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Abstract

The ab initio method for prediction of the enthalpies of formation for CHON-containing organic
compounds proposed earlier (J. Chem. Theory Comput. 2018, 14, 5920-5932) has been extended
to their fluorinated derivatives. A single experimental A¢HPy, is typically available for compounds
in this scope. Thus, a priori evaluation of the data quality was found to be inefficient despite all
available experimental data for C;—C3 hydrofluorocarbons and 34 data points for medium-size
organofluorine compounds being considered. The training set was derived by analyzing
consistency of the experimental and predicted values and removal of outliers. Significant issues in
the experimental data, including inconsistency across different laboratories, were identified and
potential causes for these problems were discussed. A conservative estimate of uncertainty for the
experimental AsHPy, of organofluorine compounds was proposed.

1. Introduction

Fluorinated organic compounds are an important class of chemicals used in the
pharmaceutical industry, agriculture, production of polymers, refrigerants, surfactants, and
oil-repellants.12:3 Some of these compounds are also considered pollutants due to their
toxicity, bioaccumulation, and contribution to global warming. Knowledge of their
thermodynamic properties is critical for industrial applications and development of pollution
prevention strategies. In this work, we focus on evaluation of their ideal-gas enthalpies of
formation, a property essential to process modeling in a variety of applications.

The experimental methods used to determine enthalpies of formation for the compounds of
interest include oxygen and fluorine combustion calorimetries, reaction calorimetry,
primarily, with alkali metals and hydrogen, and mass spectrometry. Some enthalpies of
formation were also derived from complex thermodynamic cycles involving different types
of measurements.

As demonstrated below, oxygen combustion calorimetry is the most reliable and widespread
method for determination of A¢/Py, for the considered compounds. Two principal techniques
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have been used in combustion calorimetry. The most popular one involves combustion in a
rotating bomb, in which a certain amount of water has been added.** To use this approach,
the studied or auxiliary compound should have sufficient hydrogen content to yield aqueous
HF as a main fluorine product. In the second technique, the combustion is performed in a
bomb with no water added.® This approach has been used for fluorocarbons. To our
knowledge, presently, combustion calorimetry measurements for fluorinated compounds are
only conducted at the Center of Chemical Research at the University of Porto. The number
of fluorinated compounds containing, C, H, O, or N atoms, for which experimental
enthalpies of formation have been determined, is well below 200.

The combustion calorimetry experiments are conducted at a high pressure of oxygen (around
3 MPa). A multi-step procedure? is used to transform the experimental combustion energies
into the standard-state energies of combustion at 7= 298.15 K. To derive A¢HPp,, the
reference enthalpies of formation for water, CO,, and HF(aq) are required. One should note
that values for the suggested enthalpy of formation for the latter evolved significantly over
time, and the latest recommendations are to a large extent based on the results of Johnson et
al.”® Consequently, the results reported in the literature need to be reevaluated with the use
of updated reference values.

Another challenge of the method is that the combustion energies of organofluorine
compounds are significantly lower than those of the non-fluorinated counterparts. Thus, the
calorimetric results are highly sensitive to the incompletely fluorinated impurities.# In many
cases, the resulting values are based on the results of chemical analyses of products for HF,
CO,, HNOg3, and less frequently for CF4 and F», which adds complexity to the procedure.
As demonstrated below, consistency of the results for different laboratories and
repeatability-based uncertainties are often worse than those for CHON compounds. All
factors listed above make a reliable predictive procedure highly desirable. The existing
approaches involving high-level ab initio calculations are mostly focused on small (C4 and
C,) molecules (e.g., Refs. 9, 10).

Historically, the main contributors to the field are

. Thermodynamics Laboratory of the Bartesville Petroleum Research Center,
Bureau of Mines (Bartesville, OK, U.S.A));

. Chemical Thermodynamics Group of the National Chemical Laboratory
(Teddington, U.K.)

