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Abstract

The ab initio method for prediction of the enthalpies of formation for CHON-containing organic 

compounds proposed earlier (J. Chem. Theory Comput. 2018, 14, 5920-5932) has been extended 

to their fluorinated derivatives. A single experimental ΔfHo
m is typically available for compounds 

in this scope. Thus, a priori evaluation of the data quality was found to be inefficient despite all 

available experimental data for C1─C3 hydrofluorocarbons and 34 data points for medium-size 

organofluorine compounds being considered. The training set was derived by analyzing 

consistency of the experimental and predicted values and removal of outliers. Significant issues in 

the experimental data, including inconsistency across different laboratories, were identified and 

potential causes for these problems were discussed. A conservative estimate of uncertainty for the 

experimental ΔfHo
m of organofluorine compounds was proposed.

1. Introduction

Fluorinated organic compounds are an important class of chemicals used in the 

pharmaceutical industry, agriculture, production of polymers, refrigerants, surfactants, and 

oil-repellants.1,2,3 Some of these compounds are also considered pollutants due to their 

toxicity, bioaccumulation, and contribution to global warming. Knowledge of their 

thermodynamic properties is critical for industrial applications and development of pollution 

prevention strategies. In this work, we focus on evaluation of their ideal-gas enthalpies of 

formation, a property essential to process modeling in a variety of applications.

The experimental methods used to determine enthalpies of formation for the compounds of 

interest include oxygen and fluorine combustion calorimetries, reaction calorimetry, 

primarily, with alkali metals and hydrogen, and mass spectrometry. Some enthalpies of 

formation were also derived from complex thermodynamic cycles involving different types 

of measurements.

As demonstrated below, oxygen combustion calorimetry is the most reliable and widespread 

method for determination of ΔfHo
m for the considered compounds. Two principal techniques 
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have been used in combustion calorimetry. The most popular one involves combustion in a 

rotating bomb, in which a certain amount of water has been added.4,5 To use this approach, 

the studied or auxiliary compound should have sufficient hydrogen content to yield aqueous 

HF as a main fluorine product. In the second technique, the combustion is performed in a 

bomb with no water added.6 This approach has been used for fluorocarbons. To our 

knowledge, presently, combustion calorimetry measurements for fluorinated compounds are 

only conducted at the Center of Chemical Research at the University of Porto. The number 

of fluorinated compounds containing, C, H, O, or N atoms, for which experimental 

enthalpies of formation have been determined, is well below 200.

The combustion calorimetry experiments are conducted at a high pressure of oxygen (around 

3 MPa). A multi-step procedure4 is used to transform the experimental combustion energies 

into the standard-state energies of combustion at T = 298.15 K. To derive ΔfHo
m, the 

reference enthalpies of formation for water, CO2, and HF(aq) are required. One should note 

that values for the suggested enthalpy of formation for the latter evolved significantly over 

time, and the latest recommendations are to a large extent based on the results of Johnson et 

al.7,8 Consequently, the results reported in the literature need to be reevaluated with the use 

of updated reference values.

Another challenge of the method is that the combustion energies of organofluorine 

compounds are significantly lower than those of the non-fluorinated counterparts. Thus, the 

calorimetric results are highly sensitive to the incompletely fluorinated impurities.4 In many 

cases, the resulting values are based on the results of chemical analyses of products for HF, 

CO2, HNO3, and less frequently for CF4 and F2, which adds complexity to the procedure. 

As demonstrated below, consistency of the results for different laboratories and 

repeatability-based uncertainties are often worse than those for CHON compounds. All 

factors listed above make a reliable predictive procedure highly desirable. The existing 

approaches involving high-level ab initio calculations are mostly focused on small (C1 and 

C2) molecules (e.g., Refs. 9, 10).

Historically, the main contributors to the field are

• Thermodynamics Laboratory of the Bartesville Petroleum Research Center, 

Bureau of Mines (Bartesville, OK, U.S.A.);

• Chemical Thermodynamics Group of the National Chemical Laboratory 

(Teddington, U.K.)

