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Abstract

The central vein sign (CVS) is an efficient imaging biomarker for multiple sclerosis (MS) 

diagnosis, but its application in clinical routine is limited by inter-rater variability and the 

expenditure of time associated with manual assessment. We describe a deep-learning-based 

prototype for automated assessment of the CVS in white matter MS lesions using data from three 

different imaging centers.

We retrospectively analyzed data from 3T magnetic resonance images acquired on four scanners 

from two different vendors, including adults with MS (n=42), MS mimics (n=33, encompassing 12 

distinct neurological diseases mimicking MS), and uncertain diagnosis (n=5). Brain white matter 

lesions were manually segmented on FLAIR* images. Perivenular assessment was performed 

according to consensus guidelines and used as ground truth, yielding 539 CVS-positive (CVS+) 

and 448 CVS-negative (CVS-) lesions. A 3D convolutional neural network (“CVSnet”) was 

designed and trained on 47 datasets, keeping 33 for testing. FLAIR* lesion patches of CVS+/CVS- 

lesions were used for training and validation (n=375/298) and for testing (n=164/150). 
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Performance was evaluated lesion-wise and subject-wise and compared with a state-of-the-art 

vesselness filtering approach through McNemar’s test.

The proposed CVSnet approached human performance, with lesion-wise median balanced 

accuracy of 81%, and subject-wise balanced accuracy of 89% on the validation set, and 91% on 

the test set. The process of CVS assessment, in previously manually segmented lesions, was 

approximately 600-fold faster using the proposed CVSnet as compared to human visual 

assessment (test set: four seconds versus forty minutes). On the validation and test sets, the lesion-

wise performance outperformed the vesselness filter method (P<0.001).

The proposed deep learning prototype shows promising performance in differentiating MS from 

its mimics. Our approach was evaluated using data from different hospitals, enabling larger 

multicenter trials to evaluate the benefit of introducing the CVS marker into MS diagnostic 

criteria.

Graphical Abstract

The presence of a vein at the center of brain white matter (WM) lesions, the central vein sign 

(CVS), is a novel imaging biomarker able to differentiate multiple sclerosis (MS) from other 

diseases mimicking MS.

We describe and validate a new deep-learning-based prototype for automated assessment of the 

CVS in WM lesions using data from three different imaging centers.

The primary advantage of the proposed method (“CVSnet”) when compared to the manual 

assessment is the high speed and accuracy in differentiating MS from its mimics.
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1. Introduction

Current magnetic resonance imaging (MRI) diagnostic criteria for multiple sclerosis (MS) 

are based on the dissemination in time and space of characteristic imaging features of the 

disease. Although highly useful, the specificity of these criteria is limited, and the risk of 

misdiagnoses based on MRI is still substantial.1,2 Consequently, identification of more 

specific imaging biomarkers for MS is a high-priority area of research.3

The presence of a vein at the center of white matter (WM) lesions, the “central vein sign” 

(CVS), has been shown to be an efficient imaging biomarker for MS, able to distinguish MS 

from other conditions exhibiting similar WM abnormalities on MRI.4 In MS, the 

immunological reaction leading to the formation of inflammatory WM lesions occurs in the 

perivascular cuff around small parenchymal veins.5–7 Indeed, pathology studies as early as 

the 19th century described the presence of a vein at the center of inflammatory lesions as a 

hallmark of the MS plaque.8 Today, the vein at the center of WM lesions can be imaged in 

vivo using optimized susceptibility-based MRI sequences,9,10 and several studies have 

shown that the CVS can accurately distinguish MS from other disorders showing similar T2 
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hyperintensities on MRI.11–15 Results from a recent multicenter study suggest that the 

diagnostic performance of this CVS biomarker at clinical field strengths is highly dependent 

on the type of susceptibility-based MRI sequence used.16 In this context, recent data from 

our group using an optimized three-dimensional (3D) T2*-weighted segmented echo-planar 

imaging (T2*-EPI) sequence at clinical field strengths,9 have shown that the CVS can 

efficiently discriminate between MS and inflammatory vasculopathies of the CNS and that 

this imaging biomarker can accurately predict an MS diagnosis in patients harboring 

atypical features for the disease.11,17

However, despite the availability of optimized 3D MRI sequences for CVS detection, there 

remain substantial technical limitations to applying this imaging biomarker in daily clinical 

practice. These limitations are primarily related to the manual, operator-dependent 

assessment required to evaluate the CVS in individual scans. Although previously proposed 

simplified algorithms considerably reduce the time burden associated with CVS evaluation,
18,19 manual assessment generally suffers from inter-rater and intra-rater variability, is time-

consuming, and limits the generalization of results across different centers and healthcare 

systems. In order to promote the translation of the CVS imaging biomarker into clinical 

routine, a reliable and reproducible method to automatically detect the CVS is needed.

