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Comprehensive genomic diagnosis of inherited
retinal and optical nerve disorders reveals hidden
syndromes and personalized therapeutic options
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ABSTRACT.

Purpose: In the era of precision medicine, genomic characterization of blind
patients is critical. Here, we evaluate the effects of comprehensive genetic
analysis on the etiologic diagnosis of potentially hereditary vision loss and its
impact on clinical management.

Methods: We studied 100 non-syndromic and syndromic Spanish patients with a
clinical diagnosis of blindness caused by alterations on the retina, choroid,
vitreous and/or optic nerve. We used a next-generation sequencing (NGS) panel
(OFTALMOgenics™), developed and validated within this study, including up to
362 genes previously associated with these conditions.

Results: We identified the genetic cause of blindness in 45% of patients (45/100). A
total of 28.9% of genetically diagnosed cases (13/45) were syndromic and, of those, in
30.8% (4/13) extraophthalmic features had been overlooked and/or not related to
visual impairment before genetic testing, including cases with Mainzer-Saldino,
Bardet-Biedl, mucolipidosis and MLCRD syndromes. In two additional cases—
syndromic blindness had been proposed before, but not specifically diagnosed, and one
patient with Heimler syndrome had been misdiagnosed as an Usher case before testing.
33.3% of the genetically diagnosed patients (15/45) had causative variants in genes
targeted by clinical trials exploring the curative potential of gene therapy approaches.
Conclusion: Comprehensive genomic testing provided clinically relevant insights
in a large proportion of blind patients, identifying potential therapeutic
opportunities or previously undiagnosed syndromes in 42.2% of the genetically
diagnosed cases (19/45).
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Introduction

The approval of Luxturna®, the first
gene therapy for an inherited condition
to reach the clinic in the USA and
Europe, has made reality the promise
of a cure for genetic blindness (Russell
et al. 2017). Although only patients
with visual impairment caused by a
defective RPE65 gene can benefit from
this therapy, advanced clinical trials
involving several forms of blindness
caused by mutations in other genes are
under way. In them, patient’s eligibility
depends on the fact that his/her dis-
ease-causing gene matches the target of
the particular therapy. Thus, by hold-
ing the key to therapeutic intervention,
molecular diagnostics of genetic blind-
ness has reached the top of clinical
applicability.

Inherited retinal dystrophies (IRDs),
characterized by the degeneration of
photoreceptor and retinal pigment
epithelial cells, are the main cause of
genetic blindness. With a worldwide
prevalence of about 1/4000, retinitis
pigmentosa (RP) is the commonest
IRD (Verbakel et al. 2018). Besides
the handicapping effects of visual
impairment, between 20% and 30%
of patients with RP have an associated
non-ocular condition, ranging from
mild morphologic changes to life-
threatening pathologies. With more
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than 250 genes described as responsible
for syndromic and/or non-syndromic
forms of the disease, the genetic hetero-
geneity of IRDs is overwhelming.
Phenotypic heterogeneity is also char-
acteristic of many IRD genes (Costa
et al. 2017). As a result, the clinical
testing approaches used for IRD diag-
nosis  (electroretinography, optical
coherence tomography, funduscopic
examination, fundus autofluorescence,
dark adaptation or visual field testing)
are not usually able to predict the
causative gene in a given patient
(Hafler 2017).

Although the features mentioned
above have historically hampered the
clinical genetics of IRD, molecular
diagnostics has demonstrated its utility
for multiple aspects of patient manage-
ment long before the availability of
gene therapies. Thus, in paediatric
patients, genetic diagnosis may dictate
visual prognosis and guide educational
and/or supportive plans for the pro-
band (Jauregui et al. 2018). Correct
IRD molecular diagnosis can also
uncover associations with syndromes
that manifest with disabling systemic
disease, leading to early interventions
that facilitate improved outcomes
(Werdich et al. 2014). This is especially
relevant, because many syndromic
patients present initially to the oph-
thalmologist long before they are seen
by the paediatrician with systemic
symptoms (Sadagopan 2017).

Therefore, since 2012, the American
Academy of Ophthalmology Task
Force recommends genetic testing
when clinical findings suggest that a
known Mendelian disorder may affect
the patient (Stone et al. 2012). How-
ever, comprehensive genetic testing of
IRDs is not feasible by traditional
Sanger sequencing techniques, as these
are not suited for analysing hundreds
of genes per patient. With the advent of
next-generation sequencing (NGS),
extensive IRD molecular diagnosis
has become possible, even for patients
whose clinical diagnosis and inheri-
tance pattern are uncertain after oph-
thalmologic evaluation (Lee & Garg
2015).

Here we: (1) present the develop-
ment and validation of an NGS-based
panel for the comprehensive genomic
diagnosis of blind patients with IRDs
and/or optical nerve disorders; (2)
evaluate its clinical performance and
diagnostic yield in a series of 100

Spanish patients; and (3) illustrate,
with real-life data, how the availability
of a molecular diagnosis frequently
reveals unnoticed syndromes/pheno-
typic expansions and opens the door
to personalized therapeutic opportuni-
ties.

Material

Purpose of test

The performed test (OFTALMOgen-
ics™) was aimed at detecting the
molecular aetiology of individual clin-
ical diagnoses of syndromic/non-syn-
dromic IRDs and/or optic nerve
disorders.

