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Abstract

Interest in time-resolved connectivity in fMRI has grown rapidly in recent years. The most widely 

used technique for studying connectivity changes over time utilizes a sliding windows approach. 

There has been some debate about the utility of shorter versus longer windows, the use of fixed 

versus adaptive windows, as well as whether observed resting state dynamics during wakefulness 

may be predominantly due to changes in sleep state and subject head motion. In this work we use 

an independent component analysis (ICA)-based pipeline applied to concurrent EEG/fMRI data 

collected during wakefulness and various sleep stages and show: 1) connectivity states obtained 

from clustering sliding windowed correlations of resting state functional network time courses 

well classify the sleep states obtained from EEG data, 2) using shorter sliding windows instead of 

longer non-overlapping windows improves the ability to capture transition dynamics even at 

windows as short as 30 seconds, 3) motion appears to be mostly associated with one of the states 

rather than spread across all of them 4) a fixed tapered sliding window approach outperforms an 

adaptive dynamic conditional correlation approach, and 5) consistent with prior EEG/fMRI work, 

we identify evidence of multiple states within the wakeful condition which are able to be classified 

with high accuracy. Classification of wakeful only states suggest the presence of time-varying 

changes in connectivity in fMRI data beyond sleep state or motion. Results also inform about 

advantageous technical choices, and the identification of different clusters within wakefulness that 

are separable suggest further studies in this direction.

1. Introduction

The human brain continuously engages in mental activities that include introspection, theory 

of mind, and future planning, even when not actively pursuing a task. Fluctuations during 

the resting state have been shown to show functional network topology similar to that 
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observed in task imaging studies (Calhoun et al., 2008; Smith et al., 2009). Since the first 

reports on time varying functional connectivity during task performance (Sakoǵlu et al., 

2010) and during a typical resting functional magnetic resonance imaging (fMRI) scan 

(Chang and Glover, 2010; Sakoǵlu et al., 2010), there has been interest in studying and 

characterizing the changes in functional connectivity between brain regions on a shorter time 

scale, also referred to as time-resolved or dynamic functional connectivity(Calhoun et al., 

2014; Hutchison et al., 2013). Recent years have seen a sharp increase in development of 

novel methods to characterize these dynamics (Allen et al., 2012a; Cribben et al., 2013; 

Kang et al., 2011; Tagliazucchi et al., 2012a; Vidaurre et al., 2017; Yaesoubi et al., 2015a)

(see (Preti et al., 2017) for a thorough review).

One popular method to estimate connectivity dynamics in functional neuroimaging data is 

the use of sliding windows to estimate the connectivity between regions/networks. These 

time-varying connectivity estimates, when computed on the time courses from brain regions 

or seeds defined a priori are referred to as dynamic functional connectivity (dFC) and those 

estimated from the time courses of networks obtained from blind decomposition techniques 

such as independent components analysis (ICA) are referred to as dynamic functional 

network connectivity (dFNC). In this work we focus on the latter, which leverages the 

benefits of ICA including data-driven identification of networks, robustness to noise, 

separation of overlapping signals of interest, and estimation of homogeneous networks that 

capture individual subject variability (Calhoun and de Lacy, 2017; Yu et al., 2017). Using an 

ICA based pipeline, Allen et al. (2012a) reported the presence of stable, recurring 

connectivity patterns/states obtained from clustering pairwise correlation estimates of 

windowed time courses of ICA derived intrinsic networks from resting fMRI data and more 

recently (Abrol et al., 2017) showed connectivity patterns and dynamic metrics are highly 

replicable across multiple independent data sets. However, a few studies have raised 

concerns over the quality of connectivity estimates obtained using the sliding window 

method (Lindquist et al., 2014; Smith et al., 2011), choice of window size (Hindriks et al., 

2016; Leonardi and Van De Ville, 2015; Sakoǵlu et al., 2010; Zalesky and Breakspear, 

2015), and the ability of the method to capture meaningful state transitions (Shakil et al., 

2016). Others have primarily attributed the observable changes in connectivity in resting 

fMRI data to sleep state Chang et al. (2016); Tagliazucchi and Laufs (2014); Haimovici et 

al. (2017), sampling variability and head motion (Laumann et al., 2016; Liegeois et al., 

2017).

In our prior concurrent EEG/fMRI work (Allen et al., 2017), windows corresponding to 

distinct dFNC connectivity states estimated using a sliding-window correlation method were 

associated with distinct electrophysiological signatures during both eyes open and eyes 

closed awake conditions and showed the ability of the method to track subject vigilance. 

However, since subjects were mostly awake throughout the scan sessions, simultaneously 

acquired electroencephalogram (EEG) data did not show enough state transitions from 

wakefulness to assess how well observed dFNC state transitions correspond to 

neurobiological state transitions i.e. observable changes in subject sleep state from EEG 

data.
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Here we use simultaneous EEG-resting fMRI data collected continuously over 50 minutes 

while the subjects transitioned between wakefulness and different sleep stages (defined by 

EEG-based sleep scoring) and assessed the ability of sliding window based dFNC measures 

to track the changes across these different wakefulness states. In addition to comparing the 

dFNC measure to sleep, this study provides us an opportunity to evaluate the impact of 

several technical choices within a real world dataset rather than in simulations (Leonardi and 

Van De Ville, 2015; Sakoǵlu et al., 2010). For example, we compare the impact of the length 

of the sliding window, precisely tapered sliding window (Allen et al., 2012a; Barttfeld et al., 

2015; Yaesoubi et al., 2015b; Zalesky et al., 2014), on our ability to predict sleep stage. 