Recently, Dworkin et al. proposed an automated method to detect the CVS in WM lesions, 

based on a vesselness filter combined with a centrality measure.20 The study showed good 

subject-wise accuracy, but was limited to single-center data collection.11,12 In the present 

work, we show results on a broad panel of twelve different MS-mimicking diseases, 

collected on four different MRI scanners. CVSnet, our approach to automatically assess the 

CVS, is based on a 3D convolutional neural network architecture.21,22 Because it uses deep 

learning, it is an end-to-end learning approach that does not require handcrafted 

discriminative features or filters. Instead, it learns the most appropriate representations of the 

data by minimizing the CVS positive/negative classification error and has the ability to 

generalize the data. The training of the network performed using data from four different 

scanners (two different vendors) and three different imaging centers ensures robustness of 

the algorithm with respect to contrast and hardware-related differences. To evaluate the 

potential of our approach excluding the influence of segmentation errors, we use manually 

segmented lesions for validation.

2. Patients and methods

2.1 Patients

This is a retrospective analysis of images from 80 patients recruited between September 

2016 and November 2018 at the University Hospital of Lausanne, Switzerland (n=30), at the 

Erasmus University Hospital, Brussels, Belgium (n=36), and at the National Institutes of 

Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA 

(n=14). In all centers, studies were designed to assess the diagnostic utility of the CVS for 

differential diagnosis of MS. Included patients had either definite MS according to the 2017 

McDonald criteria3 (n=42) or a variety of diseases giving white matter abnormalities similar 

to those observed in MS (hereafter termed “MS mimics”; n=33). Five patients had uncertain 

diagnosis at the time of this study (“uncertain diagnosis”). Included patients with MS-mimic 

Maggi et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diseases encompassed systemic lupus erythematosus (SLE; n=7), Sjögren syndrome 

(Sjögren; n=4), primary angiitis of the central nervous system (PACNS; n=2), 

antiphospholipid syndrome (APS; n=1), inflammatory amyloid angiopathy (iAA; n=1), 

Behçet disease (n=2), sarcoidosis (n=1), neuromyelitis optica spectrum disorder (NMOSD; 

n=6), Susac syndrome (n=2), HTLV-1-associated myelopathy/tropical spastic paraparesis 

(HAM/TSP; n=1), migraine (n=5), and cerebral small vessel disease (n=1).

2.2 MRI acquisition, postprocessing, and manual CVS assessment

All patients underwent a single brain MRI acquisition on a 3T Magnetom Skyra or Prisma 

scanner (Siemens Healthcare, Erlangen, Germany) in Lausanne, a 3T Ingenia scanner 

(Philips, Best, The Netherlands) in Brussels, or a 3T Skyra scanner (Siemens Healthcare, 

Erlangen, Germany) in Bethesda. In all centers, 3D T2*-EPI and 3D T2-weighted fluid-

attenuated inversion recovery (FLAIR) images were acquired during and after intravenous 

injection of a single dose (0.1mmol/kg) of gadolinium-based contrast material, as previously 

described.11 FLAIR images were obtained with 1-mm isotropic resolution in all centers, 

whereas 3D T2*-EPI images were obtained with 0.55-mm isotropic resolution in Brussels 

and 0.65-mm isotropic resolution in Lausanne and Bethesda (Table 1). DICOM images were 

processed and analyzed using Medical Image Processing, Analysis, and Visualization 

(MIPAV; NIH; http://mipav.cit.nih.gov). After bias-field correction and co-registration, 

FLAIR* images were generated by voxel-wise multiplication of the FLAIR and the T2*-EPI 

images, as previously described.10 For each patient, WM lesions were manually segmented 

on FLAIR* images following the North American Imaging in Multiple Sclerosis (NAIMS) 