Panel content design: criteria for inclusion
of specific genes

Genes associated with blindness caused
by alterations in the vitreous, choroid,
retina and optic nerve, including both
syndromic and non-syndromic forms,
were considered.

First, the Human Gene Mutation
Database (HGMD) was queried using
a list of phenotypes potentially related
to ophthalmologic defects (Table S1) to
generate a preliminary gene list. This
was manually curated to identify genes
fulfilling the following criteria: (I) gene
defects cause alterations in any of the
four ocular structures previously men-
tioned; (II) published evidence sup-
ports the gene-phenotype association
in at least two independent families;
and (IIT) at least one publication
demonstrates convincing cosegregation
of phenotype with gene variants. Then,
a tiered classification system was
devised. Genes with strong/moderate
association with blindness (criteria I, IT
and III described above) formed tier 1,
while genes with weak/preliminary
association (criterion I, but not criteria
IT and/or III) were grouped in tier 2.
The panel evolved with revision of
newly published literature, yielding
versions vl, v2, v3 and v4 (Tables S2—
S4 and Table 1, respectively). vl and
v2 were used in the research and
development (R&D) phase of the
study, while v3 was used both during
the R&D phase and as the first version
of the clinical panel. v4 is the current
optimized clinical version. Each patient
was tested with only one of the four
different versions: 20 cases were anal-
ysed with v1, 19 with v2, 55 with v3 (16

during the R&D phase and 39 in the
clinical phase) and 6 with v4
(Table S5).

Sample types

Four millilitre of peripheral blood in
conventional EDTA-tubes, 1.5 ml of
saliva in Danagen saliva collection
containers (Danagen-Bioted, S.L.,
Badalona, Spain) or >200 ng of germ-
line genomic DNA (quantitated by a
fluorimetric method) were required per
patient.

Library preparation, target enrichment
and sequencing

Library preparation was carried out as
previously described for the OTOgenics
NGS platform (Cabanillas et al. 2018),
except for library capture, that was
performed with the OFTALMOgen-
ics™ probes. The OFTALMOgenics™
NGS pipeline targeted the coding
exons and intron-exon junctions of
278 genes (vl) (Table S2), 290 genes
(v2) (Table S3), 297 genes (v3)
(Table S4) or 362 genes (v4) (Table 1).

Bioinformatics for variant identification
and annotation

Next-generation sequencing results
were processed using the bioinformat-
ics software Genome One Core
(DREAMgenics, Oviedo, Spain), certi-
fied with CE/IVD-marking. The pipe-
line has been adapted from those
previously described as part of the
ONCOgenics and OTOgenics NGS
platforms (Cabanillas et al. 2017;
Cabanillas et al. 2018). The workflow
of bioinformatics analysis that includes
the FASTQ read generation, align-
ment, duplicate removal, variant iden-
tification, filtering and annotation has
been previously described (Cabanillas
et al. 2018).

Copy-number variants (CNVs) were
systematically assessed as described in
Cabanillas et al. (2018). Detection was
performed with an adapted version of
the exome2cnv algorithm, incorporat-
ing a combination of read depth and
allelic imbalance computations. The
algorithm employs a background of
pooled samples processed using the
same capturing protocol and sequenc-
ing technology (Valdes-Mas et al. 2012;
Cabanillas et al. 2017). To improve
sensitivity for large homozygous
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NM_144631.5

ZNF513

TUBB4B
TUBGCP4

NM_018943.2

NM_006088.5
NM_014444.4

TUBAS

SDHA
SLC2541

NM_203288.1

NM_004168.3
NM_005984.4

RP9

PNPTI
POGZ

NM_031220.3

NM_033109.4
NM_015100.3

PITPNM3

MT-TP
MT-TS2

NM_023936.1

NC_012920.1
NC_012920.1

MRPS34

ITM2B
KCTD7

NM_014055.3

NM_021999.4
NM_153033.4

IFTS1

GUCAIB
HIKESHI

NM_001510.3

NM_002098.5
NM_016401.3

GRID2

ESPN
NM_031475.2

FDX2

NM_001031734.3

NM_004446.2

EPRS

COL4AS
COL9A2

NM_006383.3

NM_001847.3
NM_001852.3

CIB2

BRATI

C54AR2

NM_001195306.1

NM_152743.3
NM_018485.2

BBIPI

AQP4

ARL3

Tier 2 (86 genes): genes with weak/preliminary association with Inherited Retinal and Optical Nerve Disorders

Table 1. (Continued)

NM_004644.4
NM_001650.6
NM_004311.3

AP3B2

deletions, genomic regions with no
sequencing coverage in an individual
sample, but showing proper coverages
in the remaining samples, were identi-
fied (i.e. homoz. BBS4 exon 1 deletion).

Estimation of analytical
specificity and accuracy

sensitivity,

The methodology for calculation of
analytical sensitivity and specificity for
SNVs and Indels has been described
(Cabanillas et al. 2018). Accuracy was
estimated based on the same dataset
and it was expressed as the aver-
age + standard deviation of the abso-
lute value of the difference between the
expected and the observed allelic fre-
quencies of each variant.