Windows should be short enough to be a good compromise between the ability to capture 

time varying connectivity without being too sensitive to noise. In addition, we compare a 

‘fixed length’ sliding window approach to a method from econometrics which has been 

applied to fMRI data, the dynamic conditional correlation (DCC) (Engle, 2002; Lindquist et 

al., 2014). DCC uses an adaptive window size and has been reported to show better test-rest 

reliability compared to ‘fixed length’ sliding-window methods in estimating time varying 

functional connectivity (Choe et al., 2017). We also evaluate the relationship of the 

estimated states to motion, in particular we were interested in whether all states would show 

a similar relationship to motion or whether a subset of states captures the variance associated 

with motion.

2. Methods

2.1. Data acquisition

Resting state functional MRI data was collected from 55 subjects for 52 minutes each (1505 

volumes of echo planar images, repetition time (TR)=2.08 s, TE = 30 ms, matrix 64 × 64; 

FOV = 192 mm2, Thickness=2 mm, 1 mm gap between slices) on a Siemens 3T Trio 

scanner while the subjects rested with their eyes closed (details in (Tagliazucchi et al., 

2012b)). Simultaneous EEG was acquired on 30 EEG channels with FCz as the reference 

(sampling rate = 5 kHz, low pass filter = 250 Hz, high pass filter = 0.016 Hz) using an MR 

compatible device (BrainAmp MR+, BrainAmp ExG; Brain Products, Gilching, Germany).

Of 63 nonsleep-deprived subjects scanned in the evening after 8:00 PM, 8 subjects had no 

epochs of sleep and were not used in this analysis. Remaining 55 subjects reached at least 

sleep stage N1 as assessed from EEG derived hypnogram and were included in the analysis. 

All subjects reached at least N1 sleep stage, 39 reached N2 stage and 19 went into N3 stage 

during the scan. For details of epochs of individual sleep durations, see Supplemental Table 

7.1 of Tagliazucchi et al. (2013).

2.2. Data preprocessing

EEG data underwent MRI and pulse artifact correction based on average artifact subtraction 

(Allen et al., 1998), followed by ICA-based residual artifact rejection. This data was 

subsequently sleep staged into wakeful (W), drowsy/light sleep (N1), moderate sleep (N2), 

and deep sleep (N3) stages by a sleep expert per American Academy of Sleep Medicine 

(AASM) criteria (AASM and Iber, 2007) resulting in a hypnogram for the scan duration for 

each subject. None of the participants went into REM sleep stage during the scan period. 

Damaraju et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first 5 volumes of functional imaging data were discarded to account for T1 

equilibration effects. The data were then corrected for head movement (rigid body) and slice 

timing differences. Subject data was then spatially normalized to MNI template space using 

SPM12 toolbox and resampled to 3 mm3 isotropic voxel resolution. Since the scan duration 

was long, we detrended each voxel time series using a high model order (21) polynomial. 

The subject brain voxel data were then spatially smoothed to 5 mm FWHM using AFNI’s 

3dBlurInMask. Finally, the voxel time courses were variance normalized (z-scored).

2.3. Independent component estimation

We performed a group independent component analysis (Calhoun et al., 2001; Calhoun and 

Adali, 2012) using the GIFT toolbox (http://mialab.mrn.org/software/gift) to decompose the 

data into 100 spatially independent components each associated with a coherent time course. 

First subject data were reduced in time to 1400 points using principal components analysis 

(PCA). These time reduced datasets were then concatenated in time and a group PCA was 

used to further reduce the data to 100 orthogonal directions of maximal variance. Spatial 

ICA analysis was performed on this data to obtain 100 spatially independent components 

using infomax algorithm. To ensure stability of decomposition, the Infomax ICA algorithm 

was repeated 20 times in ICASSO (Himberg et al., 2004) with random initialization, and 

aggregate spatial maps were estimated as the modes of the component clusters. Subject 

specific component maps and their associated time courses were obtained using spatio-

temporal regression (Erhardt et al., 2011).

2.4. Component selection and dynamic FNC estimation

Of the 100 spatial ICA components, we identified 62 components as intrinsic connectivity 

networks (ICNs) in a semi-automatic manner using the spatial profile of component maps, 

and dominant low frequency spectral power of their time courses as described in (Allen et 

al., 2011). The corresponding ICN time courses of each subject were orthogonalized against 

estimated head movement parameters in a regression framework and then filtered using 5th 

order Butterworth filter with a passband of 0.01 to 0.15 Hz. Following (Allen et al., 2012a), 

we performed dynamic functional network connectivity analysis using the post processed 

ICN time courses. Briefly, we computed pairwise correlations between tapered windowed 

segments (a rectangular window of 30 TR (60s) convolved with a Gaussian kernel of σ = 3s) 

of time courses sliding in steps of 1 TR. This resulted in 1500–30=1470 windows over 

which we estimated dFNC between 62 independent network time courses (1891 pairs). 

Since the number of samples are smaller than a static approach using all the timecoure 

information, we used a robust estimation strategy employing the graphical LASSO method 

(Friedman et al., 2008) by placing a penalty on the L1 norm of the precision matrix (inverse 

correlation matrix) to promote sparsity. Given the concerns with estimation of dFNC using 

shorter windows (Leonardi and Van De Ville, 2015; Lindquist et al., 2014; Smith et al., 

2011), we repeated the analysis with longer tapered window sizes of size 45 TR, 60 TR, and 

shorter tapered window sizes of size 16 TR and 22 TR.