Cooperative consensus on lesion inclusion/exclusion criteria for central vein analysis.4,11 

Two investigators (P.M., M.A.) independently assessed the percentage of CVS+ lesions for 

inter-rater reliability, blinded to clinical diagnosis. Disagreements were adjudicated by 

consensus between the two investigators (see examples in Figure 1). Manual segmentation 

and classification of CVS+ and CVS- lesions were used as ground truth. Patients were 

dichotomized into MS vs. MS mimics based on three previously proposed criteria: i) the 

“50% rule,”11 i.e. a 50% CVS+ lesion cut-off to distinguish MS from MS mimics, ii) the “6-

lesion rule”18 and iii) the “3-lesion rule,”19 whereby 10 lesions or 3 lesions are randomly 

selected and MS is diagnosed if at least 6 or 2 lesions are CVS+.

In addition, fulfillment of MS MRI criteria for dissemination in space (DIS)3 was assessed 

for each patient. Average CVS assessment time for one lesion was estimated and used to 

compute the total evaluation time for each rule used. All the experiments were run on a 

workstation equipped with an nvidia GTX 1080TI graphics processing unit (GPU) and two 

intel Xeon Gold 6126 central processing units with 192 GB RAM.

2.3 Automated CVS assessment with a vesselness filter

The “centrality-corrected” vesselness filter method proposed by Dworkin et al.20 was re-

implemented and used as baseline for comparison. It combines a classical Frangi multi-scale 

vesselness filter23 with a map of the distance to the lesion boundary, thereby down-

weighting filter responses away from the center. Our implementation differs principally from 

Dworking et al. in using a standard Euclidean distance transform (Matlab function bwdist) 
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in-house implementation of the multi-scale vesselness filter (parameters: α=0.5, β=0.5, 

c=0.02), and compilation to optimize execution speed.

A threshold is then applied to the output of the filter. The resulting mask is used as a 

biomarker for vessel presence and relies on the sum of the probabilities of voxels within the 

lesion, estimated by the vesselness filter approach. In order to maximize the performance of 

the vesselness filter, the optimal threshold was computed for each validation fold using the 

operating point from ROC analysis. True positive and false positive rates in the ROC 

analysis were estimated according to the ground truth.

2.4 Automated CVS assessment with CVSnet

We designed CVSnet as a three layer convolutional neural network, each with a 3D 

convolution, followed by a rectified linear unit (ReLU) and dropout (p=0.5). This 

architecture is broadly inspired by the VGGnet, a classical baseline model for computer 

vision tasks.24 Our network takes patches of size 21×21×21 voxels as input where the center 

of mass of each lesion was considered the center of the respective patch. This was chosen 

empirically so that samples of lesion tissue would fit within the patch, and to limit feature 

map sizes (especially in the first layers) to preserve GPU memory and lower the number of 

parameters. The convolution kernel sizes were (3×3×3×16), (3×3×3×32), (3×3×3×64). Our 

choice of small kernel sizes and limited network depth was motivated mainly by the limited 

amount of data available, as well as the relatively small size of features of interest (vessels). 

This was followed by a fully connected layer of size 32, then a fully connected layer of size 

2 with sigmoid activation (see Figure 2). The architecture comprised 71,810 trainable 

parameters.25

A ten-fold cross-validation was used to train networks, each using 90% of the lesion patches 

as training set and 10% as a validation set. Data augmentation based on three 90-degree 

rotations about one axis was applied to the training and validation sets. After Gaussian 

initialization, we used categorical cross-entropy loss, training with minibatch stochastic 

gradient descent (Adam optimizer) for 200 epochs with a minibatch size of 20, at a fixed 

learning rate of 0.001 checking for approximate class balance for each resampling. In each 

fold, we saved and used as final model the one providing lowest validation loss in that fold. 

The weights were initialized with Xavier Gaussian initialization. In each fold, training took 

an average of 800 (range 600–900) seconds. The classification results for the pure testing set 

were obtained using an ensemble method by feeding each test patch to all 10 trained 

networks (1 per cross-validation fold) and averaging their probability outputs (see Figure 2). 