Multiplex  Ligation-dependent  Probe

Amplification (MLPA)

Multiplex Ligation-dependent Probe
Amplification analysis was performed
using MRC-Holland (Amsterdam, The
Netherlands) probe sets targeting five
genes EYS (cat. # P328), PRPF3I,
RHO and RPE65 (cat. # P235) and
USH2A (cat. #’s P361 and P362) on 31
patients without causative variants,
following the manufacturer’s instruc-
tions.

Variant interpretation, classification and
diagnostic yield

Clinical classification of variants from
vl and v2 cases was performed as
described (Cabanillas et al. 2017). For
v3 and v4 cases, variants that could
potentially explain the vision loss phe-
notype of the probands, based on
zygosity of the variant, presence of
additional variants and mode of inher-
itance, were further considered. After
that, variants were clinically classified
according to the American College of
Medical Genetics and Genomics
(ACMG) guidelines as described
(Richards et al. 2015; Cabanillas et al.
2018). Diagnostic yield was defined as
the percentage of tested patients with
pathogenic/likely pathogenic variants
capable of explaining their IRD phe-
notype.

Variant validation

Pathogenic/likely pathogenic SNVs
and indels were validated by
PCR + Sanger sequencing. For

validation and identification of the
breakpoints flanking the BBS4 exon 1
deletion multiple PCR reactions were
performed. Primers used in validation
PCRs are described in Table S6.

Patient population

Between September 2014 and May
2019, 100 consecutive patients (47
male, 53 female) with syndromic/non-
syndromic IRDs were selected after
excluding non-genetic causes. Consent
was obtained from patients or their
parents. The study was approved by
the Comité de Etica de la Investigacién
del Principado de Asturias (research
project #74/14).

Results

Performance of targeted NGS

Mean coverage of tier 1 genes was 453x
for v1, 383x for v2, 347x for the 16
R&D phase cases performed with v3,
910x for the 39 clinical cases performed
with v3 and 1056x for v4. 99.08%,
99.58%, 98.39%, 99.86% and 99.74%
of their target bases were covered by
>20 reads, respectively. The minimum,
average and maximum coverage (aver-
age read depth of all target bases of the
gene) and callabilities (% of the target
bases of the gene with minimum read
depths of 10, 20, 50 and 100 reads per
each target base of the gene) for every
tier 1 and tier 2 gene on samples
analysed with OFTALMOgenics™ v4
is shown in Table S7. In clinical cases,
regions from tier 1 genes with less than
100% coverage >20 reads (DP20) and
specific positions within those regions
affected by such limitation were
included in each individual patient’s
report.

Analytical
accuracy

sensitivity, specificity and

A genotyped mixture of 10 lym-
phoblastoid cell lines was evaluated to
determine the analytical sensitivities,
specificities and accuracies of the clin-
ical versions of the panel (v3 and v4).
For wv3, 1277/1286 variants with
expected allelic frequency >0.1 (1208/
1216 SNVs and 69/70 indels) were
detected, what gives a sensitivity
>0.993 (>99.3%). The v3 version of
the platform did not call any SNV or
indel in 936684 of the 937048 positions
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associated Pretest syndrome,

phenotype hidden syndrome
syndromic
Non-syndromic

inheritance or non-
pattern

Gene-
AR

Gene-associated

phenotype

Stargardt disease type 1
Fundus flavimaculatus

PMI, PM2, PM6_P,

PS4, PMI, PM2,

PVSI_S, PM2

PM3_VS, PP3, BA1

PVS1, PM2, PM3
PM3_S, PM5, PP3

pathogenicity criteria
PS3_P, PS4,

Fulfilled ACMG

Clasificacion
Absent/Absent

zygosity  classification HGMD)/ClinVar

DM/LP

ACMG

Het. Het. P LP

Variant

¢.3386G>T, p.(Argl129Leu)

Allele variant
¢.6006-2A>G

Gene
ABCA4

diagnosis
(15 years)

inheritance Age at

Pretest
Pretest phenotype genetic study pattern

Previous
with perimacular
flecks

Possible macular
OFTALMO.097 Retinitis

dystrophy

OFTALMO.095 Macular atrophy Not reported AD/ AR Childhood

Table 2. (Continued)

Case ID

of the probe design region known to
not be affected by these type of vari-
ants, yielding a specificity of 0.9996.
(936684/937048; >99.95%). The accu-
racy of v3 for determining the allelic
frequencies of SNVs and indels with
expected allelic frequencies >0.1 was
0.03 £ 0.06 (Table S8). The sensitivity,
specificity and accuracy of v4, calcu-
lated as described above for v3, were
0.9917, 0.9995 and 0.033 £ 0.055,
respectively (Table S9).

Pretest syndrome
Non-syndromic

XD
AD

Syndromic retinitis
asymmetry,
and neurological
disorders)

Optic atrophy 1 Optic
atrophy plus syndrome

Orthogonal validation of sequencing
results

Likely pathogenic; NA = not available; np = not

All variants considered responsible for
the IRDs phenotypes of the probands
(Table 2) were successfully validated
by approaches alternative to NGS.
These included 48 instances of SNVs
or indels (validated by PCR and Sanger
sequencing) and 1 CNV: 1 homozygous
deletion of BBS4 exon 1 (validated by
breakpoint-specific PCR).