. Thermochemistry Laboratory of the Moscow State University (Soviet Union);
. Department of Chemistry, University of Porto (Portugal);

. Institute of Organic Chemistry and Biochemistry at the University of Freiburg
(Germany);

. Department of Chemistry, University of Windsor (Canada).

Some reliable values originate from the Chemistry Departments of the University of
Wisconsin and the Rice University, the National Bureau of Standards (how NIST), the
Argonne National Laboratory, and Thermal Research Laboratory of the Dow Chemical
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Company (all U.S.A). For brevity, the laboratories will be referred to by location in our
discussion (e.g., the Moscow lab).

The goal of this work is to extend the ab initio method we proposed earlier!112 to
organofluorine compounds and evaluate the reliability of the predicted and available
experimental gas-phase enthalpies of formation for these compounds.

2. Calculations

We considered conformational equilibria in the studied compounds because, in our previous
work, they were shown to have a significant effect even for some moderate-size molecules.12
The model was adopted that assumed the ideal-gas equilibrium mixture of individual
conformers with the entropy component of the standard Gibbs energy computed using the
same rigid rotor-harmonic oscillator model as was used for the thermal correction to the

enthalpy, A% H, term. Enthalpy of formation of a given compound was computed as the

Gibbs-energy average for the conformer population. The generation of conformers was
performed as described earlier.13:14.15.16 An initial pool of conformer candidates was
produced via systematic search using molecular mechanics based on the MMFF94 force
field.1” The resulting conformer candidates were further optimized, and their vibrational
spectra were computed with B3LYP/def2-TZVP-D3(BJ).18:19.20.21 This combination is
expected to provide a compromise between computational cost and accuracy for complex
molecules.12 The final set of conformers was established by eliminating duplicated
structures and transition states identified from the vibrational analysis. The frequencies were
scaled by 0.990 for zero-point vibrational energies (ZPVE). In the “rigid rotor — harmonic
oscillator” calculations of the thermal correction Ay’ H, the scaling factors of 0.96 for
hydrogen stretches and 0.985 for all other modes were applied. The rotational symmetry
numbers needed for the entropy evaluation were obtained using the libmsym library.2? The
conformer geometries for the single-point energy calculations were optimized with the
density-fitted (resolution-of-identity) second-order Maller-Plesset perturbation theory (DF-
MP2) with the aug-cc-pvaz basis set.2324 Single-point energy calculations were conducted
with the 2016 version of local CCSD(T) by Kallay et al.2>26:27 and the aug-cc-pvqz basis
set. DFT calculations were performed with Gaussian 0928, local CCSD(T) was carried out
with MRCC (release of September 25, 2017)%7, and DF-MP2 was done with Psi4 v1.1.2°
The choice of computational tools was motivated by the performance of the methods on the
hardware used.12

The enthalpies of formation at 7= 298.15 K were evaluated as'?:
AtH = E+ZPVE+AJH = Y\ o nih; 6

where E'is the total electronic energy from the single-point calculations, ZPVE is the zero-
point vibrational energy, and AgH is the thermal correction from 0 to 298.15 K. The

effective enthalpies, A;in eq 1, for C, H, O, and N atomic types where fixed to the values
determined in the previous study1?: /(C saturated or aromatic) = —99910.32 kJ-mol~1, /(C
unsaturated) = —99909.44 kJ-mol~1, A(H) = —1524.23 kJ-mol~%, /(O) = -197138.05 kJ-mol
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-1 and A(N) = —143612.32 kJ-mol~1. Determination of the contribution A(F) is one of the
goals of the present study. The A(F) values for individual compounds were determined from
eq 1 using their experimental A¢AH°p,, and the final recommendation was derived via
averaging of the individual values over the selected training set of molecules.

Reported uncertainties are the expanded uncertainties for a 0.95 level of confidence (k= 2).
For the experimental works, these are based on the authors’ uncertainty estimates (mainly
repeatabilities) and uncertainties in the reference values.