Even though dropout is used in each of the ensemble constituent networks, fold-to-fold 

performance is quite variable (see Figure 3), and ensembling allows to lower prediction 

variance for the test set.

From the multicenter cohort, lesions from 47 (24 MS, 20 MS mimic, 3 uncertain diagnosis) 

subjects were used to train the network, and lesions from 33 (18 MS, 13 MS mimic, and 2 

uncertain diagnosis), selected randomly, were used as a pure-testing set. FLAIR* patches of 

CVS+ and CVS- lesions were used for training and validation. In total, 673 (375 CVS+, 298 

CVS-) and 314 (164 CVS+, 150 CVS-) patches were obtained for the training/validation and 

pure-testing sets, respectively. In the training/validation set, 338 (158 CVS+, 180 CVS-) 
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patches came from Brussels and 335 (217 CVS+,118 CVS-) came from Lausanne. In the 

pure-testing set 72 (48 CVS+, 24 CVS-) patches came from Brussels, 103 (40 CVS+,63 

CVS-) from Lausanne and 139 (76 CVS+, 63 CVS-) from Bethesda. CVSnet was 

implemented in Python 3.6.5 (http://www.python.org), with Keras 2.1.5 (http://keras.io) and 

TensorFlow 1.6.0.26

2.5 Evaluation of the CVS assessment and patient differential diagnosis

The performance was evaluated at two levels:

a. Lesion-wise: sensitivity, specificity, and balanced accuracy (the average of class-

wise accuracies) were computed with respect to the assessment of CVS+ and 

CVS- lesions on the validation and pure-testing sets. Receiver operating 

characteristic (ROC) curve analysis was performed, and area under the curve 

(AUC) values for each of the ten cross-validation folds was computed.

b. Patient-wise: Intraclass correlation coefficient (ICC(3,1))27 between the 

percentage of CVS+ lesions estimated automatically and manually were 

estimated for both methods; sensitivity, specificity, accuracy, and balanced 

accuracy were computed regarding the differentiation between MS and MS 

mimics based on the “50% rule,”11 using the classification results of the 

validation and pure testing sets. The “uncertain diagnosis” cases were excluded 

from the patient-wise analysis. The total CVS assessment time in the pure testing 

set was estimated for the vesselness filter, the CVSnet, and the manual CVS 

assessment rules.

2.6 Statistical analyses

Demographic and MRI differences were tested with Kruskal-Wallis test or Mann-Whitney U 

test, as appropriate. Difference in perivenular frequency between MS and MS mimics 

patients was tested using Mann-Whitney U test. Lesion-wise and patient-wise classification 

results from the proposed CVSnet and the vesselness method were compared using 

McNemar’s test, and performance was compared to the no information rate (NIR) 

corresponding to a zero-rule naive classifier that always vote for the majority class, also 

using McNemar’s test. Statistical analyses were performed using R 3.5.1 (https://www.R-

project.org/).

3. Results

3.1 Patient demographics and manual CVS assessment

Clinical and demographic characteristics of MS, MS mimics, and uncertain-diagnosis cases 

are reported in Table 2. We found no age or gender differences between the groups (P=0.6). 

The majority of MS mimics scans fulfilled the 2017 MRI diagnostic criteria for MS 

dissemination in space (20/33 patients, 61%). The median number of brain WM lesions did 

not differ between MS mimics and MS patients (median=9, range=1–32 vs. median=9, 

range=1–46, respectively; Mann-Whitney U test=567, P=0.2), whereas median lesion 

volume was smaller for MS mimics compared to MS patients (median=34mm3, range=14–

299 vs. median=52mm3, range=29–217, respectively; Mann-Whitney U test=343, 
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P=0.0001). Expert manual CVS assessment following the NAIMS guidelines for lesion 

inclusion/exclusion criteria4 showed that the frequency of perivenular lesions was always 

higher in MS (median=80%, range=52–100%) compared to MS mimics (median=7%, 

range=0–40%; Mann-Whitney U test = 0, P<0.0001, see Figure 1). In line with previous 

results using the same optimized high resolution T2*-EPI sequence adopted in this study,11,9 

the “50% rule” achieved 100% accuracy in the differentiation between MS and MS mimics, 

whereas the simplified algorithm “6-lesion rule”18 and the “3-lesion rule”19 showed 

sensitivity of 95% and 88%, specificity of 100% and 93%, and accuracy of 97% and 90%, 

respectively. The inter-rater agreement for the percentage of perivenular lesions was “almost 

perfect” with a Cohen’s k of 0.9 and agreement of 94%. On average, manual CVS 

assessment of one lesion took 15 seconds, resulting in a total evaluation time on the entire 

pure-testing set of 40 minutes (“50% rule”), 28 minutes (“6-lesion rule”), and 12 minutes 

(“3-lesion rule”).