PP3
PVSI1, PM2

Likely benign; LP

Absent/Absent

DM/LB

LP
L

Performance at challenging regions:
RPGR ORF15

Homozygous; LB

Het
Het.

Certain regions in the genome repre-
sent a major challenge for short-read-
ing NGS technologies. Of the genes
included in the OFTALMOgenics
designs, RPGR poses the highest diffi-
culties. RPGR encodes several iso-
forms, but only isoform C
(NM_001034853), also known as
RPGR ORFI5, is highly expressed in
the retina and, consequently, involved
in the pathogenesis of retinitis pigmen-
tosa (Vervoort et al. 2000). Several
regions of RPGR ORFI5 bear low
sequence complexity, causing a
decrease in base quality at the end of
NGS reads. This, combined with the
highly repetitive nature of the RPGR
ORF15 reference sequence, leads to low
mapping quality, limiting NGS-based
RPGR ORFI5 analysis. As a result,
many laboratories analyse RPGR
ORFI5 using traditional Sanger
sequencing (Chiang et al. 2015). Being
aware of these difficulties, and as we
observed that 92.7% of R&D cases
(51/55) showed regions with less than
100% of their bases covered by >20
reads, we increased sequencing cover-
age and dedicated a larger number of
capture probes to this conflictive region
in the design of the panel, reaching
100% of the RPGR target region cov-
ered by 20 or more reads in v4 cases

¢.292G>A, p.(Asp98Asn)
= Heterozygous; Hom

c.1847 + 1G>T

= Hemizygous; Het

PRPSI
OPAl

(8 years)
Youth
(15 years)

X-linked dominant.

Not reported AD/ AR Childhood

Not reported AD'

inopathy,
deafness,

Pathogenic; XD

macular atrophy
" Family history of eye disease.

Te

AD = autosomal dominant; AR = autosomal recessive; Hem

OFTALMO.098 Opt
provided; P

*
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(Table S10). Of note, one of the cases
in our series had a causative variant
detected by the NGS pipeline in RPGR
affecting  ORFI5 (NM_001034853.1:
c.2284delG; p.(Glu762Lysfs*53); cor-
responding with  ¢.1905 + 379delG
according to the main NM_000328.2
RPGR RefSeq), demonstrating the
ability of the test to identify these
challenging mutations.

Analysis of causative variants and

diagnostic yield

Of 100 cases with low vision caused by
alterations in the vitreous, choroid,
retina and/or optic nerve, a genetic
cause for their vision loss phenotype
was found in 45 (45%) after identifying
49 different pathogenic/likely patho-
genic variants in 26 genes (Fig. I,
Table 2 and Table S6). Causative
mutations were found in 31.2% (5/16)
of cases in which the existence of a
previous genetic study, with negative
results, had been reported before
OFTALMOgenics testing (Table 2
and Table S11). No causative mutation
could be identified in 55 patients (55%)
(Table S11). These are likely to be a
pool of patients without a genetic
aetiology, with mutations in genes not
included in the panel or with mutations
in genes included in the panel but not
detectable by the methodology used.
The commonest causative genes in our
population were 4BCA4 (8 patients),
PRPH2 (4 patients) and USH2A4 (4
patients). 1 pathogenic variant in
IMPDH]I was de novo (after confirma-
tion of maternity and paternity). The
post-test inheritance patterns of the
molecularly diagnosed patients were
autosomal recessive (AR) in 75.5%
(34/45) of cases, autosomal dominant
(AD) in 17.8% (8/45), and X-linked in
6.5% (3/46) (Fig. 2 and Table 2).
CNYV analysis identified a causative
variant in 1 of the 45 molecularly
diagnosed patients (2.2%): a homozy-
gous BBS4 exon 1 deletion in a patient
with suspected Bardet—Biedl syndrome
(retinitis pigmentosa, mild mental
retardation, polydactyly in hands and
feet, genital hypoplasia, renal dys-
plasia, obesity and hypertension). As
no heterozygous CNVs were detected
by our NGS platform, we analysed by
MLPA a group of five genes included
in our panel and previously described
to be affected by pathogenic deletions/
duplications (including USH2A, EYS,

PRPF31, RHO and RPE65) on a
subset of 31 cases without a genetic
diagnosis from our series. This analysis
identified no homozygous or heterozy-
gous alterations (Table S13).

Two of the 49 causative variants
(ABCA4 ¢.5882G>A and CEP290
c.384 387deITAGA) are present in
one control population each with allele
frequencies above 0.005, the threshold
we used for the application of the BA1
(benign-standalone) ACMG criterion
to recessive variants: 0.005054 (613/
121302) in ExAC for ABCA4
¢.5882G>A and 0.01074 (122/11360)
in GO-ESP for CEP290 c.384_387del-
TAGA. Their respective GnomAD
frequencies are 0.00350 (110/31396)
and 0.00003 (1/31362), below the BAI
threshold and compatible with disease
incidence in the general population.
Moreover, the 0.01074 (122/11360) fre-
quency reported for  CEP290
c.384 387deITAGA in GO-ESP does
not match those of the same variant in
other databases mentioned by dbSNP,
all with higher numbers of alleles
analysed [0.000056 (14/249068) in
GnomAD_exome,  0.000104  (13/
125568) in TOPMED and 0.00074
(58/78700) in PAGE_STUDY] and is
suspiciously high for a truncating vari-
ant in a gene in which inactivating
mutations have consistently been
shown to be pathogenic. Taking these
data altogether and considering that,
otherwise, both of these variants meet
ACMG criteria for pathogenicity, we
propose that they should be part of the
exclusion list for application of the
BAI1 criterion, to avoid false negatives
caused by automatic filtering based on
allele frequency.