3. Results

3.1. Experimental data

The enthalpies of formation considered in this work were derived using the original
experimental data, reference enthalpies of formation presented in Table 1, and A¢AH(HF(aq))
from Johnson et al.” shifted by 0.33 kJ-mol~2, as recommended by CODATA.8 The
enthalpies of formation for hydrofluorocarbons are often determined from their enthalpies of
combustion which are, in turn, based on the results of chemical analysis for CO, and HF. If
the average values based on those two analyses differed by more than 4 kJ-mol~1 and could
not be explained by formation of CF4, the enthalpy of formation was calculated from the
results based on the CO,, determination, since the latter was suggested to be more reliable.30
The heat capacities of compounds required to reduce the experimental A,/Hto 7=298.15 K
were taken from NIST ThermoData Engine v.10.3 31 unless specified otherwise.

When fluorinated organic compounds are burnt in oxygen, CF4 sometimes appears as a
product, and larger fluorine content results in a higher yield of CF4. Consequently, the
enthalpy of formation of tetrafluoromethane is an important reference quantity affecting
experimental A¢A°p, for many compounds. The enthalpy of formation AgHPy, = —(933.2 £
0.8) kJ-mol~1 32 was derived by Greenberg and Hubbard from the experiments on graphite
combustion in fluorine. The values obtained by Domalski and Armstrong using a similar
technique3” and in references therein are consistent with this result. On the other hand, the
enthalpy of reaction CF4(g) + 2H,0 = CO,(g) + 4HF(-20H,0), A AP, = —(173.2 £ 1.3)
kJ-mol~1 38:39.40 can be derived from the results of experiments in which
poly(tetrafluoroethylene) and perfluorobicyclohexyl were burnt in oxygen with some water
present. This value implies Aty = —(936.2 * 2.9) kJ-mol~1 for CF, if the reference data
above are used. The difference between this value and the direct result3? is relatively large,
although the corresponding error bars slightly overlap. The apparent inconsistency should be
resolved by replacing the enthalpy of formation of either CF4 or HF(aq) (or both) with more
accurate value(s). In the current Active Thermochemical Tables36, the statistical analysis
yielded A¢HP(HF-20H,0) = —(321.03 + 0.16) kJ-mol~1, which is 0.86 kJ-mol~1 less
negative than the CODATA value. On the other hand, Ganyecz et al.*! computationally
analyzed the thermochemical network for fluorinated and chlorinated methanes and ethanes
using the diet-HEAT-F12 protocolZ and concluded that A¢/H°,(CF4) by Greenberg and
Hubbard is not consistent with the ab /nitio results and needs further studies. Overall, the
CODATA A¢HPr(HF(aq)) is supported by a larger number of experimental studies as
compared to that for A/, (CFy), but it is still insufficient to make a conclusive assessment.
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In this work, we used A¢HP,(CF4) = —(933.2 % 0.8) kJ-mol~1 if CF4 was one of the major
combustion products. If a small amount of CF4 was formed and reduction of the
experimental data implied its hydrolysis, the enthalpy change A A%y = —(173.2 + 1.3) kJ-mol
~1 was used.

Fluorinated organic compounds, for which the enthalpies of formation are available, can be
tentatively divided into three groups. The first group consists of relatively large molecules
typically containing more than five carbon atoms. This group has been most studied over the
past decades. The second group includes small (up to three carbon atoms)
hydrofluorocarbons, most of which are gases at ambient conditions. The third group consists
of inorganic species such as HF or NFs3. In this work, 22 compounds (34 AsH°, values) from
group 1 (Table 2) were selected to provide reasonable variability with respect to the
molecular structural features and the sources of information (i.e., the labs where the
measurements were performed). Consideration of the data origins was important to avoid
any bias due to a potential systematic error originating from a laboratory. The best effort was
made to provide a comprehensive review of the experimental data for small
hydrofluorocarbons (Table 3). The considered inorganic species included F,, HF, OF,, and
NF3.