• Thermochemistry Laboratory of the Moscow State University (Soviet Union);

• Department of Chemistry, University of Porto (Portugal);

• Institute of Organic Chemistry and Biochemistry at the University of Freiburg 

(Germany);

• Department of Chemistry, University of Windsor (Canada).

Some reliable values originate from the Chemistry Departments of the University of 

Wisconsin and the Rice University, the National Bureau of Standards (now NIST), the 

Argonne National Laboratory, and Thermal Research Laboratory of the Dow Chemical 
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Company (all U.S.A). For brevity, the laboratories will be referred to by location in our 

discussion (e.g., the Moscow lab).

The goal of this work is to extend the ab initio method we proposed earlier11,12 to 

organofluorine compounds and evaluate the reliability of the predicted and available 

experimental gas-phase enthalpies of formation for these compounds.

2. Calculations

We considered conformational equilibria in the studied compounds because, in our previous 

work, they were shown to have a significant effect even for some moderate-size molecules.12 

The model was adopted that assumed the ideal-gas equilibrium mixture of individual 

conformers with the entropy component of the standard Gibbs energy computed using the 

same rigid rotor-harmonic oscillator model as was used for the thermal correction to the 

enthalpy, Δ0
TH, term. Enthalpy of formation of a given compound was computed as the 

Gibbs-energy average for the conformer population. The generation of conformers was 

performed as described earlier.13,14,15,16 An initial pool of conformer candidates was 

produced via systematic search using molecular mechanics based on the MMFF94 force 

field.17 The resulting conformer candidates were further optimized, and their vibrational 

spectra were computed with B3LYP/def2-TZVP-D3(BJ).18,19,20,21 This combination is 

expected to provide a compromise between computational cost and accuracy for complex 

molecules.12 The final set of conformers was established by eliminating duplicated 

structures and transition states identified from the vibrational analysis. The frequencies were 

scaled by 0.990 for zero-point vibrational energies (ZPVE). In the “rigid rotor – harmonic 

oscillator” calculations of the thermal correction Δ0
TH, the scaling factors of 0.96 for 

hydrogen stretches and 0.985 for all other modes were applied. The rotational symmetry 

numbers needed for the entropy evaluation were obtained using the libmsym library.22 The 

conformer geometries for the single-point energy calculations were optimized with the 

density-fitted (resolution-of-identity) second-order Møller-Plesset perturbation theory (DF-

MP2) with the aug-cc-pvqz basis set.23,24 Single-point energy calculations were conducted 

with the 2016 version of local CCSD(T) by Kállay et al.25,26,27 and the aug-cc-pvqz basis 

set. DFT calculations were performed with Gaussian 0928, local CCSD(T) was carried out 

with MRCC (release of September 25, 2017)27, and DF-MP2 was done with Psi4 v1.1.29 

The choice of computational tools was motivated by the performance of the methods on the 

hardware used.12

The enthalpies of formation at T = 298.15 K were evaluated as12:

ΔfH
° = E + ZPVE + Δ0

TH − ∑typesniℎi (1)

where E is the total electronic energy from the single-point calculations, ZPVE is the zero-

point vibrational energy, and Δ0
TH is the thermal correction from 0 to 298.15 K. The 

effective enthalpies, hi in eq 1, for C, H, O, and N atomic types where fixed to the values 

determined in the previous study12: h(C saturated or aromatic) = −99910.32 kJ·mol−1, h(C 

unsaturated) = −99909.44 kJ·mol−1, h(H) = −1524.23 kJ·mol−1, h(O) = −197138.05 kJ·mol
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−1, and h(N) = −143612.32 kJ·mol−1. Determination of the contribution h(F) is one of the 

goals of the present study. The h(F) values for individual compounds were determined from 

eq 1 using their experimental ΔfHo
m, and the final recommendation was derived via 

averaging of the individual values over the selected training set of molecules.

Reported uncertainties are the expanded uncertainties for a 0.95 level of confidence (k ≈ 2). 

For the experimental works, these are based on the authors’ uncertainty estimates (mainly 

repeatabilities) and uncertainties in the reference values.