In total, 1081 variants in tier 1 genes
and 119 variants in tier 2 genes were
identified and evaluated in the full
cohort of 100 patients. 476/1081
(44%) and 81/119 (68.1%) of the iden-
tified tier 1 and tier 2 variants, respec-
tively, were absent from the HGMD
professional and ClinVar databases
(hereafter ‘clinical databases’). No tier
2 variant was considered responsible
for the IRD phenotype. Eighteen of the
variants absent from the clinical data-
bases (all from tier 1) were classified as
pathogenic or likely pathogenic and
responsible for the IRD. Globally,
those 18 variants were considered
responsible for the IRD phenotype in
18 cases. As a result, 40% of the
genetically diagnosed cases (18/45)

were explained by variants not
described in the clinical databases
(Table 2). In addition, 31 non-redun-
dant variants were identified that
explained positive cases: 30 of these
were classified as pathogenic (DM) by
HGMD and/ or pathogenic/ likely
pathogenic by ClinVar for ophthalmo-
logical phenotypes, and 1 (4BCA4
c.6718A>G, p.(Thr2240Ala)) absent in
ClinVar and ‘questionable’ (DM?) in
HGMD for a phenotype of retinal
dystrophy (Table 2). We found 363
variants of uncertain significance
(VUS) that appeared a total of 412
instances considering all patients
(Table S12). These results highlight
the importance of manual interpreta-
tion and curation for the clinical clas-
sification of variants.

Increased clinical sensitivity and specificity
by jointly analysing non-syndromic and
syndromic genes

For 7 of the 45 patients in which a
genetic diagnosis was obtained, the
phenotypes associated with the genes
affected by causative variants either did
not match the pretest clinical features/
diagnoses or corresponded to syn-
dromes not previously diagnosed in
the proband’s personal and familial
medical records (hereafter ‘hidden syn-
dromes’; Table 2):

Two patients, male and female, both
with a pretest diagnosis of non-syn-
dromic RP, shared the same homozy-
gous mutation in IFT140 (c.874G>A,
p-(Val292Met)). The IFT140 gene had
been associated with recessive syn-
dromic (Mainzer—Saldino and Jeune
syndromes) (Perrault et al. 2012; Sch-
midts et al. 2013) and non-syndromic
phenotypes (RP80 and Leber Congen-
ital Amaurosis) (Xu et al. 2015). Post-
test clinical assessment of the male
patient revealed renal hypertension
and two collapsed vertebrae, both sings
compatible with Mainzer—Saldino syn-
drome (RP, renal and skeletal dys-
plasia). Thus, a hidden syndrome
explained the phenotype. The clinical
diagnosis of the female remained as
non-syndromic RP post-test. Interest-
ingly, in our two cases, the same
variant (IFT140 c.874G>A; p.(Val292-
Met)) was associated with a syndromic
and a non-syndromic phenotype.

A male patient with a pretest diag-
nosis of RP was affected by a homozy-
gous pathogenic variant in BBSI




(c.1169T>G, p.(Met390Arg)). BBSI
alterations have been associated with
recessive non-syndromic (Estrada-Cuz-
cano et al. 2012; Sharon & Banin 2015)
and syndromic RP (Bardet-Biedl syn-
drome -RP, diabetes-linked obesity,
polydactyly, kidney abnormalities and
intellectual disability-). Upon post-test
revaluation of the case, the patient was
found to have pancreas divisum and
unilateral postaxial polydactyly emerg-
ing from the fifth toe (right foot).
However, no intellectual disability,
nor renal or hormonal alterations were
detected.

A female patient with a pretest
diagnosis of RP had a novel canonical
splicing mutation in MCOLNI (c.878-
1G>A) in homozygosis. MCOLNI
inactivation has only been associated
with type 4 mucolipidosis, character-
ized by neurologic and ophthalmologic
abnormalities (Boudewyn & Walkley
2019). Post-test clinical review of the
case revealed that the patient had
psychomotor delay, intellectual disabil-
ity and a corneal lesion with microcys-
tic epithelial oedema, suggestive of
corneal dystrophy.

A male with nystagmus, macular
atrophy, typical RP, retinal ischaemia,
complete optic nerve atrophy and men-
tal retardation that had not been clin-
ically matched to any specific syndrome
pretest, had a heterozygous pathogenic
KIF11 variant (c.2548-2A>G). This
gene has been associated with exuda-
tive familial vitreoretinopathy and with
microcephaly with or without chori-
oretinopathy, lymphedema or mental
retardation (MLCRD), both dominant
phenotypes (Robitaille et al. 2014).
Post-test revaluation of the case con-
firmed that the phenotype matched
MLCRD syndrome.