2.5. K-means clustering and comparison to EEG hypnogram

The dFNC windows from a given sliding window were clustered using the K-means 

algorithm in two steps consistent with our previous work (Allen et al., 2012a). We first 
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computed a time course of standard deviation of dFNC matrices for each subject and 

selected subset of subject windows corresponding to local maxima in standard deviation as 

subject exemplars. These subset exemplars were clustered using K-means algorithm with 

Manhattan (L1) distance as distance measure. The number of clusters was set to 5 based on 

elbow criterion of ratio of within to between cluster distance of windows from cluster 

centroids, referred to as dFNC states. The obtained centroids were used as starting points to 

cluster all the data. This two step procedure, one to identify initial starting points and 

subsequent clustering of all window data using these starting points results in stable centroid 

patterns across independent datasets. The K-means clustering (a hard clustering approach) 

assigns each dFNC window to one of the dFNC states. This assignment of subject windows 

in time to dFNC states results in a discrete vector referred to as state vector. Figure 1 shows 

the schematic of the analysis pipeline used in the paper. We assessed the correspondence 

between subject dFNC state vector and EEG-derived hypnogram using correlation. To 

further visualize the correspondence between dFNC estimates from the sliding-window 

method and EEG-based subject hypnogram, we project the multidimensional (1891) dFNC 

data into 2 dimensions using the t-distributed stochastic neighborhood embedding (t-SNE) 

algorithm that preserves the distances between similar objects in high dimensional space to 

low dimensions (van der Maaten et al., 2008). We also sought to characterize the temporal 

properties of state vectors obtained from each modality by computing state transition 

probabilities from these vectors and then compare the similarities between the two vectors.

In our earlier work (Allen et al., 2017), we aligned FNC state vectors to EEG using the time 

point corresponding to the center of the sliding window. As that study was performed during 

awake conditions only (eyes open and eyes closed awake conditions), we did not have many 

EEG-based transitions within the subject wakeful state. Since the data from this study has a 

ground truth (EEG-based) hypnogram transition state vector informing of subject’s sleep 

stage, we performed a classification study using linear support vector machine (SVM) to see 

if the alignment of EEG hypnogram best corresponds to start or middle or in-between shift 

(3, 5 or 7 TRs) of dFNC state vector obtained from sliding window size of 30s. Prior to 

running SVM, the dFNC connectivity matrix (1891 pairs) was reduced to 30 dimensions 

using PCA. An 11 fold cross-validation was performed to assess the consistency of best 

alignment. For each fold, 5 different subjects were left out and a linear SVM was trained on 

remaining 50 subjects using libsvm package (https://www.csie.ntu.edu.tw/cjlin/libsvm/). A 

multi-class (all pairs/one-against-one) linear SVM model identifies support points in kernel 

space that maximally separates each pair of classes (W-N1,W-N2,W-N3,N1-N2,N1-N3,N2-

N3). Then each test case/window is assigned to the class that gets most votes. Both training 

and test balanced (averaged per class) accuracies were computed. The two awake dFNC 

states were collapsed into one for this analysis. The analysis was repeated with radial basis 

function (RBF) kernel. For linear SVM, the optimum penalty parameter C was identified 

using grid search between [0.1 and 10]. For RBF SVM, the a grid search was performed to 

identify optimal hyperparameters C and gamma in the range [0.1 to 10] and [1e-03 to 1e-01] 

respectively.

To identify optimal window size among the tested window sizes, we performed another 

linear SVM separately for dFNC windows obtained with each choice of window length. 

Similar cross-validation analysis as mentioned above was used. Finally, we also tested the 
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performance of the DCC algorithm, which uses adaptive windowing, to track subject sleep 

state. The DCC algorithm fits univariate generalized autoregressive conditional 

heteroscedastic (GARCH) GARCH(1,1) models to each univariate time series to obtain 

standardized residuals and then applies an exponentially weighted moving average window 

on these standard residuals of each pair of time courses to compute a non-normalized 

version of time-varying correlation between the two time courses (see (Lindquist et al., 

2014; Choe et al., 2017) for more details).

To investigate if wakeful state can be further clustered into meaningful sub-clusters as in our 

earlier work, we restricted our clustering analysis to the 26001 dFNC windows (State 1 for 

window size 30) that corresponded to the subject wakeful EEG condition. This analysis 

revealed 4 sub-clusters with distinct connectivity profiles. We ran a SVM classification 

analysis by holding out 6000 dFNC windows and performed a three fold cross validation on 

the remaining 20000 windows to estimate a model for a RBF kernel. The best model was 

then used to test the classification accuracy on the held out samples and we computed 

average per class accuracy and confusion matrix.

2.6. Head motion effects

To assess the impact of subject head motion on the connectivity estimates, we assessed the 

relationship between the subject head movement summaries and dFNC state vector. We 

computed framewise displacement (FD) and framewise data variation (DVARS) (Power et 

al., 2012) for each subject to represent their motion summary. We then computed the number 

of instances subject DVARS exceeds its mean by 2.5 times its standard deviation for each k-

means state. A one-way ANOVA was then performed on the counts to see if certain states 

show significantly more motion related outliers. In addition, we plotted each subject state 

vector along with their FD and DVARS to visually assess if any of the states are 

contaminated by head movement.

3. Results

The sixty-two ICNs selected for subsequent analysis are depicted in Figure 2. These 

components are grouped into subcortical (5), auditory (2), sensorimotor (10), visual (11), a 

set of higher order associative areas involved in attentional and executive control as well as 

cognitive control (19), default-mode regions (10) and cerebellar (5) components based on 

anatomical proximity and functional connectivity as in our earlier studies (Allen et al., 

2012a, 2011). The selected 62 ICN labels are summarized in Table 1.

3.1. dFNC clustering results

The centroids (k=5) obtained from k-means clustering of dynamic FNC window data of all 

subjects are shown in Figure 3A. The centroids were ordered according to their frequency of 

occurrence in time (from the most awake state to the deepest sleep state), with the exception 

of state 2 Figure 3B. These centroids show distinct connectivity patterns from state to state. 