3.2 Automated CVS assessment

As shown in Figure 3, the CVSnet showed higher performance than the vesselness filter for 

CVS assessment in both validation (McNemar’s x2=28.96, P=7.40E-08) and pure testing 

(McNemar’s x2=11.93, P=5.51E-04) sets. In the validation set, median values for the 

CVSnet were: sensitivity, 81% (range: 74–91%); specificity, 80% (range: 72–97%); 

balanced accuracy, 81% (range: 77–88%); and AUC, 90% (range: 84–93%). For the 

vesselness filter: sensitivity, 79% (range: 70–84%); specificity, 74% (range: 66–81%); 

balanced accuracy, 76% (range: 73–80%); AUC, 77% (range: 72–82%). Similar 

performance was achieved in the pure testing set, where the CVSnet showed 83%, 75%, and 

79%, and the vesselness filter 67%, 79%, and 73% in sensitivity, specificity and accuracy, 

respectively (see Figure 3). The total CVS assessment time in the pure testing set was 80 

seconds for the vesselness filter and 4 seconds for CVSnet on a central processing unit, i.e. 

not employing accelerated GPU-based implementations. Thus, evaluating the CVS for all 

lesions was about 600-fold faster using CVSnet as compared to manual assessment (in the 

test set it was four seconds instead of forty minutes).

Figure 4 shows a scatter plot of the percentage of CVS+ lesions per patient estimated by both 

methods against the manual assessment. ICC(3,1)=0.83 is higher for the CVSnet in 

comparison to the vesselness filter ICC(3,1)=0.60, showing better consistency with manual 

assessment.

Results of the patient-wise analysis regarding the differentiation between MS and MS 

mimics in terms of true/false positives and true/false negatives are summarized by the 

confusion matrices in Figure 5.

Using the 50%-rule, the CVSnet achieved sensitivity of 96%/89%, specificity of 80%/92%, 

accuracy of 89%/90%, and balanced accuracy of 88%/91% for the validation/testing sets. 

The vesselness filter-based approach reached 79%/61% sensitivity, 60%/77% specificity, 

accuracy of 70%/68%, and 70%/69% balanced accuracy for the validation/testing sets. The 

CVSnet performed better than the vesselness filter, but the head-to-head difference was not 

statistically significant (Validation: McNemar’s x2 = 3.50, P>0.05, McNemar’s Test x2 = 

3.27, P>0.05). However, note that the CVSnet accuracy was statistically different from the 
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NIR (Validation: McNemar’s x2 = 11.53, P=6.85E-04, Test: McNemar’s x2 = 5.79, P=0.02) 

while the vesselness filter was not (Validation: McNemar’s x2 = 2.12, P=0.15, Test: 

McNemar’s x2 = 0.24, P=0.63).

4. Discussion

We propose a deep-learning-based automated detection of the CVS differentiating MS from 

its mimics with high diagnostic sensitivity, specificity, and accuracy. CVSnet performed 

nearly as well as the previously obtained proportion of CVS+/CVS- lesions based on manual 

rating, often achieving perfect discrimination between MS and its mimics,11,12,17 and is 

much faster when compared with manual rating. Importantly, this method showed high 

performance across different scanner types and hospitals, strengthening its potential for 

clinical applicability.

Our findings are particularly relevant considering that recent studies using manual CVS 

classification at clinical field strengths have shown potential for application of the CVS 

imaging biomarker in clinical practice.11,13,15–18,28 Importantly, the most recent 

international panel for MS diagnosis called for further research on this topic before 

considering inclusion of the CVS in future MS diagnostic criteria.3 A substantial limitation 

to investigating the role of the CVS in large multicenter trials, and in subsequent clinical 

practice, is the lack of an automated reproducible and non-operator-dependent technique that 

can determine the frequency of CVS+ lesions in individual scans.