A male patient with a clinical diag-
nosis of Usher syndrome was found to
be affected by two likely pathogenic
compound  heterozygous  variants
affecting the PEXI gene (c.1548delT,
p.(LeuS17Cysfs*2) and ¢.3077T>C,
p-(Leul026 Pro)). The PEXI gene has
been associated with peroxisome bio-
genesis disorders types 1A and 1B, as
well as with Heimler syndrome, all with
recessive inheritance (Ratbi et al. 2015).
Heimler syndrome combines the hear-
ing loss and retinal dystrophy pheno-
types typical of Usher syndrome with
enamel hypoplasia of the secondary
dentition and nail abnormalities, which
may be overlooked. Therefore, genetic

assessment increased the specificity of
the diagnosis.

Finally, a female patient with hear-
ing loss, diabetes and RP without a
specific syndromic diagnosis pretest
was affected by a missense, likely
pathogenic, heterozygous PRPS| vari-
ant (¢.292G>A, p.(Asp98Asn)). Patho-
genic variants in this gene have been
associated with three X-linked condi-
tions involving blindness: Charcot-
Marie-Tooth disease type 5, Arts syn-
drome and syndromic retinitis pigmen-
tosa (ocular asymmetry, hearing loss
and neurological alterations). The lat-
ter has only been described in females
with missense variants and shows a
dominant mode of inheritance (Fior-
entino et al. 2018).

Aside from these seven cases,
another female patient with a pretest
diagnosis of non-syndromic RP and a
blind sister had two compound
heterozygous variants affecting ARL6
[p.(Lys14Profs*15), pathogenic and
p-(Glyl67Arg), likely pathogenic]. This
gene has been associated both with
non-syndromic RP and with Bardet—
Biedl syndrome. Clinical review of the
family post-test revealed that, while the
patient had no extraophthalmic mani-
festations, her sister was born with an
extra toe that was later removed by
surgery. Although the sister has not
been genetically analysed so far, this
likely represents another case of a
single genotype causing syndromic
and non-syndromic hereditary blind-
ness, in this case within the same
family.

In total, 28.9% of the genetically
diagnosed patients (13/45) had syn-
dromic visual impairment (Table 2).
Of those, 30.8% (4/13) had a previ-
ously unrecognized (hidden) syndrome:
Mainzer-Saldino (1 patient), Bardet—
Biedl type 1 (1 patient), mucolipidosis
type IV (1 patient) and MLCRD (1
patient). Likewise, 23.1% (3/135) had
different syndromic manifestations, but
they did not have a specific clinically
diagnosed syndrome before the test
was performed: Usher type 2A (2
patients) and syndromic retinitis pig-
mentosa caused by mutations in the
PRPS1 gene (1 patient). Additionally,
one patient with Heimler syndrome
according to the test results had previ-
ously been imprecisely diagnosed as an
Usher case based on clinical features
(2.2%; 1/45) (Table 2). In contrast, of
the 55 patients without a genetic

diagnosis, only 5 (9.1%) had poten-
tially syndromic features (Table S11).
These findings demonstrate that com-
prehensive genomic diagnosis not only
increases diagnostic performance (sen-
sitivity and specificity), but also pro-
vides information with high clinical
relevance.

Genomic diagnosis identifies potential gene
therapy options for a considerable
proportion of IRD patients

Thirteen gene therapy clinical trials
aimed at compensating genetic defects
responsible for hereditary blindness of
patients genetically diagnosed by our
platform were open as of November
2019 or had been open for a period of
time during this study (Table 3). Of the
genes targeted by these clinical trials,
ABCA4 is the one altered by variants
responsible for blindness in most
patients of our series (8 patients),
followed by USH2A (2 patients),
CHM (2 patients), M YO7A (2 patients)
and RPGR (1 patient) (Table 3). In
total, 33.3% of the genetically diag-
nosed patients (15/45) and 15% of the
genetically evaluated patients (15/100)
could have potentially benefited from
therapeutic approaches with curative

potential in this time window
(Table 3).
Discussion

Out of the different outputs of this
work, the most appealing one is prob-
ably the confirmation of the utility of
comprehensive genomic diagnosis of
blind patients for the identification of
potential therapeutic options matching
their genetic profile in a relatively large
proportion of them. Nonetheless, the
advantages of testing hundreds of
blindness genes in parallel reach far
beyond therapeutic guidance. Thus, in
the diagnostic setting, because the
complex genetic heterogeneity of reti-
nal dystrophies makes very hard pre-
dicting the genetic alteration based on
the clinical characterization of the
patient only, and mutation of a single
gene may cause a broad range of
different clinical manifestations, com-
prehensive testing is particularly useful
(Hafler 2017).