Estimation of modularity of the centroid states using the Louvain community detection 

algorithm (Rubinov and Sporns, 2011) resulted in three modules for states 1,2 and 3, and 

four modules for states 4 and 5. Although subcortical and cerebellar ICs belong to the same 
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module in all states, they segregate as an additional module for states 4 and 5. We computed 

mean within module connectivity strength and the top 12 ICs for each module are shown in 

Figure 3C.

3.2. Do clustered connectivity states correspond to sleep states?

The subject-state vectors are sorted by sleep state (W, N1, N2 and N3) and frequency counts 

by sleep state were obtained and are shown in Figure 4. As seen in the figure, connectivity 

patterns in states 1 and 2 predominantly occur in the awake state while the patterns seen in 

states 3, 4 and 5 occur more frequently as subjects fall into different sleep states gradually 

with the connectivity pattern in state 5 occurring during N3 (deep) sleep stage.

We tested the correspondence between subject state vectors obtained through clustering 

dFNC matrices and subject hypnograms obtained by computing the cross-correlation 

between the two vectors. Figure 5 shows examples of subjects with the two best and the two 

worst correlations between the two. As seen in the figure, the best subject showed a 

correlation of 0.89 between his/her hypnogram and state vector. The subjects that showed 

the poorest correlation between the two primarily tended to stay awake throughout the scan 

session, and the dFNC state vector showed transitions between awake related states 1 and 2.

The results assessing the correspondence between subject dFNC state vector and his/her 

hypnogram are summarized in Figure 6. For this projection, a random sample of 400 dFNC 

windows by state (total 2000 points) were visualized using the t-SNE algorithm and were 

color coded with their corresponding k-means cluster assignment (Fig 6A) or by sleep stage 

obtained from the respective hypnogram (Fig 6B). Both awake states from the k-mean 

clustering are grouped together and show a transition from wakefulness to deeper sleep 

stages that occurs gradually along a smooth trajectory. This result shows that the dFNC 

estimates using the sliding window method and subsequent clustering correspond well to 

neurophysiological states as estimated via the EEG-based hypnogram.

3.3. How does motion affect the clustering?

To assess the effect of subject head movement during the scan on dFNC clustering results, 

we computed the number of windows with significant subject head movements (points 

greater that 2.5 standard deviations from mean framewise displacement) for each dFNC state 

and also visually assessed subject dFNC state vector and mean framewise displacement 

vectors. State 2 is associated with larger head movements during the scan relative to the 

other states. The number of significant head movements by state are shown in Supplemental 

Figure S1A. A couple of example subject state vectors and their head movement summary 

(FD) vectors are also shown in Supplemental Figure S1B.

3.4. Characterization of temporal dynamics

Comparison of the temporal properties of state vectors obtained from each modality is 

summarized in (Figure 7). The average dwell times and frequency of occurrence of each 

state are consistent for data from both modalities. The state transition matrices show good 

correspondence with more probable transitions from W->N1, N1->N2, N2->N3 and 

transitions to the W state from all sleep stages. This is in line with our knowledge of 
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progression into various sleep stages. However, we observe a higher average number of 

transitions between states from the dFNC clustering derived state vectors compared to those 

computed using the EEG derived hypnogram.

3.5. Alignment of EEG derived hypnogram and windowed dFNC data

The SVM classification results for best alignment of EEG hypnogram and dFNC window 

position are presented in Figure 8. The results suggest that maximum accuracy is obtained 

when dFNC state vector is aligned to corresponding EEG hypnogram vector by the starting 

point of the window and the classification performance is reduced when a shift is introduced 

between the two vectors.

3.6. How well can we predict sleep stages from dFNC data?

The SVM classification accuracies comparing the prediction of subject hypnogram with 

dFNC estimates obtained using different window lengths is presented in Figure 9. As seen in 

the figure, the classification accuracy significantly increases with dFNC estimates from 

shorter to longer window sizes in training subject cases (the data SVM model has seen: one-

way ANOVA F=342,p<1e-35). The accuracies on left out test samples did not significantly 

differ with window sizes (one-way ANOVA F=0.7,p>0.58). These accuracy rates are 

consistent with earlier reports (Tagliazucchi et al., 2012b) however we show that these can 

be achieved using much shorter window lengths. The classification accuracies for dFNC 

estimates using DCC method performed poorly compared to those obtained using sliding 

window methods for all window sizes.

3.7. Does wakeful stage correspond to only one dFNC cluster?

Since our prior work (Allen et al., 2017) showed multiple wakeful states with distinct EEG 

spectral signatures, we further focused on the awake condition only to see if it can be 

reliably segmented into sub-clusters. A search for the optimal number of clusters using the 

elbow criterion yielded four clusters. The cluster centroids are depicted in Figure 10. Awake 

state cluster centroids 1 and 2 resemble each other but differ in the strength of correlations in 

within and between module groupings. Awake state 4 resembles state 3 from the full dataset 

but distinguishes itself in anti-correlations between sensory (visual, motor and auditory) 

networks to higher order cognitive networks and also to the default-mode regions. Results 

from SVM classification of awake only cluster windows resulted in 92% classification 

accuracy using a one-vs-rest RBF SVM model with grid search. The resulting confusion 

matrix is presented in Table 2. The classification is performed using leave 10% subjects out 

in a five fold cross-validation scheme. Classification accuracy reaches chance level of 25% 

when the class labels are permuted. This result suggests that the sub-clusters obtained from 

awake state are linearly separable with high accuracy.