3. Results

3.1. Experimental data

The enthalpies of formation considered in this work were derived using the original 

experimental data, reference enthalpies of formation presented in Table 1, and ΔfH(HF(aq)) 

from Johnson et al.7 shifted by 0.33 kJ·mol−1, as recommended by CODATA.8 The 

enthalpies of formation for hydrofluorocarbons are often determined from their enthalpies of 

combustion which are, in turn, based on the results of chemical analysis for CO2 and HF. If 

the average values based on those two analyses differed by more than 4 kJ·mol−1 and could 

not be explained by formation of CF4, the enthalpy of formation was calculated from the 

results based on the CO2 determination, since the latter was suggested to be more reliable.30 

The heat capacities of compounds required to reduce the experimental ΔrH to T = 298.15 K 

were taken from NIST ThermoData Engine v.10.3 31 unless specified otherwise.

When fluorinated organic compounds are burnt in oxygen, CF4 sometimes appears as a 

product, and larger fluorine content results in a higher yield of CF4. Consequently, the 

enthalpy of formation of tetrafluoromethane is an important reference quantity affecting 

experimental ΔfHo
m for many compounds. The enthalpy of formation ΔfHo

m = −(933.2 ± 

0.8) kJ·mol−1 32 was derived by Greenberg and Hubbard from the experiments on graphite 

combustion in fluorine. The values obtained by Domalski and Armstrong using a similar 

technique37 and in references therein are consistent with this result. On the other hand, the 

enthalpy of reaction CF4(g) + 2H2O = CO2(g) + 4HF(·20H2O), ΔrHo
m = −(173.2 ± 1.3) 

kJ·mol−1 38,39,40, can be derived from the results of experiments in which 

poly(tetrafluoroethylene) and perfluorobicyclohexyl were burnt in oxygen with some water 

present. This value implies ΔfHo
m = −(936.2 ± 2.9) kJ·mol−1 for CF4, if the reference data 

above are used. The difference between this value and the direct result32 is relatively large, 

although the corresponding error bars slightly overlap. The apparent inconsistency should be 

resolved by replacing the enthalpy of formation of either CF4 or HF(aq) (or both) with more 

accurate value(s). In the current Active Thermochemical Tables36, the statistical analysis 

yielded ΔfHo
m(HF·20H2O) = −(321.03 ± 0.16) kJ·mol−1, which is 0.86 kJ·mol−1 less 

negative than the CODATA value. On the other hand, Ganyecz et al.41 computationally 

analyzed the thermochemical network for fluorinated and chlorinated methanes and ethanes 

using the diet-HEAT-F12 protocol42 and concluded that ΔfHo
m(CF4) by Greenberg and 

Hubbard is not consistent with the ab initio results and needs further studies. Overall, the 

CODATA ΔfHo
m(HF(aq)) is supported by a larger number of experimental studies as 

compared to that for ΔfHo
m(CF4), but it is still insufficient to make a conclusive assessment.

Paulechka and Kazakov Page 4

J Chem Eng Data. Author manuscript; available in PMC 2020 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



In this work, we used ΔfHo
m(CF4) = −(933.2 ± 0.8) kJ·mol−1 if CF4 was one of the major 

combustion products. If a small amount of CF4 was formed and reduction of the 

experimental data implied its hydrolysis, the enthalpy change ΔrHo
m = −(173.2 ± 1.3) kJ·mol

−1 was used.

Fluorinated organic compounds, for which the enthalpies of formation are available, can be 

tentatively divided into three groups. The first group consists of relatively large molecules 

typically containing more than five carbon atoms. This group has been most studied over the 

past decades. The second group includes small (up to three carbon atoms) 

hydrofluorocarbons, most of which are gases at ambient conditions. The third group consists 

of inorganic species such as HF or NF3. In this work, 22 compounds (34 ΔfHo
m values) from 

group 1 (Table 2) were selected to provide reasonable variability with respect to the 

molecular structural features and the sources of information (i.e., the labs where the 

measurements were performed). Consideration of the data origins was important to avoid 

any bias due to a potential systematic error originating from a laboratory. The best effort was 

made to provide a comprehensive review of the experimental data for small 

hydrofluorocarbons (Table 3). The considered inorganic species included F2, HF, OF2, and 

NF3.