In fact, the ability to perform phe-
notype-agnostic testing is providing a
growing body of evidence in support of
the concept of phenotypic expansion,
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Fig. 1. Genes considered responsible for hereditary visual impairment in our cohort and their associated phenotypes. Ellipses represent phenotypes
(black characters) involving vision loss caused by alterations in the retina, vitreous, choroid and/or optic nerve and consistently associated to defects
in the genes (blue characters) they contain. For genes with causative alterations affecting more than one patient in our cohort, the number of affected
patients is shown in brackets below. Phenotype acronyms: CMTXS5: Charcot-Marie-Tooth disease, X-linked recessive, 5; MLCRD: microcephaly,

lymphoedema, chorioretinal displasia syndrome.

by means of the identification of dis-
ease-causing mutations in genes not
previously related to the proband’s
clinical phenotype (Bowne et al. 2011;
Nishiguchi et al. 2014; Consugar et al.
2015). This approach can also tackle
the diagnostic dilemmas appearing
when phenotypic variability is observed
within the same family, a common
situation in inherited retinal dystro-
phies (Consugar et al. 2015). More-
over, as phenotypes evolve over time,
comprehensive testing reduces the pos-
sibility that the causative gene is not
evaluated because the proband’s symp-
toms do not match the phenotype
associated to it at the moment of
testing. Finally, as visual impairment
may be the presenting symptom of a
systemic syndrome, an accurate molec-
ular diagnosis may be critical for iden-
tifying a so far not revealed and wider
health problem. Apart from its infor-
mative value with regard to prognosis,
because some of these syndromes can
cause significant morbidity, prompt
identification and referral for systemic
assessment and monitorization may
secure early intervention and a better
outcome (Werdich et al. 2014).

A total of 15.6% (7/45) of the
patients for which a genetic diagnosis
was obtained in our study corre-
sponded to cases whose clinical diag-
noses pretest did not match the
phenotypes associated with the affected
genes at the time of reporting the
results to the requesting clinician,
involving the following genes: BBSI,
IFT140 (2x), KIF11, MCOLNI, PEXI
and PRPSI. Post-test reassessment
revealed that four of these cases repre-
sented hidden syndromes [cases with
BBSI, IFT140 (1 of the 2 cases), KIF11
and MCOLNI causative variants]. Of
the remaining three, one of them is a
case of phenotypic expansion (the sec-
ond [FTI140 case), other had been
diagnosed as syndromic pre-test, but
without a specific diagnosis (the
PRPS]I case) and the remaining one
corresponded to misdiagnosis of a
Heimler syndrome (caused by a PEX]
variant) as an Usher syndrome. These
results reinforce the utility of using
phenotype-agnostic panels for the
genomic diagnosis of vision loss.

The two IFTI40 cases from our
series, caused by the same mutation,
showed very different phenotypes: the

male had a phenotype matching
Mainzer-Saldino syndrome whereas
the female had non-syndromic RP.
Similarly, the non-syndromic patient
with two causative variants affecting
ARL6 had a sister (not genetically
tested) with polydactyly, which is
strongly suggestive of Bardet-Biedl
syndrome. These are clear examples of
phenotypic heterogeneity that further
reinforce the difficulty to predict the
affected genes from clinical assessment
and, as a result, the convenience of
using comprehensive gene panels.

So far, the clinical application of
NGS to the molecular diagnosis of
hereditary blindness has followed two
main paths: exome sequencing and
panel sequencing. While exome
sequencing has the advantage of being
able to identify variants in any gene
(thus not depending on gene selection
and being able to discover novel genes
not previously related to vision loss),
this advantage is actually more useful
in the research setting than in the
clinical setting, where a solid molecular
diagnosis, based on existing published
gene-phenotype associations and able
to guide patient management, is
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Fig. 2. Modes of inheritance of the genetic conditions considered responsible for hereditary vision
loss in our cohort. From outer to inner rings, affected genes, associated phenotypes and modes of
inheritance are shown. The area of each sector is proportional to the number of cases represented
within it. For genes with causative alterations affecting more than one patient, the number of
affected patients is shown in brackets. AD: autosomal dominant; AR: autosomal recessive; X-
linked recessive, 5; LCA: Leber congenital amaurosis; MLCRD: microcephaly, lymphoedema,
chorioretinal displasia syndrome; RP: retinitis pigmentosa; SM: Saldino—Mainzer syndrome; XD:

X-linked dominant; XR: X-linked recessive.

required. In fact, this advantage is
deemed to be less and less relevant
with time, as a recent study shows that
the discovery of novel genes associated
to recessive IRD approaches saturation
(Patel et al. 2018). As a result, up-to-
date panels including both genes with
strong/moderate  association  with
inherited blindness and recently dis-
covered candidate genes, as the one
presented herein, should minimize this
theoretical advantage of exome
sequencing.

Consugar et al. concluded that
focusing the sequencing and interpre-
tation efforts in a panel with a limited
subset of genes consistently associated
with blindness phenotypes outperforms
exome-based sequencing  strategies
(Consugar et al. 2015). This outperfor-
mance was based on improved detec-
tion rates (attributable to a probe
design better tailored to genes associ-
ated with IRD, as probes for aprox.

10% of the regions targeted by their
panel were missing from commercially
available exome capture kits) and
reduced turnaround times. Time reduc-
tion does not only apply to laboratory
geneticists, but also to clinicians, as
exome sequencing demands from them
additional time for the informed con-
sent process (including discussions
about incidental secondary findings),
for interpreting laboratory reports and
for reviewing results (many of which
refer to conditions they are likely not
familiar with) with patients (Biesecker
& Green 2014; Gillespie et al. 2014). A
more recent study, aimed at evaluating
the performance of exome sequencing
in the clinical context, concludes that
the current standard of 120x average
read depth may be insufficient for
consistent breadth of coverage across
all relevant genes (Kong et al. 2018).
Our test includes genes with all
modes of inheritance in a single gene

panel. An advantage of this is the
possibility of detecting dominant de
novo or incomplete penetrance muta-
tions in families with apparent recessive
patterns of disease transmission. In
total, in our series, 6 of the 45 cases
(13.3%) with a genetic diagnosis have
causative variants in genes associated
with dominant phenotypes and, how-
ever, do not have a family history of
IRDs (Table 2). Of note, a recessive
IRD panel would not have detected
these dominant causative variants.