4. Discussion

In this work, using an ICA based pipeline, we assess the ability of sliding window 

correlation based dynamic functional network connectivity measures to capture 

neurophysiological state transitions obtained from sleep staging of EEG data that was 

concurrently acquired during resting fMRI acquisition. Results show a good correspondence 
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between the subject state vectors obtained from k-means clustering of dFNC windows and 

subject hypnograms. We further demonstrate that distinct resting functional connectivity 

patterns are associated with wakeful and sleep states with dFNC state 1 predominantly 

occurring while subjects are awake, dFNC state 3 corresponding to reduced subject 

vigilance and early sleep stage (N1) and dFNC states 4 and 5 are more likely to be 

associated with deeper sleep stages. Deep sleep (N3) is primarily associated with dFNC state 

5 across all subjects. One state (dFNC state 2) primarily captures variance associated with 

subject movement.

4.1. dFNC clustering estimates can reliably predict subject sleep state

Recently, using the same data reported in this work, Haimovici et al. (2017) showed good 

correspondence between centroids of windowed resting fMRI correlation data obtained from 

k-means clustering and those informed by an EEG-based hypnogram. In Haimovici et al. 

(2017), the connectivity measures were estimated from non-overlapping windows of length 

100 seconds within fixed regions of interest and so precludes time varying connectivity 

information. Our work replicated the aforementioned result in Haimovici et al. (2017) 

despite several differences including the use of time-varying connectivity estimates from 

ICA derived network time courses as well as the use of overlapping windows with a step 

size of 1 TR. Using this approach, we show that high classification accuracies can be 

obtained for windows as short as 30 seconds (15 TRs).

Our results also demonstrated that dFNC estimates from sliding window correlation show 

higher accuracy compared to an adaptive windowless dynamic conditional correlation 

method. However, DCC estimates from sliding window based covariance estimates resulted 

in classification accuracies similar to those obtained from the sliding window method 

suggesting this parametric model of conditional correlation for resting fMRI data might be 

more sensitive to noise than smoother sliding window estimates when instantaneous 

conditional correlation estimates are computed.

Our analysis demonstrates that even window lengths as short as 30 seconds result in 

reasonable estimates of time-varying connectivity profiles with estimated dFNC clustering 

states showing good classification accuracy with subject hypnogram. This is in line with 

previous reports (Shirer et al., 2012) and suggests that the 1/fmin recommendation for 

window length as recommended by Leonardi and Van De Ville (2015) might be too 

conservative (Vergara and Calhoun, 2018). In our case 1/fmin would result in 100 sec (since 

fmin = 0.01 Hz after filtering) and may limit our ability to capture dynamics for 1/f spectral 

distributed BOLD data (Zalesky and Breakspear, 2015).

The observed differences between the individual dFNC state vector and the hypnogram can 

arise for the following reasons. The hypnogram is scored from EEG data epochs of 30 

seconds and assigns each 30 second segment to a single hypnogram stage (W/N1/N2 or N3). 

The dFNC at a given instant is estimated from a window length ‘w’ on either side of the 

time point (past and future). However, k-means is a hard clustering approach and, as seen in 

Figure 6, there is ambiguity in the assignment of the data point with its immediate 

neighboring state (for example dFNC states 4 and 5 and corresponding N2 and N3 sleep 

stages) compared to the ground truth (hypnogram). Fuzzy k-means approaches can help 
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mitigate this issue by allowing for states to overlap with one another (Miller et al., 2016). 

Another source of possible differences may be due to the different impact of noise (e.g. 

motion, MRI gradients) on the two signals which can hinder our ability of accurately 

estimating subject states.

4.2. Head motion appears to be separable from dynamic connectivity measures

Our dFNC clustering analysis reveals that motion appears to be mostly associated with one 

of the states (dFNC state 2) rather than spread across all of them. An examination of 

classification errors by sleep stage obtained for a window length of 30 TRs suggested that 

the awake state has the least errors (about 10%) and N1 sleep stage had the most errors 

(approximately 40%), with deeper sleep stages having an error rate of about 20%. Further 

evaluation to determine if dFNC windows overlapping with larger head movements during 

the scan drive these errors suggested that motion only contributed to about 15% of 

misclassified cases evenly across wakeful and sleep stages i.e 15% of 10, 40, 20 and 20 error 

rates of W, N1, N2, and N3 stages respectively. This suggests that dFNC windows exhibit 

larger variability during the N1 sleep stage compared to other sleep stages as observed in 

Supplemental Figure S2 leading to misclassification. This highlights the need to further 

identify additional sub-clusters in the N1 sleep stage and investigate if a fine grained EEG 

classification of this stage as proposed by Hori and colleagues (Hori et al., 1994) and 

recently demonstrated using EEG data (Jagannathan et al., 2018) can provide additional 

insights into large scale connectivity changes during the transition to sleep (Goupil and 

Bekinschtein, 2012).

4.3. Evidence of multiple dFNC sub-clusters states during wakefulness

The elbow criterion, computed as a ratio of between-cluster to within-cluster distance, was 

used to obtain an optimal k for clustering of the data using the k-means algorithm. Results 

suggest a 5 cluster solution within which we observe fewer (two) states from the wakeful 

portions of the scans than those reported earlier for data collected during the wakeful 

condition only (Allen et al., 2012b, 2017). This could be due to the fact that variability in 

dFNC fluctuations during wakefulness is lower compared to variability across different sleep 

stages (see Supplemental Figure S2). To evaluate this further, we performed a separate 

elbow criterion search and clustering of dFNC windows within only the wakeful state to see 

if additional clusters of meaningful time-varying connectivity profiles within and across 

subjects can be reliably estimated. Separate K-means clustering of dFNC windows from the 

awake only state (state 1) revealed additional sub-clusters not seen from clustering the data 

including all sleep stages. Windows corresponding to these sub-clusters are linearly 

separable with good accuracy using a linear SVM classifier. This result is in line with and 

extends recent reports showing replicable dFNC states in multiple independent datasets 

(Abrol et al., 2017) during (unconfirmed) wakeful conditions.