For all compounds from the first group (Table 2), the enthalpies of formation were derived 

from their energies of combustion in oxygen in a rotating bomb calorimeter. In most cases, 

the well-established technique of combustion in the presence of water4,5 was used. A 

detailed discussion of these results is presented below.

Multiple experimental techniques, including oxygen and fluorine combustion calorimetry, 

reaction calorimety with alkaline metals and hydrogen, chemical equilibrium studies, and 

mass spectrometry were used to obtain ΔfHo
m for small hydrofluorocarbons.

Fluoromethanes.—Enthalpies of formation for difluoromethane and trifluoromethane 

were determined by Neugebauer and Margrave76 from the results of combustion calorimetry. 

The recommended ΔfHo
m of CF4 is based on the results of direct combustion of graphite in 

fluorine.32

1,1-Difluoroethane.—The enthalpy of formation was reported by Kolesov et al.77 The 

authors analyzed the CO2 and HF content in the combustion products. The enthalpies of 

combustion based on these two values differed by about 13 kJ·mol−1. The enthalpy of 

combustion accepted in this paper was calculated from the CO2 analysis.

1,1,1-Trifluoroethane.—The enthalpy of formation was determined by Kolesov et al.78 

from the results of combustion calorimetry. Later, Kolesov and Papina79 revised the 

experimental value by adding a correction for reduction to the standard state missing in the 

original work. Analysis of the kinetic data by Rodgers and Ford101 provides a similar value 

if ΔfH(CH3) and ΔfH(CF3) from Ref. 35 are used. However, the expanded uncertainty 

exceeds 10 kJ·mol−1 in this case.
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1,1,2-Trifluoroethane.—The enthalpy of formation was calculated from the enthalpies of 

chlorotrifluoroethylene hydrogenation ΔrHo
m(298 K) = −(271.2 ± 2.3) kJ·mol−1 83 and its 

enthalpy of formation ΔfHo
m(CF2CFCl) = −(517.1 ± 2.2) kJ·mol−1 found as weight-average 

of the results from Refs. 80,81,82.

Pentafluoroethane.—The enthalpy of formation was reported by Buckley et al.102 who 

studied chemical equilibria:

CF3CF2Br(g) + I2(g) = CF3CF2I(g) + IBr(g)

Br2(g) + C2F5H(g) = HBr(g) + CF3CF2Br(g)

The equilibrium constants for the second reaction were determined by Coomber and Whittle.
103 However, the reported ΔfHo

m(CF3CF2H) was, in turn, based on ΔfHo
m(CF3CF2I) 

estimated by Wu et al.104 as ΔfHo
m(CF3CF2I) = ½(ΔfHo

m(CF3CF3) + ΔfHo
m(CF2ICF2I)). 

Thus, this compound was excluded from further data analysis.

Hexafluoroethane.—The most precise value was obtained by Sinke85 by the reaction 

bomb calorimetry. The result strongly depends on reference ΔfHo
m of CF4 and NF3.

1-fluoropropane, 2-fluoropropane, 2,2-difluoropropane.—The enthalpies of 

formation for monofluoropropanes were obtained using the high-temperature enthalpies of 

hydrogenation determined in a flow calorimeter by Lacher et al.86 Enthalpies of the formal 

reactions

CH2=CHF + CH4 = CH3CHFCH3

CH2=CF2 + CH4 = CH3CF2CH3

could be found from results of the mass-spectrometric study.87

1,1,1,3,3,3-Hexafluoropropane.—The enthalpy of combustion and formation for this 

compound was reported by Kolesov.88 The concentration of the resulting HF solution was 

not specified. In the review89, the enthalpy of formation was recalculated with respect to the 

updated enthalpies of formation for the reference compounds.

Octafluoropropane.—ΔfHo
m was found90 from the enthalpy of its reaction with sodium. 

Detailed analysis of the combustion products was performed.