The proposed CVSnet uses deep learning and data augmentation strategies and shows the 

feasibility to achieve accurate results even in the case of a relatively small dataset for this 

particular classification problem compared to classical computer vision problems, where 

samples sizes are in the tens of thousands. While machine learning has already been 

proposed to predict various aspects of MS diagnosis and prognosis,29,30 to our knowledge, 

this is the first attempt to use machine learning to automatically assess the CVS as 

diagnostic biomarker.

Compared to our implementation of a recently proposed approach for automated CVS 

assessment based on vesselness filter and centrality,20 the CVSnet showed significantly 

higher lesion-wise performance and was 20 times faster; in addition, considering the slight 

class imbalance, CVSnet performed significantly above the NIR, while our vesselness filter-

based methodology did not.

For several reasons, our results are not directly comparable to those reported in Dworkin et 

al.20 First, sample size is larger in our study. Second, our data comes from four different 

MRI machines while Dworkin et al. used data from only one MRI scanner. Third, exclusion 

criteria are different: Dworkin et al. excluded periventricular lesions, whereas in our study 

we excluded only lesions not fulfilling NAIMS criteria, that is, periventricular lesions were 

only excluded in our study if featuring multiple veins or confluent. Lastly, implementation 

differences discussed in the methods section also likely contribute to some differences. This 

study presents some limitations. Lesion segmentation was done manually, and thus the 

overall process (automated lesion segmentation and CVS classification) cannot yet be 
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considered fully automated. Of note, the available automatic lesion segmentation algorithms 

are often limited by false-positive and false-negative “lesions,”31 and it is possible that the 

difference in CVS assessment performance obtained in our study with respect to previous 

work20 rests upon the manually applied lesion inclusion/exclusion criteria in the current 

study. In addition to including larger numbers of scans from additional centers, future work 

should implement a fully automated method able to automatically apply lesion inclusion/

exclusion criteria for CVS assessment. Moreover, future work could investigate other lesion 

features (such as shape, ovoid vs. spherical29) that, together with the CVS, may increase the 

probability that a given WM lesion results from MS-related inflammatory demyelination.

In conclusion, the CVSnet presented in this study showed high speed and accurate 

performance in differentiating MS from other pathological conditions with similar 

abnormalities on MRI. Our study represents a step forward toward the translation of this 

promising imaging biomarker into daily clinical practice.
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MS multiple sclerosis

CVS central vein sign

WM white matter

MRI magnetic resonance imaging

3D three-dimensional

T2*-EPI T2*-weighted segmented echo-planar imaging

FLAIR 3D T2-weighted fluid-attenuated inversion recovery
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ReLU rectified linear unit

ROC Receiver operating characteristic

AUC area under the curve

GPU graphics processing unit

NIR no information rate
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Figure 1 - 3D FLAIR* images obtained on Siemens (Lausanne University Hospital; A,B) and 
Philips (Erasmus University Hospital; C,D) MRI scanners showing central vein sign positive 
(CVS+) and negative (CVS-) lesions.
A central vein running through the lesion (arrows) is visible in the majority of white matter 

lesions in a 28-year-old man (A) and 27-year-old woman (C) with relapsing-remitting MS. 

Images from 25-year-old (B) and 46-year-old (D) women with Sjögren syndrome show how 

the central vein sign is not typical of white matter lesions in MS-mimicking diseases.
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Figure 2 - Methods used for central vein sign (CVS) assessment in white matter lesions.
Top stream: a multiscale vesselness enhancement filter combined with a distance map to 

estimate centrality-corrected vesselness. Bottom stream: CVSnet, the proposed 3D 

convolutional neural network, consists of a simple, repetitive, and relatively shallow 

architecture. In both methods, we keep one trained version per cross-validation fold in the 

cross-validation set. On the test set, we use these ten different versions of the same algorithm 

to yield ten different predictions for each incoming test patch and average the output 