For all compounds from the first group (Table 2), the enthalpies of formation were derived
from their energies of combustion in oxygen in a rotating bomb calorimeter. In most cases,
the well-established technique of combustion in the presence of water®® was used. A
detailed discussion of these results is presented below.

Multiple experimental techniques, including oxygen and fluorine combustion calorimetry,
reaction calorimety with alkaline metals and hydrogen, chemical equilibrium studies, and
mass spectrometry were used to obtain A¢H°y, for small hydrofluorocarbons.

Fluoromethanes.—Enthalpies of formation for difluoromethane and trifluoromethane
were determined by Neugebauer and Margrave’® from the results of combustion calorimetry.
The recommended AsH°,, of CF4 is based on the results of direct combustion of graphite in
fluorine.32

1,1-Difluoroethane.—The enthalpy of formation was reported by Kolesov et al.”” The
authors analyzed the CO, and HF content in the combustion products. The enthalpies of
combustion based on these two values differed by about 13 kJ-mol~. The enthalpy of
combustion accepted in this paper was calculated from the CO, analysis.

1,1,1-Trifluoroethane.—The enthalpy of formation was determined by Kolesov et al.”8
from the results of combustion calorimetry. Later, Kolesov and Papina’® revised the
experimental value by adding a correction for reduction to the standard state missing in the
original work. Analysis of the kinetic data by Rodgers and Ford191 provides a similar value
if AsH(CH3) and A¢H(CF3) from Ref. 35 are used. However, the expanded uncertainty
exceeds 10 kJ-mol~1 in this case.
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1,1,2-Trifluoroethane.—The enthalpy of formation was calculated from the enthalpies of
chlorotrifluoroethylene hydrogenation A, A+°,(298 K) = —(271.2 + 2.3) kJ-mol~ 83 and its
enthalpy of formation A¢/H°,(CF,CFCI) = —(517.1 + 2.2) kd-mol~1 found as weight-average
of the results from Refs. 80,81,82.

Pentafluoroethane.—The enthalpy of formation was reported by Buckley et al.192 who
studied chemical equilibria:

CF3CF,Br(g) + 12(9) = CF3CF,lI(g) + 1Br(g)
Bra(9) + CoFsH(g) = HBr(g) + CF3CF,Br(g)

The equilibrium constants for the second reaction were determined by Coomber and Whittle.
103 However, the reported AsH°(CF3CF,H) was, in turn, based on A¢AHPm(CF3CFal)
estimated by Wu et al.104 as A¢AHP(CF3CFl) = %(AtH2m(CF3CF3) + A¢HPm(CFoICFsl)).
Thus, this compound was excluded from further data analysis.

Hexafluoroethane.—The most precise value was obtained by Sinke® by the reaction
bomb calorimetry. The result strongly depends on reference At of CF4 and NF3.

1-fluoropropane, 2-fluoropropane, 2,2-difluoropropane.—The enthalpies of
formation for monofluoropropanes were obtained using the high-temperature enthalpies of
hydrogenation determined in a flow calorimeter by Lacher et al.86 Enthalpies of the formal
reactions

CH»=CHF + CH4 = CH3CHFCH3;
CH,=CF, + CH,4 = CH3CF,CH3
could be found from results of the mass-spectrometric study.8”

1,1,1,3,3,3-Hexafluoropropane.—The enthalpy of combustion and formation for this
compound was reported by Kolesov.88 The concentration of the resulting HF solution was
not specified. In the review8?, the enthalpy of formation was recalculated with respect to the
updated enthalpies of formation for the reference compounds.

Octafluoropropane.—AtH°y, was found®? from the enthalpy of its reaction with sodium.
Detailed analysis of the combustion products was performed.