Some recent studies have argued that the observed connectivity states during wakefulness 

are primarily a reflection of sampling variability, changes in subject vigilance and partly 

reflect changes due to head movement (Laumann et al., 2016; Liegeois et al., 2017; 

Haimovici et al., 2017). Spontaneous eye blinks during wakefulness have also been shown to 

cause connectivity fluctuations in resting fMRI data (Wang et al., 2016). Another view is 
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that time-varying connectivity changes in resting state fMRI can be modeled as hierarchical 

transitions between connectivity states consisting of two metastates: one corresponding to 

states with increased connectivity in brain regions involved in higher cognition and other 

corresponding to states with greater integration within sensory regions (Vidaurre et al., 

2017). Another recent study identified strong correlation between dFC obtained using 

sliding window correlation of BOLD data and temporal dynamics of calcium signal during 

rest in mice brain recordings suggesting a neuronal origin of the observed dynamics (Matsui 

et al., 2018). In this work, we show distinct connectivity states during wakefulness that are 

separable via a cross-validated linear classifier. Future studies should evaluate the underlying 

neurobiological signatures of both sleep and wakefulness in greater detail. Transition 

between wakefulness to light sleep (N1) is associated with increased cortico-cortical 

connectivity and reduced sub-cortical cortical connectivity. N1 to N2 sleep transition is 

reduction in between and within sensory domain connectivity and increased connectivity 

between cerebellar ICNs. Finally deep sleep (N3) is associated with further reductions in 

long range connectivity between ICNs resulting in connectivity patterns closer to structural 

connectivity consistent with earlier reports.

4.4. Limitations and future work

We did not compare the sliding window correlation method to alternative methods of 

dynamic connectivity methods like multiplication of temporal derivatives (Shine et al., 2015) 

and time-frequency approaches (Yaesoubi et al., 2015c). The current dFNC patterns reported 

only correspond to certain sleep stages observed during the one hour scan performed early in 

the night. Further studies are needed to fully characterize functional connectivity during 

other known sleep states like rapid eye movement (REM) sleep possibly by scanning late in 

the night or from early morning recordings. Also, in this work we show the presence of 

linearly separable (predictable) connectivity states during wakeful rest to extend our 

previous work and address some current technical controversies in the field. Going forward, 

it would be interesting to perform a hierarchical analysis of various sleep stages to evaluate 

the possibility of different states existing during different sleep stages as well as to further 

study the underlying neurobiological correlates of these states with the use of multimodal 

imaging data along with novel modeling techniques.

4.5. Conclusions

In this work, using an ICA-based pipeline applied to concurrent EEG/fMRI data collected 

during wakefulness and various sleep stages we demonstrate that time varying connectivity 

estimates from sliding windowed correlations of resting state functional network time 

courses well classify the sleep states obtained from EEG data even for windows as short as 

30 seconds. We show that head motion is mostly associated with one of the states rather than 

spread across all of them. Consistent with earlier work, we find increased variability in 

connectivity as subjects transition from wakefulness to sleep. We report linearly separable 

clusters within the wakeful state and suggest future directions for assessing their 

neurobiological relevance via hierarchical analysis of predictable states in various sleep 

stages measured with EEG-fMRI data including eye tracking during the wakeful condition.
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Figure 1: 
Schematic depicting resting fMRI data processing (adapted from (Damaraju et al., 2014)).
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Figure 2: 
Sixty-two selected ICNs for further analysis were grouped into 7 modules using previously 

reported methods (Allen et al., 2012b).
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Figure 3: 
Cluster centroids from k-means clustering of dFNC window data for window size 30 (A) 

and the frequency of occurrence of each state in time (B). The standard errors for the 

frequency of occurrence were computed using 100 bootstrap resamples of the subject dFNC 

window data. (C) The modularity of the centroids is computed using the Louvain algorithm 

(“modularity_louvain_und_sign.m” function in the Brain Connectivity toolbox) resulting in 

three modules (Mod) for states 1,2 and 3 and four modules for states 4 and 5. The top 12 ICs 

with highest mean within module FC are depicted scaled by mean within module FC. Note 

that the weights (mean within module connectivity) are lower in states 1 and 5 compared to 

states 2, 3 and 4.
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Figure 4: 
Frequency counts of state vector assignments obtained from k-means clustering of dFNC 

data sorted by hypnogram states. States 1 and 2 primarily occur during wakefulness, dFNC 

states 4 and 5 during N2 sleep stage and state 5 is predominant during deep sleep (N3 stage).
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Figure 5: 
Comparison of subject state vectors obtained from k-means clustering of dFNC windows 

and EEG derived hypnograms for the two subjects with the highest correlation (A and B) 

and the two subjects with the lowest correlation (C and D). The overall distribution of the 

correlation between the two state vectors for all 55 subjects is presented in E. As seen, the 

subjects with low correlation tend to be awake throughout the scan session and the 

corresponding dFNC state vector transitions within the states 1 and 2 that are prevalent 

during wakefulness.
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Figure 6: 
2D Visualization of dFNC data: We selected 2000 random dFNC windows (400 per dFNC 

state) and projected the multidimensional (1891) data into 2 dimensions using the t-SNE 

algorithm. The resulting mapping was subsequently color coded by k-means clustering 

assignment into 5 states (A) and by the subject EEG hypnogram state of that point (B). The 

data dimension was reduced to 30 principal components and a perplexity value of 35 was 

used for this projection.
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Figure 7: 
Comparison of state vector statistics and transition matrices computed from EEG-derived 

hypnograms and dFNC cluster derived subject state vectors. Hypnogram and dFNC state 

vector exhibit similar frequency of occurrences (A and C) and mean dwell times (C and D) 

respectively. The mean state transition matrices for hypnogram vectors (E) and dFNC state 

vectors (F) inform about the probability of transitioning from a given state i at time t-1 to 

state j at time t. The probabilities are converted to -log(10) scale, so higher (yellow to white) 

intensity values mean lower probability to transition. For both modalities, these matrices 

demonstrate tendency to remain in a given state (diagonal values are lower). The transitions 

to neighboring states are more likely in both the hypnogram and the dFNC state vectors. 