As any diagnostic technique, panel
sequencing has its difficulties and lim-
itations. The ability of our panel to
detect SNVs and indels with high
analytical sensitivity and specificity
has been validated in this study. How-
ever, certain variant types, such as
trinucleotide expansions and CNVs,
as well as those affecting highly homol-
ogous or repetitive regions, can be
missed. Nonetheless, these limitations
are not exclusive of panel sequencing,
but extensive to other NGS
approaches, such as exome or, to a
lower extent, genome sequencing
(Bamshad et al. 2011; Schrijver et al.
2012). One relevant IRD gene affected
by such limitations is RPGR, specifi-
cally in its ORFI5 variant isoform
(Audo et al. 2012). Although we ini-
tially observed difficulties in the cap-
ture, sequencing and/or alignment of
sequences from this region, optimiza-
tion of our capture probe has allowed
us to overcome them in the current
clinical version of the panel (v4)
(Table S10).

The ability of our methodology to
detect CNVs from panel data has
previously been evaluated for a panel
of 199 deafness-related genes (Caban-
illas et al. 2018). In that case, our NGS
pipeline was able to correctly detect all
homozygous and heterozygous whole
gene CNVs previously found by gPCR
and MLPA affecting STRC (a partic-
ularly challenging gene because of its
highly homologous STRCPI pseudo-
gene). However, detection of partial
gene deletions/duplications by NGS is
even more challenging. The lack of
homozygous or heterozygous dele-
tions/duplications in the five genes we
evaluated by MLPA in a subset of 31
patients without a genetic diagnosis
from our current blindness series is
encouraging. However, we do not rule
out the possibility that these and other
patients from this study without a




genetic diagnosis have causative vari-
ants in genes that were investigated,
either because of the aforementioned
limitations or because the regions
affected by the variants were not
included in the design and, thus, were
not captured and sequenced.

It is also possible that some of the
patients from the current study tested
with the earlier versions of the probe
have causative variants in genes
included in the later versions. These
are not likely to represent a large
fraction of the cases, though, as all
causative variants in our series affected
genes present in all panel versions.
Nonetheless, a limitation of the panel
approach is that, if no causative vari-
ants are detected in the patient and a
new disease-associated gene is discov-
ered, that gene cannot be retrospec-
tively evaluated from the available
sequence. As mentioned before, exome
data could provide this information
with no extra sequencing.

The gene most frequently found to
be responsible for the visual impair-
ment phenotype in our series is A BCA4
(8/46 cases, 17.4%) followed by
USH24A and PRPH2 (4/46 cases,
8.7%, each), CNGBI (3/46, 6.5%)
and CHM, IFT140, MYO7A4 and RPI
(2/46, 4.3%, each). The remaining 18
cases (40%) were each caused by vari-
ants in one of 18 different genes (Figs 1
and 2). The high prevalence of ABCA4,
USH2A and CHM variants is in agree-
ment with a recent and large retrospec-
tive analysis done by Motta et al. that
evaluated 549 patients with IRD
genetic testing in Brazil (Motta et al.
2018). Of the other four genes high-
lighted by Motta and collaborators as
very prevalent disease-causing genes
(CEP290, CRBI, RPGR and CHM),
three of them (CEP290, RPGR and
CHM) are also affected by causative
mutations in our series, although not
recurrently (Figs 1 and 2).

Of the 100 cases evaluated in our
series, 15 (15%) could potentially ben-
efit from clinical trials aimed at cor-
recting their genetic defects, including
those affected by mutations in 4BCA4
(8 cases), USH2A (2 cases), CHM (2
cases), MYO7A (2 cases) and RPGR (1
case). Thus, our results suggest that
potential eligibility from a gene-correc-
tive clinical trial with curative purposes
is not a rare possibility for IRD
patients. Moreover, this data, com-
bined with the four cases in which a

hidden syndrome was revealed, indi-
cate that the proportion of genetically
diagnosed patients in which compre-
hensive genetic testing identified clini-
cally relevant insights was at least
42.2% (19/45).

Genetic diagnosis is the key eligibil-
ity criterion for clinical trials and
treatments based on gene therapy.
With the advent of CRISPR/Cas9
technologies the possibility to correct
not just the mutated genes but also
their specific pathogenic variants has
become a reality. This is the case of the
CEP290 ¢.2991 + 1655A>G intronic
mutation, targeted by the EDIT-101
investigational new drug for type 10
Leber congenital amaurosis (Maeder
et al. 2019). In this scenario, compre-
hensive  genomic  characterization
should soon be a must in the clinical
management of blind patients. Hope-
fully, a substantial proportion of the
ongoing clinical trials will boost the
approval of more therapies that, com-
bined with appropriate genomic test-
ing, will provide life-changing options
for those affected by such highly dis-
abling conditions.
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