Fluoroethylene, 1,1-difluoroethylene, trifluoroethylene.—Kaolesov et al. conducted
combustion calorimetry studies for these compounds.30:92 A¢A9,,, of 1,1-difluoroethylene
was also reported by Neugebauer and Margrave.?1

Tetrafluoroethylene.—The enthalpy of formation for this compound was reported by
many researchers. Neugebauer and Margrave®! and Kolesov et al.9 measured the energy of
combustion for the amorphous carbon product.
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Equilibria of mono- and difluoropropenes.—\We are aware of two works reporting
these equilibria.?6:97 While the enthalpies of Z/E-isomerization of 1-propenes are consistent,
the enthalpies of formation for 3-fluoropropene differ by 8 ki-mol~1. That cannot be
explained by their temperature difference.

3,3,3-Trifluoropropene.—The enthalpy of formation for this compound was
determined?8 from its enthalpy of combustion in oxygen in a bomb calorimeter. The average
values of the enthalpy of combustion derived from the results of chemical analysis for HF
and CO, differ by about 5 kJ-mol~2. The enthalpy of formation was recalculated based on
the amount of CO,. The AtHPy, values obtained in experiments 1 and 3 of the original
publication are over 20 kJ-mol~1 too high relative to the other experiments, while the
standard deviation calculated for experiments 2 and (4 to 12) is only 1.7 kJ-mol~2. Thus, the
enthalpy of formation was calculated using the data from experiments 2 and 4 to 12.

Hexafluoropropene.—Following Papina and Kolesov®?, the enthalpy of formation for
this compound can be determined using the enthalpies of the processes

CF,CICFCICF3(I) + O(g) + 4H,0(l) = 3CO(g) + 6HF(-20H,0) + 2HCI(-600H,0)
AH,0(298 K) = —(925.6 + 2.0) kJ-mol~1 99

CF3CF=CF,(g) + Cly(g) = CF,CICFCICF5(g) AHm°(363 K) = —(197.3 + 0.5) kJ-mol~1 100
CF,CICFCICF3(l) = CF,CICFCICF3(g) A9 Hn°(298 K) = (26.93 + 0.03) kJ-mol~1 105

The temperature dependence of Ay H,° for the chlorination reaction can be neglected.

The enthalpy of reaction

CoF4(g) = 2/3 CF3CF=CF(g) AHm°(298 K) = —86 kJ-mol~1

was estimated by Duus®* using combustion experiments.

Four inorganic compounds were considered: Fy, HF, NF3, and OF,. The enthalpies of
formation of HF and NF5 are given in Table 1, for OF, Aty = (24.5 + 1.6) kJ-mol~1,108

3.2. Consistency of experimental data and derivation of the training set

For generation of the CHON training set!, we used only those compounds for which the
experimental data were available from multiple consistent sources and the resulting
expanded uncertainty was under 2 kJ-mol~1. If these criteria were applied to the fluorinated
compounds, a training set of sufficient size could not be compiled. Thus, all available data
were analyzed. The effective enthalpy of fluorine, A(F), was derived for each data point
using eq 1 and the experimental A¢APy,. The resulting A(F) were used to assess the
consistency among the considered data points and identification of outliers.

The effective enthalpies A(F) for the compounds of group 1 are compared in Figure 1. The
value A(F) = -261711.5 kJ-mol~2 used in the figure is a preliminary estimate based on all
available experimental data. Most of the data are spread within (-4 to 6) kJ-mol ™1 of this
estimate. One would expect A(F) values to congregate near a certain value. This consistency

J Chem Eng Data. Author manuscript; available in PMC 2020 December 22.



1duosnue Joyiny 1SIN 1duosnue Joyiny 1SIN

1duosnuey Joyiny 1SIN

Paulechka and Kazakov Page 8

should be better for compounds with similar fluorine functionality (e.g., para-substituted
fluorinated benzene derivatives). Considering the uncertainty of the predicted A¢HPy, was
(2.5 to 3.0) kJ-mol~1 for CHON-containing compounds??, variations below 1 kJ-mol~1 due
to computational model limitations are expected.