While there is chance of transitioning from deep sleep N3 to any other state (W, N1 or N2), 

the probability of transitioning from wakefulness at time t-1 immediately to deeper sleep 
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stages (N2, N3) at time t is very low suggesting gradual transition from W to N3 stage. Note 

that dFNC states 1 and 2 are combined for this analysis.
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Figure 8: 
Classification accuracies using linear SVM for training (A) and test (B) cases of alignment 

between EEG hypnogram and subject dFNC state vector obtained using a window size of 30 

TRs. The alignment is tested for lags −15 to 15 TRs in step of 3 TRs. Each point in the 

distribution corresponds to the balanced per class accuracy from one of the 11 cross-

validation iterations of training data that included data from 50 random subjects and the 

accuracy from left of test data that included data from 5 remaining subjects. The results 

using a SVM with RBF kernel for the same data are shown in C and D. Results are 

consistent for both linear and RBF SVM kernels .
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Figure 9: 
Linear SVM classification accuracies of subject sleep stage from dFNC estimates obtained 

using different window sizes for training (A), test (B) data from 11 cross-validation 

iterations and the classification accuracies obtained from the DCC estimates for the same 

cross-validation scheme for training and left out test data are presented in the top right (C). 

The classification accuracies obtained with RBF kernel for the train (D), test(E) dFNC 

estimates and for DCC estimates (F) are shown.
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Figure 10: 
Cluster centroids from k-means clustering of window dFNC data of awake only state (State 

1). The estimated clusters were observed to have meaningful and distinct structure.
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Table 1:
Peak activations of ICN SMs.

The quality index (Iq) associated with each ICN is listed in parentheses adjacent to the component number; Vℓ 

= number of voxels in each cluster; tmax = maximum t-statistic in each cluster;Coordinate = coordinate (in 

mm) of tmax in MNI space, following LPI convention.

Subcortical Networks Vℓ tmax Coordinate

IC 58 (0.97)

R Caudate Nucleus 626 52.15 18 −16 20

IC 27 (0.98)

R Caudate Nucleus 786 66.366 12 14 8

IC 91 (0.76)

L Putamen 342 87.587 −21 8 −7

R Putamen 338 92.203 24 11 −7

IC 98 (0.68)

R Putamen 372 94.022 27 −1 2

L Putamen 359 113.49 −27 −4 2

IC 20 (0.98)

R Thalamus 861 87.008 6 −13 5

Auditory Networks Vℓ tmax Coordinate

IC 34 (0.98)

R Insula Lobe 438 48.445 33 −25 17

L Rolandic Operculum 415 42.729 −45 −22 11

IC 14 (0.98)

R Superior Temporal Gyrus 347 46.328 60 −16 −4

L Superior Temporal Gyrus 303 35.198 −60 −13 2

Sensorimotor Networks Vℓ tmax Coordinate

IC 2 (0.98)

L Postcentral Gyrus 229 52.196 −48 −10 32

R Postcentral Gyrus 221 53.635 57 −4 29

IC 4 (0.98)

R Precentral Gyrus 570 71.156 36 −22 53

IC 7 (0.98)

L Postcentral Gyrus 595 65.889 −36 −25 56

IC 81 (0.9)

R Middle Cingulate Cortex 815 52.287 3 −7 47

IC 3 (0.98)

R Paracentral Lobule 728 57.783 3 −28 68

IC 55 (0.97)

R Postcentral Gyrus 416 46.245 54 −19 35

L Postcentral Gyrus 292 39.467 −60 −22 29

IC 80 (0.95)
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Subcortical Networks Vℓ tmax Coordinate

L Superior Frontal Gyrus 855 42.788 −21 −4 65

IC 67 (0.96)

L Superior Parietal Lobule 431 48.987 −21 −49 68

R Superior Parietal Lobule 332 45.144 15 −49 65

IC 26 (0.98)

R Middle Temporal Gyrus 267 50.626 51 −67 2

L Middle Occipital Gyrus 171 39.173 −45 −70 5

IC 48 (0.98)

R Precentral Gyrus 334 52.234 21 −22 59

L Precentral Gyrus 150 45.439 −21 −25 59

Visual Networks Vℓ tmax Coordinate

IC 77 (0.92)

L Lingual Gyrus 719 52.696 −18 −73 −10

IC 17 (0.98)

L Cuneus 932 63.044 −3 −85 38

IC 11 (0.98)

R Calcarine Gyrus 1133 61.631 15 −67 8

IC 25 (0.98)

L Calcarine Gyrus 752 64.739 3 −85 2

IC 38 (0.97)

R Fusiform Gyrus 320 52.29 30 −49 −10

L ParaHippocampal Gyrus 226 48.254 −27 −43 −10

IC 97 (0.73)

R Lingual Gyrus 972 43.732 18 −73 −7

IC 66 (0.95)

L Cuneus 939 46.324 −6 −97 14

IC 22 (0.98)

R Lingual Gyrus 674 51.127 21 −94 −7

IC 69 (0.94)