(“ensembling”) to yield a single, more stable, prediction.
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Figure 3 - Lesion-wise classification using the vesselness filter and the proposed CVSnet.
Lesion-wise classification sensitivity, specificity, accuracy and area-under-the-receiver-

operating-characteristic-curve (AUC) for the validation and pure testing sets, using the 

vesselness filter (dark grey dots) and the new CVSnet (light gray dots). To indicate 

variability due to data sampling, in the validation set, each dot shows the result of one cross-

validation fold, the orange crosses represent median, and the orange bars the range between 

the 25th and 75th percentiles.
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Figure 4 –. Patient-wise manual and automated assessment using vesselness filter and CVSnet.
Percentage of CVS+ lesions for each patient, comparing the vesselness filter and CVSnet 

approaches with respect to manual assessment (ground truth). Different types of diagnoses: 

MS (circle), MS mimics (triangle), and uncertain diagnosis (square). Colors represent the 

different scenarios for correct and incorrect disease prediction from both algorithms based 

on the 50% perivenular rule: green – both algorithms predicted correctly; yellow – only 

CVSnet predicted correctly; orange – only Vesselness filter predicted correctly; red – both 

algorithms predicted incorrectly; grey – uncertain diagnosis. The red dashed line indicates 

the 50% rule. While the percentages diverge somewhat from those estimated manually, the 

CVSnet approach tends to yield estimates leading to a diagnosis consistent with that derived 

from manual assessment with an ICC(3,1)=0.83.
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Figure 5 - Patient-wise classification confusion matrices. Differentiation between MS and MS 
mimics using confusion matrices for the vesselness filter and the proposed CVSnet, on the 
validation and test sets.
Within each confusion matrix, the top left indicates the number of true positives (actual MS 

patients predicted as MS), the bottom right true negatives, the top right false positives (MS 

mimics predicted as MS), and the bottom right false negatives. Note that patients with 

uncertain diagnoses are not shown on this figure.
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Table 1.

MRI sequence parameters used in the Erasmus University Hospital, Brussels (Philips scanner), in the 

Lausanne University Hospital, Lausanne (Siemens scanner) and in the National Institutes of Health, Bethesda, 

USA (Siemens scanner), imaging centers.

Sequence 3D T2*-EPI 3D T2-FLAIR

Field strength 3T 3T 3T 3T

Manufacturer Siemens Philips Siemens Philips

Site Lausanne/Bethesda Brussels Lausanne/Bethesda Brussels

Receive channels 64/32 16 64/32 16

Imaging plane Sagittal Sagittal Sagittal Sagittal

Imaging resolution (mm) 0.65 0.55 1 1

# slices 288/256 336 176 180

Repetition time (TR, ms) 64 53 5000/4800 4800

Echo time (TE, ms) 35 29 391/353 373

Inversion time (TI, ms) - - 1800 1600

Flip angle (deg) 10 10 Variable/120 90

Averages 1 1 1 1

Acquisition time (min:sec) 6:20/5:44 4:40 4:47/6:53 6:00
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Table 2.

Demographic, clinical, and radiological characteristics of the patient cohort.

MS MS mimics Uncertain

Demographics

 # patients 42 33 5

  Brussels 15 18 3

  Lausanne 18 10 2

  Bethesda 9 5 -

 Median age (IQR) 44 (24) 45 (17) 48 (8)

 Sex (female/male) 33/9 23/10 4/5

Disease subtype

RRMS 34 SADs 15 -

SPMS 6 migraine 5 -

PPMS 2 others 13 -

DIS MRI criteria

 # (%) patients fulfilling criteria 42/42 (100%) 20/33 (61%) 5/5 (100%)

Manual CVS assessment

 CVS+ lesions, median (range) 80% (52–100%) 7% (0–40%) 62% (20–100%)

Abbreviations: IQR: interquartile range; RRMS: relapsing-remitting MS; SPMS: secondary-progressive MS; PPMS: primary-progressive MS; 
SADs: systemic autoimmune disorders (systemic lupus erythematosus, antiphospholipid antibody syndrome, primary angiitis of the central nervous 
system, Sjögren syndrome, Behçet disease, sarcoidosis); others: neuromyelitis optica spectrum disorder, Susac syndrome, inflammatory amyloid 
angiopathy, HTLV1 associated myelopathy/tropical spastic paraparesis, small vessel disease); Uncertain: patient having uncertain diagnosis at the 
time of the study; DIS: dissemination in space.
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