The results from the Moscow and Teddington labs do demonstrate reasonable consistency.
On the other hand, the values from Freiburg exhibit a scatter of about +6 kJ-mol~1 around
the average value for this laboratory. These data as well as those from Windsor where a less
precise technique was used were excluded from the training set. Four out of six values from
the Bartesville lab and five out of nine values from the Porto lab show significant positive
deviation from the average. It implies that the experimental AsA°, is more negative than the
expected computed counterpart. Two reasons may be responsible for the observed behavior.
First, the samples could contain incompletely fluorinated impurities. This may also explain
why not all results from these laboratories are biased. Second, the reduction to the standard
state could be based on obsolete reference values. The samples of 4-fluorobenzoic acid (#16)
from the Bartesville lab were further studied in the Teddington lab and at the National
Bureau of Standards and (1.5 to 2.3) kJ-mol~1 more positive values were obtained. At the
same time, the results from these and two other laboratories are consistent within +0.5
kJ-mol~1 (Table 2). The enthalpies of formation for non-fluorinated compounds from the
Porto and Bartesville labs are normally consistent with the results from the other laboratories
and the predicted values. Thus, it seems highly unlikely that the problem is due to the
instrumental error such as incorrect calibration, etc. Further clarification of this problem
clearly goes beyond the scope of this paper. All results from these two laboratories
exceeding +2 kJ-mol~1 deviation were excluded from the training data set. If several
consistent A¢HP,,, were available for a compound, the weight-average was calculated with the
weights determined from uncertainties of the enthalpies of combustion. The resulting values
used in the training set are shown in bold in Table 2.

The data scatter for small fluorinated organics (Figure 2) is larger than that for the
compounds of group 1, with AAF) generally within +£9 kJ-mol~L. Seven out of twelve
saturated compounds are grouped in the range —(0.2 to 2.0) kJ-mol~2. Six of these values
were obtained from combustion calorimetry and one from reaction calorimetry. Combustion
calorimetry was used to derive only one outlying value, where a thermodynamic cycle also
involved the results from a high-temperature hydrogen reaction calorimetry. Therefore, for
the saturated compounds, combustion calorimetry was the most reliable technique despite all
difficulties associated with quantification of the combustion process for gaseous species.
Unlike the condensed-phase compounds, the exact amount of a gas introduced to the bomb
is unknown and only chemical analysis of the products allows one to determine the burnt
amount of the sample.

Five values for the fluorinated alkenes lie close to —4 kJ-mol~L. Four of these values are
based on the combustion calorimetry results from the Moscow lab. Different methods were
used for tetrafluoroethylene (n7 = 4), which is the fifth consistent compound. However, based
on the high-level ab initio calculations, A¢HPpy, of the latter has been demonstrated to have a
large error (see, for example, Ref. 9). The combination of this fact with the results in Figure
2 leads to a conclusion that the remaining four experimental values have a similar systematic
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error per fluorine atom. A possible explanation of this problem might be either incorrect
characterization of the combustion products or incorrect reduction to the standard state. The
value for perfluoropropene is consistent with those of the saturated compounds. This A(F)
was derived in a different way: it is based on a thermodynamic cycle involving the results of
combustion calorimetry from the Moscow lab and high-temperature chlorination
calorimetry.

Based on the analysis above, we selected the consistent experimental A¢/APy, of the saturated
compounds and perfluoropropene for further analysis. The results for inorganic compounds
are close to those of small fluorinated alkanes (Figure 2).

3.3. Effective enthalpy of the fluorine atom for ab initio calculations

Data consistency for the training dataset is demonstrated in Figure 3. At a small number of
fluorine atoms, the results for group 1 are typically higher than those for group 2. For
perfluorinated compounds of group 1 except perfluorobenzene, A(F) values are close to
those of group 2. The exact reason of this behavior is unknown; however, based on our
limited tests, we believe that this is mainly due to the insufficient theory level for ZPVE
calculations.