R Middle Occipital Gyrus 384 53.579 42 −73 35

L Middle Occipital Gyrus 218 37.83 −39 −76 32

IC 73 (0.94)

L Superior Occipital Gyrus 375 44.761 −24 −73 35

R Middle Occipital Gyrus 191 42.562 33 −73 23

IC 50 (0.97)

R Inferior Occipital Gyrus 349 40.302 45 −73 −10

L Lingual Gyrus 264 36.962 −33 −85 −16

Cognitive Control Networks Vℓ tmax Coordinate

IC 76 (0.91)

R Inferior Parietal Lobule 602 52.132 39 −40 50

IC 71 (0.95)

L Inferior Parietal Lobule 552 53.538 −45 −37 44
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Subcortical Networks Vℓ tmax Coordinate

IC 42 (0.97)

L Inferior Temporal Gyrus 331 53.568 −57 −58 – −7

R Middle Temporal Gyrus 151 37.405 60 −52 −7

IC 84 (0.88)

R Inferior Temporal Gyrus 568 41.245 45 −13 −25

IC 60 (0.95)

L Postcentral Gyrus 272 49.711 −48 −13 47

R Precentral Gyrus 260 43.566 45 −10 41

IC 63 (0.96)

L Insula Lobe 324 44.285 −36 2 11

R Insula Lobe 264 52.788 36 5 11

IC 74 (0.93)

L Anterior Cingulate Cortex 668 51.736 −3 26 26

IC 47 (0.97)

L Angular Gyrus 583 48.228 −42 −70 41

IC 65 (0.94)

L Inferior Frontal Gyrus (p. Opercularis) 396 42.552 −42 11 29

R Inferior Frontal Gyrus (p. Opercularis) 96 29.433 42 14 32

IC 89 (0.92)

L Inferior Frontal Gyrus (p. Opercularis) 465 40.334 −54 14 8

R Inferior Frontal Gyrus (p. Triangularis) 213 35.37 54 26 5

IC 53 (0.96)

R Insula Lobe 421 50.671 36 20 −1

L Insula Lobe 305 47.124 −33 17 8

IC 33 (0.98)

R SupraMarginal Gyrus 286 44.455 57 −46 35

L Inferior Parietal Lobule 278 44.221 −54 −49 38

IC 32 (0.98)

R Superior Orbital Gyrus 288 37.454 27 56 −1

L Middle Frontal Gyrus 274 33.346 −30 53 2

IC 51 (0.97)

R Middle Frontal Gyrus 397 43.207 30 44 29

L Middle Frontal Gyrus 280 34.033 −33 38 29

IC 49 (0.98)

R Inferior Temporal Gyrus 328 40.668 63 −31 −19

L Middle Temporal Gyrus 259 38.391 −63 −43 −13

IC 86 (0.86)

R Middle Frontal Gyrus 715 49.803 27 17 53

L Middle Frontal Gyrus 166 33.725 −27 23 53

IC 78 (0.95)

L SMA 673 57.132 −3 11 62

IC 36 (0.98)
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Subcortical Networks Vℓ tmax Coordinate

R Superior Temporal Gyrus 547 44.804 57 −49 20

IC 96 (0.69)

R Inferior Frontal Gyrus (p. Triangularis) 199 39.597 42 35 17

R Inferior Frontal Gyrus (p. Opercularis) 110 30.408 51 11 23

Default-mode Networks Vℓ tmax Coordinate

IC 18 (0.98)

R Middle Cingulate Cortex 134 45.344 3 −22 29

R Precuneus 93 41.094 12 −64 35

IC 75 (0.95)

R Precuneus 738 59.873 3 −52 50

IC 83 (0.89)

L Precuneus 687 52.332 0 −64 59

IC 13 (0.98)

L Precuneus 532 60.221 −6 −52 14

IC 59 (0.97)

L Middle Cingulate Cortex 735 59.744 −3 −31 35

IC 61 (0.95)

R Inferior Parietal Lobule 539 50.287 45 −58 50

IC 57 (0.96)

L Mid Orbital Gyrus 851 44.422 0 50 −13

IC 24 (0.98)

L Precuneus 443 81.554 0 −61 32

IC 35 (0.97)

L Superior Medial Gyrus 885 43.348 −3 47 35

IC 29 (0.98)

L Middle Temporal Gyrus 591 41.693 −51 −52 14

Cerebellar Networks Vℓ tmax Coordinate

IC 16 (0.98)

R Cerebellum (Crus 1) 1198 50.811 18 −76 −28

IC 100 (0.61)

L Cerebellum (Crus 1) 201 30.986 −36 −46 −34

IC 45 (0.97)

R Cerebellum (VI) 568 42.816 30 −49 −34

IC 8 (0.98)

R Cerebellum (IX) 837 48.11 15 −58 −49

IC 9 (0.98)

R Cerebellum (IV-V) 987 62.466 12 −49 −19
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Table 2:
Awake state SVM classification confusion matrix.

The percent classification accuracy from RBF SVM model for each of the four awake only K-means states. 

The classification was performed using leave 5 subject out cross validation scheme and the average train (left) 

and test (right) confusion matrix across folds is shown above. The high accuracy strongly suggests that these 

clusters are unlikely to be noise.

Train:Predicted Test:Predicted

AwState 1 AwState 2 AwState 3 AwState 4 AwState 1 AwState 2 AwState 3 AwState 4

Actual

AwState 1 95.8 2.31 1.8 0.09 91.28 4.44 3.36 0.92

AwState 2 0.63 97.54 1.36 0.47 1.51 93.42 3.74 1.33

AwState 3 0.77 2.09 96.07 1.08 2.4 3.44 92.14 2.02

AwState 4 0.3 1.07 2.12 96.52 1.7 2.3 3.95 92.03
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