Fluoroethylene, 1,1-difluoroethylene, trifluoroethylene.—Kolesov et al. conducted 

combustion calorimetry studies for these compounds.30,92 ΔfHo
m of 1,1-difluoroethylene 

was also reported by Neugebauer and Margrave.91

Tetrafluoroethylene.—The enthalpy of formation for this compound was reported by 

many researchers. Neugebauer and Margrave91 and Kolesov et al.95 measured the energy of 

combustion for the amorphous carbon product.
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Equilibria of mono- and difluoropropenes.—We are aware of two works reporting 

these equilibria.96,97 While the enthalpies of Z/E-isomerization of 1-propenes are consistent, 

the enthalpies of formation for 3-fluoropropene differ by 8 kJ·mol−1. That cannot be 

explained by their temperature difference.

3,3,3-Trifluoropropene.—The enthalpy of formation for this compound was 

determined98 from its enthalpy of combustion in oxygen in a bomb calorimeter. The average 

values of the enthalpy of combustion derived from the results of chemical analysis for HF 

and CO2 differ by about 5 kJ·mol−1. The enthalpy of formation was recalculated based on 

the amount of CO2. The ΔfHo
m values obtained in experiments 1 and 3 of the original 

publication are over 20 kJ·mol−1 too high relative to the other experiments, while the 

standard deviation calculated for experiments 2 and (4 to 12) is only 1.7 kJ·mol−1. Thus, the 

enthalpy of formation was calculated using the data from experiments 2 and 4 to 12.

Hexafluoropropene.—Following Papina and Kolesov99, the enthalpy of formation for 

this compound can be determined using the enthalpies of the processes

CF2ClCFClCF3(l) + O2(g) + 4H2O(l) = 3CO2(g) + 6HF(·20H2O) + 2HCl(·600H2O) 

ΔHm
o(298 K) = −(925.6 ± 2.0) kJ·mol−1 99

CF3CF=CF2(g) + Cl2(g) = CF2ClCFClCF3(g) ΔrHm
o(363 K) = −(197.3 ± 0.5) kJ·mol−1 100

CF2ClCFClCF3(l) = CF2ClCFClCF3(g) Δl
gHm

o(298 K) = (26.93 ± 0.03) kJ·mol−1 105

The temperature dependence of ΔrHm
o for the chlorination reaction can be neglected.

The enthalpy of reaction

C2F4(g) = 2/3 CF3CF=CF2(g) ΔrHm
o(298 K) = −86 kJ·mol−1

was estimated by Duus94 using combustion experiments.

Four inorganic compounds were considered: F2, HF, NF3, and OF2. The enthalpies of 

formation of HF and NF3 are given in Table 1, for OF2, ΔfHo
m = (24.5 ± 1.6) kJ·mol−1.106

3.2. Consistency of experimental data and derivation of the training set

For generation of the CHON training set11, we used only those compounds for which the 

experimental data were available from multiple consistent sources and the resulting 

expanded uncertainty was under 2 kJ·mol−1. If these criteria were applied to the fluorinated 

compounds, a training set of sufficient size could not be compiled. Thus, all available data 

were analyzed. The effective enthalpy of fluorine, h(F), was derived for each data point 

using eq 1 and the experimental ΔfHo
m. The resulting h(F) were used to assess the 

consistency among the considered data points and identification of outliers.

The effective enthalpies h(F) for the compounds of group 1 are compared in Figure 1. The 

value h(F) = −261711.5 kJ·mol−1 used in the figure is a preliminary estimate based on all 

available experimental data. Most of the data are spread within (−4 to 6) kJ·mol−1 of this 

estimate. One would expect h(F) values to congregate near a certain value. This consistency 
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should be better for compounds with similar fluorine functionality (e.g., para-substituted 

fluorinated benzene derivatives). Considering the uncertainty of the predicted ΔfHo
m was 

(2.5 to 3.0) kJ·mol−1 for CHON-containing compounds12, variations below 1 kJ·mol−1 due 

to computational model limitations are expected.

The results from the Moscow and Teddington labs do demonstrate reasonable consistency. 