The resulting h(F) = —(261711.80 + 0.37) kJ-mol~1 was found by unweighted averaging all
A(F) values. The enthalpies of formation calculated with this effective enthalpy are presented
in Tables 2 and 3. The uncertainty (in kJ-mol=1) for compounds can be estimated as follows:

U(ALH 1) = \JUXCHON) + (U(h(F))n(F))? @

The first term in the right-hand side of eq 2 is a contribution associated with C, H, O, and N
atoms, which can be calculated as described earlier.12 This contribution considers
uncertainty of the model as well as uncertainties of the effective enthalpies of atoms. For the
considered compounds, ({CHON) is close to (2.5 to 3.0) kJ-mol~1. Eq 2 does not consider
uncertainties in the reference enthalpies of formation for CO,, H,0, HF(aq), etc. The
uncertainty of A(F) could be decreased if repeated consistent measurements for some
reference compounds were available, which is unlikely with current experimental
infrastructure. Also, predictions could be improved through the development of efficient and
reliable computational procedures for anharmonic ZPVE, which appears to be a limiting
factor for the considered group of compounds.

4. Conclusion

An ab initio method for prediction of the enthalpies of formation has been extended to
fluorinated compounds. Additional uncertainty associated with the presence of fluorine was
estimated to be about 1 kilojoule per mole per F atom. Analysis of the experimental data
with the use of the computed results revealed significant problems in the former. These
included systematic errors of A¢/Py, in some laboratories and a shortage of reliable AsHPy,
values for fluoroalkenes. The observed agreement between the experimental and computed
values was somewhat worse than for CHON compounds. If no additional information is
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available, 57(F) kJ-mol~1 should be considered as a conservative estimate of the expanded
uncertainty for the experimental values of A¢H°, of medium-size fluorinated organic

compounds. For small hydrofluorocarbons, this uncertainty should be close to 91(F) kJ-mol
-1
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Figure 1.
Relative effective enthalpy, AAF) / (kd-mol~1) = A(F) / (kJ-mol~1) + 261711.5, of a fluorine

atom for the medium-size organic molecules as a function of the sequential number of a
compound in Table 2: blue circles, Moscow lab; yellow triangles, Porto lab (1997-2014);
green crosses, Teddington lab; gray pluses, Windsor lab; red stars, Freiburg lab; empty
circles, Bartesville; black squares, Gaithersburg. The value for 5-fluoro-2-
methylbenzoxazole (#20) is not shown due to a large deviation (-8.6 kJ-mol~1). For 5-
fluorouracil (#1) and (trifluoromethyl)benzene (#17) only the most recent values for
laboratories are shown.
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Figure 2.

Relative effective enthalpy, AAF) / (kJ-mol™1) = AF) / (kJ-mol~1) + 261711.5, of a fluorine
atom for fluoroalkanes (blue circles), fluoroalkenes (yellow triangles), and inorganic
molecules (red diamonds). The value for 2-fluoropropane (-22 kJ-mol=1) is not shown. For
tetrafluoroethylene, the value is a weight-average of the results%1:95
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Figure 3.
Relative effective enthalpy, AAF) / (kJ-mol™1) = AF) / (kJ-mol~1) + 261711.5, of a fluorine

atom for group 1 (blue circles), small hydrofluorocarbons (yellow triangles), and inorganic
molecules (red diamonds). The black line shows the resulting A(F) value.
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Table 1.

Reference enthalpies of formation used in this work?

Compound  AH°,/kJ-mol-t

Reference

CO4(q) -393.51 +0.13
H,0(1) -285.83 +0.04
F~(aq) -335.35 £ 0.65
HF(l) -303.55+0.25
HF(g) -273.30+0.70
HCI(g) -92.31+£0.10
CFa(9) 9332+ 08"
NF3 -131.5+1.0
NaF(cr) -576.6 0.7
KF(cr) -569.9+0.7
NaCl(cr) -411.26 +0.12
propane -104.6+0.2

8
8
8
7
8
8

32

33,34
35
35
35
36

a - o )
Reported uncertainties are the expanded uncertainties for 0.95 level of confidence

b . I
see discussion in the text
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