 < 1(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a2 < 1(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a3 < 1(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a4 < 1(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a5 < 1(

1 − 𝜁

B(𝜁)
+ (t − 0)𝜁

B(𝜁)Γ(𝜁)

)
a6 < 1.

∴ T is a contraction. These certain that the model has a unique solution.

6 NUMERICAL RESULTS

Here, we discussed the model of SARS-CoV-2 with AB-derivative. Consider the paramet-

ric values from the literature [29] in Table 1. Assume 35% of total initial population

N = S0 +E0 + I0 +A0 +R0 +Q0 = 481, 747, 192, where E0 = 1, 724, 266; I0 = 745; A0 = 413; R0 = 66,

susceptible case can be discovered as S0 = N − (E0 + I0 +A0)−R0 and Q0 = 10,00,000. The birth rate

http://wileyonlinelibrary.com
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FIGURE 2 Numerical results of the exposed people Ep(t) with respect to time t when n varies from 1 to 3 [Color figure can

be viewed at wileyonlinelibrary.com]

FIGURE 3 Numerical results of the infected people Ip(t) with respect to time t when n varies from 1 to 3 [Color figure can be

viewed at wileyonlinelibrary.com]

Δb = 𝜆d ×N and natural death rate 𝜆d = 1

69.50
(life expectancy in India is 69.50 per year 2019) are

derived in the absence of infection.

Consider the fractional order 𝜁 = 0.5 and using the above parametric values, n varies from 1 to 3

in Equation (3.3). The range of n values varies according to the time and the above approximate values

to identify the SARS-CoV-2 viruses growth in people simultaneously in Figures 1–6.

Spn(t) = 1 + 3465807.135 − 0.0072 ∗ Spn−1
(t) − 2.5947e − 10 ∗ Spn−1

(t) ∗ Ipn−1
(t)

− 1.5423e − 10 ∗ Spn−1
(t) ∗ Apn−1

(t) − 6.1550e − 09 ∗ Spn−1
(t) ∗ Qpn−1

(t)

+ 1955408.38556

0.5
∗ t0.5 − 0.00406224

0.5
∗ t0.5 ∗ Spn−1

(t)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Numerical results of the asympotically infected people Ap(t) with respect to time t when n varies from 1 to 3

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Numerical results of the recovered or removed people Rp(t) with respect to time t when n varies from 1 to 3

[Color figure can be viewed at wileyonlinelibrary.com]

− 1.4639e − 10

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Ipn−1
(t) − 8.7017e − 11

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Apn−1
(t)

− 3.4727e − 09

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Qpn−1
(t)

Epn(t) =1 + 2.5947e − 10 ∗ Spn−1
(t) ∗ Ipn−1

(t) + 1.5423e − 10 ∗ Spn−1
(t) ∗ Apn−1

(t)
+ 6.1550e − 09 ∗ Spn−1

(t) ∗ Qpn−1
(t) − 0.0096 ∗ Epn−1

(t)

+ 1.46329e − 10

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Ipn−1
(t) + 8.7017e − 11

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Apn−1
(t)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Numerical results of the people in the reservoir (affected by seafood) Qp(t) with respect to time t when n varies

from 1 to 3 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Approximate values of parameter implemented in the SARS-CoV-2 (COVID-19
model) (1.1)

S. No. Notation with values Parametric representation

1. Δb = 6.9316× 106 Birth rate

2. 𝛼I = 2.5× 10−1 Contiguous rate

3. 𝜆d = 1.44× 10−2 Natural death rate

4. 𝛽A = 5.944× 10−1 Transmission multiple rate (asymptomatically infected)

5. 𝛿RI = 4.7876× 10−3 After incubation period Rp from Ap

6. 𝜇EI = 5× 10−2 Incubation period of infected Ip from Ep

7. 𝜙A = 1.243× 10−2 proposition of asymptomatic infected Ap

8. 𝛾QS = 1.231× 10−8 Transmission coefficient from market to Sp

9. 𝜎RI = 9.871× 10−2 Removal rate from Ip

10. 𝜌RA = 8.543× 10−2 Recovery rate from Ap

11. 𝜅IQ = 3.98× 10−4 Infected Ip from Qp

12. 𝜈AQ = 1× 10−3 Asymptomatic infected Ap from Qp

13. 𝜂Q = 1× 10−2 Removing virus rate from Qt

+ 3.4727e − 09

0.5
∗ t0.5 ∗ Spn−1

(t) ∗ Qpn−1
(t) − 0.0056

0.5
∗ t0.5 ∗ Epn−1

(t),

Ipn (t) = 1 + 0.0024 ∗ Epn−1
(t) − 0.0566 ∗ Ipn−1

(t) + 0.0013

0.5
∗ t0.5 ∗ Epn−1

(t)

− 0.0319

0.5
∗ t0.5 ∗ Apn−1

(t),

Apn (t) = 1 + 3.1075e − 04 ∗ Epn−1
(t) − 0.4344 ∗ Apn−1

(t) + 1.7533e − 04

0.5
∗ t0.5 ∗ Epn−1

(t)

− 0.2451

0.5
∗ t0.5 ∗ Apn−1

(t),

http://wileyonlinelibrary.com
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Rpn(t) = 1 + 0.0494 ∗ Ipn−1
(t) + 0.4272 ∗ Apn−1

(t) − 0.0072 ∗ Rpn−1
(t) + 0.0278

0.5
∗ t0.5 ∗ Ipn−1

(t)

+ 0.241

0.5
∗ t0.5 ∗ Apn−1

(t) − 0.0041

0.5
∗ t0.5 ∗ Rpn−1

(t),

Qpn(t) = 1 + 1.9900e − 04 ∗ Ipn−1
(t) + 5.000e − 04 ∗ Apn−1

(t) − 0.005 ∗ Qpn−1
(t)

+ 1.1228e − 04

0.5
∗ t0.5 ∗ Ipn−1

(t) + 2.8210e − 04

0.5
∗ t0.5 ∗ Apn−1

(t) − 0.0028

0.5
∗ t0.5 ∗ Qpn−1

(t).

7 CONCLUSION

In this article, we studied a SARS-CoV-2 nonlinear infection-spreading model among various phenom-

ena concerning time by using the Atangana–Baleanu derivative. We derived the solutions, existence

results, and unique solutions for the system of equations by the fixed-point method. By using the

Mittag–Leffler Kernel with an approximate value, the numerical results will be calculated and plot-

ted in each stage of peoples affected or recovered from SARS-Cov-2 in graphically. We obtained the

approximate value of those stages to predict the outcome of SARS-CoV-2 spreading in the country or

state or province. In future, by utilizing the AB-derivative we can predict the infections of pandemic

disease like SARS-CoV-2 (COVID-19).
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