On the other hand, the values from Freiburg exhibit a scatter of about ±6 kJ·mol−1 around 

the average value for this laboratory. These data as well as those from Windsor where a less 

precise technique was used were excluded from the training set. Four out of six values from 

the Bartesville lab and five out of nine values from the Porto lab show significant positive 

deviation from the average. It implies that the experimental ΔfHo
m is more negative than the 

expected computed counterpart. Two reasons may be responsible for the observed behavior. 

First, the samples could contain incompletely fluorinated impurities. This may also explain 

why not all results from these laboratories are biased. Second, the reduction to the standard 

state could be based on obsolete reference values. The samples of 4-fluorobenzoic acid (#16) 

from the Bartesville lab were further studied in the Teddington lab and at the National 

Bureau of Standards and (1.5 to 2.3) kJ·mol−1 more positive values were obtained. At the 

same time, the results from these and two other laboratories are consistent within ±0.5 

kJ·mol−1 (Table 2). The enthalpies of formation for non-fluorinated compounds from the 

Porto and Bartesville labs are normally consistent with the results from the other laboratories 

and the predicted values. Thus, it seems highly unlikely that the problem is due to the 

instrumental error such as incorrect calibration, etc. Further clarification of this problem 

clearly goes beyond the scope of this paper. All results from these two laboratories 

exceeding +2 kJ·mol−1 deviation were excluded from the training data set. If several 

consistent ΔfHo
m were available for a compound, the weight-average was calculated with the 

weights determined from uncertainties of the enthalpies of combustion. The resulting values 

used in the training set are shown in bold in Table 2.

The data scatter for small fluorinated organics (Figure 2) is larger than that for the 

compounds of group 1, with Δh(F) generally within ±9 kJ·mol−1. Seven out of twelve 

saturated compounds are grouped in the range −(0.2 to 2.0) kJ·mol−1. Six of these values 

were obtained from combustion calorimetry and one from reaction calorimetry. Combustion 

calorimetry was used to derive only one outlying value, where a thermodynamic cycle also 

involved the results from a high-temperature hydrogen reaction calorimetry. Therefore, for 

the saturated compounds, combustion calorimetry was the most reliable technique despite all 

difficulties associated with quantification of the combustion process for gaseous species. 

Unlike the condensed-phase compounds, the exact amount of a gas introduced to the bomb 

is unknown and only chemical analysis of the products allows one to determine the burnt 

amount of the sample.

Five values for the fluorinated alkenes lie close to −4 kJ·mol−1. Four of these values are 

based on the combustion calorimetry results from the Moscow lab. Different methods were 

used for tetrafluoroethylene (n = 4), which is the fifth consistent compound. However, based 

on the high-level ab initio calculations, ΔfHo
m of the latter has been demonstrated to have a 

large error (see, for example, Ref. 9). The combination of this fact with the results in Figure 

2 leads to a conclusion that the remaining four experimental values have a similar systematic 
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error per fluorine atom. A possible explanation of this problem might be either incorrect 

characterization of the combustion products or incorrect reduction to the standard state. The 

value for perfluoropropene is consistent with those of the saturated compounds. This h(F) 

was derived in a different way: it is based on a thermodynamic cycle involving the results of 

combustion calorimetry from the Moscow lab and high-temperature chlorination 

calorimetry.

Based on the analysis above, we selected the consistent experimental ΔfHo
m of the saturated 

compounds and perfluoropropene for further analysis. The results for inorganic compounds 

are close to those of small fluorinated alkanes (Figure 2).

3.3. Effective enthalpy of the fluorine atom for ab initio calculations

Data consistency for the training dataset is demonstrated in Figure 3. At a small number of 

fluorine atoms, the results for group 1 are typically higher than those for group 2. For 

perfluorinated compounds of group 1 except perfluorobenzene, h(F) values are close to 

those of group 2. The exact reason of this behavior is unknown; however, based on our 

limited tests, we believe that this is mainly due to the insufficient theory level for ZPVE 

calculations.

The resulting h(F) = −(261711.80 ± 0.37) kJ·mol−1 was found by unweighted averaging all 

h(F) values. The enthalpies of formation calculated with this effective enthalpy are presented 

in Tables 2 and 3. The uncertainty (in kJ·mol−1) for compounds can be estimated as follows:

U(ΔfH m
° ) = U2(CHON) + U(ℎ(F))n(F) 2 (2)

The first term in the right-hand side of eq 2 is a contribution associated with C, H, O, and N 

atoms, which can be calculated as described earlier.12 This contribution considers 

uncertainty of the model as well as uncertainties of the effective enthalpies of atoms. For the 

considered compounds, U(CHON) is close to (2.5 to 3.0) kJ·mol−1. Eq 2 does not consider 

uncertainties in the reference enthalpies of formation for CO2, H2O, HF(aq), etc. The 

uncertainty of h(F) could be decreased if repeated consistent measurements for some 

reference compounds were available, which is unlikely with current experimental 

infrastructure. Also, predictions could be improved through the development of efficient and 

reliable computational procedures for anharmonic ZPVE, which appears to be a limiting 

factor for the considered group of compounds.

4. Conclusion

An ab initio method for prediction of the enthalpies of formation has been extended to 

fluorinated compounds. Additional uncertainty associated with the presence of fluorine was 

estimated to be about 1 kilojoule per mole per F atom. Analysis of the experimental data 

with the use of the computed results revealed significant problems in the former. These 

included systematic errors of ΔfHo
m in some laboratories and a shortage of reliable ΔfHo

m 

values for fluoroalkenes. The observed agreement between the experimental and computed 

values was somewhat worse than for CHON compounds. If no additional information is 
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available, 5n(F) kJ·mol−1 should be considered as a conservative estimate of the expanded 

uncertainty for the experimental values of ΔfHo
m of medium-size fluorinated organic 

compounds. For small hydrofluorocarbons, this uncertainty should be close to 9n(F) kJ·mol
−1.
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Figure 1. 
Relative effective enthalpy, Δh(F) / (kJ·mol−1) = h(F) / (kJ·mol−1) + 261711.5, of a fluorine 

atom for the medium-size organic molecules as a function of the sequential number of a 

compound in Table 2: blue circles, Moscow lab; yellow triangles, Porto lab (1997-2014); 

green crosses, Teddington lab; gray pluses, Windsor lab; red stars, Freiburg lab; empty 

circles, Bartesville; black squares, Gaithersburg. The value for 5-fluoro-2-

methylbenzoxazole (#20) is not shown due to a large deviation (−8.6 kJ·mol−1). For 5-

fluorouracil (#1) and (trifluoromethyl)benzene (#17) only the most recent values for 

laboratories are shown.
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Figure 2. 
Relative effective enthalpy, Δh(F) / (kJ·mol−1) = h(F) / (kJ·mol−1) + 261711.5, of a fluorine 

atom for fluoroalkanes (blue circles), fluoroalkenes (yellow triangles), and inorganic 

molecules (red diamonds). The value for 2-fluoropropane (−22 kJ·mol−1) is not shown. For 

tetrafluoroethylene, the value is a weight-average of the results91,95
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Figure 3. 
Relative effective enthalpy, Δh(F) / (kJ·mol−1) = h(F) / (kJ·mol−1) + 261711.5, of a fluorine 

atom for group 1 (blue circles), small hydrofluorocarbons (yellow triangles), and inorganic 

molecules (red diamonds). The black line shows the resulting h(F) value.
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Table 1.

Reference enthalpies of formation used in this work
a

Compound ΔfHo
m/kJ·mol−1 Reference

CO2(g) −393.51 ±0.13 8

H2O(l) −285.83 ± 0.04 8

F−(aq) −335.35 ± 0.65 8

HF(l) −303.55 ± 0.25 7

HF(g) −273.30 ± 0.70 8

HCl(g) −92.31 ± 0.10 8

CF4(g)
−933.2 ± 0.8

b 32

NF3 −131.5 ± 1.0 33, 34

NaF(cr) −576.6 ± 0.7 35

KF(cr) −569.9 ± 0.7 35

NaCl(cr) −411.26 ± 0.12 35

propane −104.6 ± 0.2 36

a
Reported uncertainties are the expanded uncertainties for 0.95 level of confidence

b
see discussion in the text
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